CiGNN: A Causality-Informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation

Causalityholds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected in current research. In this study, we propose a two-stage framework, CiGNN, that seamlessly integrates causality and graph neural network (GN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics Jg. 28; H. 5; S. 2674 - 2686
Hauptverfasser: Liu, Lei, Lu, Huiqi, Whelan, Maxine, Chen, Yifan, Ding, Xiaorong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2194, 2168-2208, 2168-2208
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!