Deep learning-based concrete defects classification and detection using semantic segmentation

Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Structural health monitoring Ročník 23; číslo 1; s. 383
Hlavní autoři: Arafin, Palisa, Billah, Ahm Muntasir, Issa, Anas
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.01.2024
Témata:
ISSN:1475-9217
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable advances with DL-based SHM, the most significant challenges to achieving the real-time implication are the limited available defects image databases and the selection of DL networks depth. To address these challenges, this research has created a diverse dataset with concrete crack (4087) and spalling (1100) images and used it for damage condition assessment by applying convolutional neural network (CNN) algorithms. CNN-classifier models are used to identify different types of defects and semantic segmentation for labeling the defect patterns within an image. Three CNN-based models-Visual Geometry Group (VGG)19, ResNet50, and InceptionV3 are incorporated as CNN-classifiers. For semantic segmentation, two encoder-decoder models, U-Net and pyramid scene parsing network architecture are developed based on four backbone models, including VGG19, ResNet50, InceptionV3, and EfficientNetB3. The CNN-classifier models are analyzed on two optimizers-stochastic gradient descent (SGD), root mean square propagation (RMSprop), and learning rates-0.1, 0.001, and 0.0001. However, the CNN-segmentation models are analyzed for SGD and adaptive moment estimation, trained with three different learning rates-0.1, 0.01, and 0.0001, and evaluated based on accuracy, intersection over union, precision, recall, and F1-score. InceptionV3 achieves the best performance for defects classification with an accuracy of 91.98% using the RMSprop optimizer. For crack segmentation, EfficientNetB3-based U-Net, and for spalling segmentation, IncenptionV3-based U-Net model outperformed all other algorithms, with an F1-score of 95.66 and 89.43%, respectively.
AbstractList Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable advances with DL-based SHM, the most significant challenges to achieving the real-time implication are the limited available defects image databases and the selection of DL networks depth. To address these challenges, this research has created a diverse dataset with concrete crack (4087) and spalling (1100) images and used it for damage condition assessment by applying convolutional neural network (CNN) algorithms. CNN-classifier models are used to identify different types of defects and semantic segmentation for labeling the defect patterns within an image. Three CNN-based models-Visual Geometry Group (VGG)19, ResNet50, and InceptionV3 are incorporated as CNN-classifiers. For semantic segmentation, two encoder-decoder models, U-Net and pyramid scene parsing network architecture are developed based on four backbone models, including VGG19, ResNet50, InceptionV3, and EfficientNetB3. The CNN-classifier models are analyzed on two optimizers-stochastic gradient descent (SGD), root mean square propagation (RMSprop), and learning rates-0.1, 0.001, and 0.0001. However, the CNN-segmentation models are analyzed for SGD and adaptive moment estimation, trained with three different learning rates-0.1, 0.01, and 0.0001, and evaluated based on accuracy, intersection over union, precision, recall, and F1-score. InceptionV3 achieves the best performance for defects classification with an accuracy of 91.98% using the RMSprop optimizer. For crack segmentation, EfficientNetB3-based U-Net, and for spalling segmentation, IncenptionV3-based U-Net model outperformed all other algorithms, with an F1-score of 95.66 and 89.43%, respectively.
Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable advances with DL-based SHM, the most significant challenges to achieving the real-time implication are the limited available defects image databases and the selection of DL networks depth. To address these challenges, this research has created a diverse dataset with concrete crack (4087) and spalling (1100) images and used it for damage condition assessment by applying convolutional neural network (CNN) algorithms. CNN-classifier models are used to identify different types of defects and semantic segmentation for labeling the defect patterns within an image. Three CNN-based models-Visual Geometry Group (VGG)19, ResNet50, and InceptionV3 are incorporated as CNN-classifiers. For semantic segmentation, two encoder-decoder models, U-Net and pyramid scene parsing network architecture are developed based on four backbone models, including VGG19, ResNet50, InceptionV3, and EfficientNetB3. The CNN-classifier models are analyzed on two optimizers-stochastic gradient descent (SGD), root mean square propagation (RMSprop), and learning rates-0.1, 0.001, and 0.0001. However, the CNN-segmentation models are analyzed for SGD and adaptive moment estimation, trained with three different learning rates-0.1, 0.01, and 0.0001, and evaluated based on accuracy, intersection over union, precision, recall, and F1-score. InceptionV3 achieves the best performance for defects classification with an accuracy of 91.98% using the RMSprop optimizer. For crack segmentation, EfficientNetB3-based U-Net, and for spalling segmentation, IncenptionV3-based U-Net model outperformed all other algorithms, with an F1-score of 95.66 and 89.43%, respectively.Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable advances with DL-based SHM, the most significant challenges to achieving the real-time implication are the limited available defects image databases and the selection of DL networks depth. To address these challenges, this research has created a diverse dataset with concrete crack (4087) and spalling (1100) images and used it for damage condition assessment by applying convolutional neural network (CNN) algorithms. CNN-classifier models are used to identify different types of defects and semantic segmentation for labeling the defect patterns within an image. Three CNN-based models-Visual Geometry Group (VGG)19, ResNet50, and InceptionV3 are incorporated as CNN-classifiers. For semantic segmentation, two encoder-decoder models, U-Net and pyramid scene parsing network architecture are developed based on four backbone models, including VGG19, ResNet50, InceptionV3, and EfficientNetB3. The CNN-classifier models are analyzed on two optimizers-stochastic gradient descent (SGD), root mean square propagation (RMSprop), and learning rates-0.1, 0.001, and 0.0001. However, the CNN-segmentation models are analyzed for SGD and adaptive moment estimation, trained with three different learning rates-0.1, 0.01, and 0.0001, and evaluated based on accuracy, intersection over union, precision, recall, and F1-score. InceptionV3 achieves the best performance for defects classification with an accuracy of 91.98% using the RMSprop optimizer. For crack segmentation, EfficientNetB3-based U-Net, and for spalling segmentation, IncenptionV3-based U-Net model outperformed all other algorithms, with an F1-score of 95.66 and 89.43%, respectively.
