CiGNN: A Causality-Informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation

Causalityholds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected in current research. In this study, we propose a two-stage framework, CiGNN, that seamlessly integrates causality and graph neural network (GN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics Jg. 28; H. 5; S. 2674 - 2686
Hauptverfasser: Liu, Lei, Lu, Huiqi, Whelan, Maxine, Chen, Yifan, Ding, Xiaorong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2194, 2168-2208, 2168-2208
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Causalityholds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected in current research. In this study, we propose a two-stage framework, CiGNN, that seamlessly integrates causality and graph neural network (GNN) for cuffless continuous BP estimation. The first stage concentrates on the generation of a causal graph between BP and wearable features from the the perspective of causal inference, so as to identify features that are causally related to BP variations. This stage is pivotal for the identification of novel causal features from the causal graph beyond pulse transit time (PTT). We found these causal features empower better tracking in BP changes compared to PTT. For the second stage, a spatio-temporal GNN (STGNN) is utilized to learn from the causal graph obtained from the first stage. The STGNN can exploit both the spatial information within the causal graph and temporal information from beat-by-beat cardiac signals for refined cuffless continuous BP estimation. We evaluated the proposed method with three datasets that include 305 subjects (102 hypertensive patients) with age ranging from 20-90 and BP at different levels, with the continuous Finapres BP as references. The mean absolute difference (MAD) for estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 3.77 mmHg and 2.52 mmHg, respectively, which outperformed comparison methods. In all cases including subjects with different age groups, while doing various maneuvers that induces BP changes at different levels and with or without hypertension, the proposed CiGNN method demonstrates superior performance for cuffless continuous BP estimation. These findings suggest that the proposed CiGNN is a promising approach in elucidating the causal mechanisms of cuffless BP estimation and can substantially enhance the precision of BP measurement.
AbstractList Causalityholds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected in current research. In this study, we propose a two-stage framework, CiGNN, that seamlessly integrates causality and graph neural network (GNN) for cuffless continuous BP estimation. The first stage concentrates on the generation of a causal graph between BP and wearable features from the the perspective of causal inference, so as to identify features that are causally related to BP variations. This stage is pivotal for the identification of novel causal features from the causal graph beyond pulse transit time (PTT). We found these causal features empower better tracking in BP changes compared to PTT. For the second stage, a spatio-temporal GNN (STGNN) is utilized to learn from the causal graph obtained from the first stage. The STGNN can exploit both the spatial information within the causal graph and temporal information from beat-by-beat cardiac signals for refined cuffless continuous BP estimation. We evaluated the proposed method with three datasets that include 305 subjects (102 hypertensive patients) with age ranging from 20–90 and BP at different levels, with the continuous Finapres BP as references. The mean absolute difference (MAD) for estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 3.77 mmHg and 2.52 mmHg, respectively, which outperformed comparison methods. In all cases including subjects with different age groups, while doing various maneuvers that induces BP changes at different levels and with or without hypertension, the proposed CiGNN method demonstrates superior performance for cuffless continuous BP estimation. These findings suggest that the proposed CiGNN is a promising approach in elucidating the causal mechanisms of cuffless BP estimation and can substantially enhance the precision of BP measurement.
Causalityholds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected in current research. In this study, we propose a two-stage framework, CiGNN, that seamlessly integrates causality and graph neural network (GNN) for cuffless continuous BP estimation. The first stage concentrates on the generation of a causal graph between BP and wearable features from the the perspective of causal inference, so as to identify features that are causally related to BP variations. This stage is pivotal for the identification of novel causal features from the causal graph beyond pulse transit time (PTT). We found these causal features empower better tracking in BP changes compared to PTT. For the second stage, a spatio-temporal GNN (STGNN) is utilized to learn from the causal graph obtained from the first stage. The STGNN can exploit both the spatial information within the causal graph and temporal information from beat-by-beat cardiac signals for refined cuffless continuous BP estimation. We evaluated the proposed method with three datasets that include 305 subjects (102 hypertensive patients) with age ranging from 20-90 and BP at different levels, with the continuous Finapres BP as references. The mean absolute difference (MAD) for estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 3.77 mmHg and 2.52 mmHg, respectively, which outperformed comparison methods. In all cases including subjects with different age groups, while doing various maneuvers that induces BP changes at different levels and with or without hypertension, the proposed CiGNN method demonstrates superior performance for cuffless continuous BP estimation. These findings suggest that the proposed CiGNN is a promising approach in elucidating the causal mechanisms of cuffless BP estimation and can substantially enhance the precision of BP measurement.Causalityholds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected in current research. In this study, we propose a two-stage framework, CiGNN, that seamlessly integrates causality and graph neural network (GNN) for cuffless continuous BP estimation. The first stage concentrates on the generation of a causal graph between BP and wearable features from the the perspective of causal inference, so as to identify features that are causally related to BP variations. This stage is pivotal for the identification of novel causal features from the causal graph beyond pulse transit time (PTT). We found these causal features empower better tracking in BP changes compared to PTT. For the second stage, a spatio-temporal GNN (STGNN) is utilized to learn from the causal graph obtained from the first stage. The STGNN can exploit both the spatial information within the causal graph and temporal information from beat-by-beat cardiac signals for refined cuffless continuous BP estimation. We evaluated the proposed method with three datasets that include 305 subjects (102 hypertensive patients) with age ranging from 20-90 and BP at different levels, with the continuous Finapres BP as references. The mean absolute difference (MAD) for estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 3.77 mmHg and 2.52 mmHg, respectively, which outperformed comparison methods. In all cases including subjects with different age groups, while doing various maneuvers that induces BP changes at different levels and with or without hypertension, the proposed CiGNN method demonstrates superior performance for cuffless continuous BP estimation. These findings suggest that the proposed CiGNN is a promising approach in elucidating the causal mechanisms of cuffless BP estimation and can substantially enhance the precision of BP measurement.