Author Arafin, Palisa
Issa, Anas
Billah, Ahm Muntasir
Author_xml – sequence: 1
  givenname: Palisa
  surname: Arafin
  fullname: Arafin, Palisa
  organization: Department of Civil Engineering, Lakehead University, Thunder Bay, ON, Canada
– sequence: 2
  givenname: Ahm Muntasir
  orcidid: 0000-0001-9840-3438
  surname: Billah
  fullname: Billah, Ahm Muntasir
  organization: Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
– sequence: 3
  givenname: Anas
  surname: Issa
  fullname: Issa, Anas
  organization: Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38078049$$D View this record in MEDLINE/PubMed
BookMark eNo1kD9PwzAQxT0U0T_wAVhQRpaA7Th1PKJCAakSC4woOp8vlVHilNgZ-PakUKZ7997v3nBLNgt9IMauBL8VQus7oXRppNCyEGJdSSFnbHH08qM5Z8sYPzmfpF6fs3lRcV1xZRbs44HokLUEQ_Bhn1uI5DLsAw6UKHPUEKaYYQsx-sYjJN-HDIKbojRFx22M02UWqYOQPE5i31FIv-QFO2ugjXR5miv2vn182zznu9enl839LkelTMoRnJGgrHSCNyXHsuDaWmNAWuRacAFkK8mtUqpxoBGdUgJUUwKCtpWTK3bz13sY-q-RYqo7H5HaFgL1Y6yl4dIUleDFhF6f0NF25OrD4DsYvuv_l8gfvFtlWQ
CitedBy_id crossref_primary_10_1299_transjsme_25_00014
crossref_primary_10_3390_jimaging11090288
crossref_primary_10_1007_s11709_024_1048_4
crossref_primary_10_1016_j_eswa_2024_124689
crossref_primary_10_3390_gels10080517
crossref_primary_10_1109_ACCESS_2024_3467989
crossref_primary_10_1016_j_autcon_2025_106230
crossref_primary_10_1016_j_jobe_2025_113589
crossref_primary_10_3390_electronics13050866
crossref_primary_10_1038_s41598_025_87173_7
crossref_primary_10_11648_j_ajce_20251304_12
crossref_primary_10_1007_s11760_025_03913_2
crossref_primary_10_1177_14759217251368998
crossref_primary_10_1016_j_advengsoft_2025_104010
crossref_primary_10_3390_math12193105
crossref_primary_10_1117_1_JEI_33_6_063007
crossref_primary_10_1007_s10845_025_02658_6
crossref_primary_10_1016_j_eswa_2025_128683
crossref_primary_10_1016_j_procs_2024_10_328
crossref_primary_10_1016_j_cscm_2024_e03711
crossref_primary_10_1177_14759217241246953
crossref_primary_10_1016_j_autcon_2025_106349
crossref_primary_10_1007_s10921_024_01103_7
crossref_primary_10_1038_s41598_024_75723_4
crossref_primary_10_1177_09544054241290573
crossref_primary_10_3390_app15189865
crossref_primary_10_1016_j_jobe_2025_114105
crossref_primary_10_1038_s41598_024_82612_3
crossref_primary_10_3390_electronics13163241
crossref_primary_10_1016_j_autcon_2025_106045
crossref_primary_10_3390_buildings14061580
crossref_primary_10_1007_s11227_025_07509_y
crossref_primary_10_1007_s00521_024_10962_0
crossref_primary_10_1016_j_dsp_2025_105323
crossref_primary_10_1109_ACCESS_2024_3525183
crossref_primary_10_13168_cs_2024_0025
crossref_primary_10_3390_buildings13112754
crossref_primary_10_1007_s11831_025_10279_8
crossref_primary_10_1177_13694332251381215
crossref_primary_10_3390_drones8070341
crossref_primary_10_7717_peerj_cs_3149
crossref_primary_10_4018_JCIT_349740
ContentType Journal Article
Copyright The Author(s) 2023.
Copyright_xml – notice: The Author(s) 2023.
DBID NPM
7X8
DOI 10.1177/14759217231168212
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 38078049
Genre Journal Article
GroupedDBID -TM
-TN
.2N
01A
0R~
123
1~K
29Q
31X
31Z
4.4
5VS
AACTG
AADUE
AAJPV
AAQDB
AAQXI
AARIX
AATAA
AATBZ
ABAWP
ABCCA
ABCJG
ABEIX
ABFWQ
ABHQH
ABKRH
ABLUO
ABPNF
ABQXT
ABRHV
ABUJY
ACDXX
ACGFS
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ADNMO
ADNON
ADRRZ
ADVBO
ADYCS
AEDFJ
AEPTA
AEQLS
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGWFA
AGWNL
AHDMH
AHHFK
AIOMO
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8Z
B94
BBRGL
BDDNI
BPACV
CAG
CFDXU
COF
CS3
DH.
DO-
DOPDO
DV7
EBS
EJD
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
J8X
K.F
M4V
N9A
NPM
O9-
P.B
P2P
Q83
RIG
ROL
S01
SAUOL
SCNPE
SFC
SFK
SFS
SFT
SFX
SGV
SGZ
SPJ
SPP
SPV
STM
ZPPRI
ZRKOI
7X8
AAPII
ABIDT
ADDLC
ADEBD
AJGYC
AJHME
AJVBE
SASJQ
ID FETCH-LOGICAL-c449t-cad92a4b2d10f50c5307bb99a2bc07101aeb820b444fda7ccd441a4f5aca7b8d2
IEDL.DBID 7X8
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980293500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1475-9217
IngestDate Sun Nov 09 12:47:59 EST 2025
Wed Feb 19 02:08:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords encoder-decoder model
structural health monitoring
semantic segmentation
convolutional neural network
Concrete defects
Language English
License The Author(s) 2023.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-cad92a4b2d10f50c5307bb99a2bc07101aeb820b444fda7ccd441a4f5aca7b8d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9840-3438
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/14759217231168212
PMID 38078049
PQID 2902938103
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2902938103
pubmed_primary_38078049
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Structural health monitoring
PublicationTitleAlternate Struct Health Monit
PublicationYear 2024
SSID ssj0021776
Score 2.5582592
Snippet Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 383
Title Deep learning-based concrete defects classification and detection using semantic segmentation
URI https://www.ncbi.nlm.nih.gov/pubmed/38078049
https://www.proquest.com/docview/2902938103
Volume 23
WOSCitedRecordID wos000980293500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMsDA-1FeMhKrRR4OjieEgIoBqg6AuqDIPjtVh6aFBH4_d0kKLEhILFFyUSLLd7Y_352_Y-yMaogQzZXw5L6X1oLQMsoFaAOxD6zyNZnO873q99PhUA9ah1vZplXO58R6onZTIB_5eaQDXJnwr_Hl7FVQ1SiKrrYlNBZZJ0YoQyldavgVRUC0rZrTRSoRGp_aqCYRLpGMRAhvwos0ooKUvyHMeqXprf-3jRtsrcWY_Koxik224IsttvqDeXCbvdx4P-NtyYiRoLXMcdwaI4asPHe-TvLgQNCacolq9XFTOHxV1clbBaeM-REv_QR1Mwa8GU3ac0zFDnvq3T5e34m20oIAKXUlwDgdGWkjFwZ5EkCCI99arU1kgTBIaLxFqGCllLkzCsAhijIyTwwYZVMX7bKlYlr4fcZREEMIeeg1yMSo1BNDYWx0bEEh3Omy03nfZWjJFJ4whZ--l9l373XZXqOAbNZQbmQ1LT5uZg7-8PUhW4kQeTR-kiPWyXEc-2O2DB_VuHw7qU0Er_3BwycDVsdi
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+concrete+defects+classification+and+detection+using+semantic+segmentation&rft.jtitle=Structural+health+monitoring&rft.au=Arafin%2C+Palisa&rft.au=Billah%2C+Ahm+Muntasir&rft.au=Issa%2C+Anas&rft.date=2024-01-01&rft.issn=1475-9217&rft.volume=23&rft.issue=1&rft.spage=383&rft_id=info:doi/10.1177%2F14759217231168212&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-9217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-9217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-9217&client=summon