Author Lu, Huiqi
Whelan, Maxine
Ding, Xiaorong
Liu, Lei
Chen, Yifan
AuthorAffiliation Centre for Healthcare and Communities Coventry University 2706 CV1 5FB Coventry U.K
School of Life Science and Technology University of Electronic Science and Technology of China 12599 Chengdu 611731 China
Institute of Biomedical Engineering University of Oxford 6396 OX1 2JD Oxford U.K
AuthorAffiliation_xml – name: School of Life Science and Technology University of Electronic Science and Technology of China 12599 Chengdu 611731 China
– name: Institute of Biomedical Engineering University of Oxford 6396 OX1 2JD Oxford U.K
– name: Centre for Healthcare and Communities Coventry University 2706 CV1 5FB Coventry U.K
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0001-6362-7722
  surname: Liu
  fullname: Liu, Lei
  organization: School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Huiqi
  orcidid: 0000-0002-6140-3394
  surname: Lu
  fullname: Lu, Huiqi
  organization: Institute of Biomedical Engineering, University of Oxford, Oxford, U.K
– sequence: 3
  givenname: Maxine
  orcidid: 0000-0002-9203-3162
  surname: Whelan
  fullname: Whelan, Maxine
  organization: Centre for Healthcare and Communities, Coventry University, Coventry, U.K
– sequence: 4
  givenname: Yifan
  orcidid: 0000-0001-7645-623X
  surname: Chen
  fullname: Chen, Yifan
  organization: School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Xiaorong
  orcidid: 0000-0002-3269-2852
  surname: Ding
  fullname: Ding, Xiaorong
  email: xiaorong.ding@uestc.edu.cn
  organization: School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38478458$$D View this record in MEDLINE/PubMed
BookMark eNp9UsFu1DAQtVARLaUfgISQJS5cstiOEztcUDdqt4uqhQOcLcdxqEvWXmynqH_PbHcXlR7wZeyZ90bzxu8lOvLBW4ReUzKjlDQfPs-vljNGGJ-VpRCUyWfohNFaFowReXS404Yfo7OUbgkcCammfoGOS8mF5JU8QXetW6xWH_E5bvWU9OjyfbH0Q4hr22Pte7yIenODV3aKeoSQf4f4E891gvJl1Gv78AY8bqdhGG1KuA0-Oz-FKeH5GEKPv0ZIT9Hii5TdWmcX_Cv0fNBjsmf7eIq-X158a6-K6y-LZXt-XRjOm1yYaqirgXSVtYbK2rDG2p7xjljRkaExRA-N7eqqo8TC0abvOyoY41LUdWVEeYo-7fpupg4UGesz6FCbCHPEexW0U_9WvLtRP8KdorBjImsKHd7vO8Twa7Ipq7VLxo6j9hYkKtZUgtacVwyg755Ab8MUPehTJakYlSXnElBvH4_0d5bDnwBA7AAmhpSiHZRx-WFrMKEbFSVqawC1NYDaGkDtDQBM-oR5aP4_zpsdx8ECH-G5YKRk5R_Xbrza
CODEN IJBHA9
CitedBy_id crossref_primary_10_1002_widm_70024
crossref_primary_10_3390_s25113254
crossref_primary_10_1109_JSEN_2024_3468316
crossref_primary_10_1007_s00521_024_10285_0
Cites_doi 10.1161/01.cir.84.2.482
10.1109/ieeestd.2019.8859685
10.1016/j.compbiomed.2023.106900
10.1076/brhm.30.2.178.1422
10.1109/JBHI.2016.2620995
10.1038/s41598-017-11507-3
10.1016/j.artmed.2020.101919
10.2307/1912791.1969
10.1038/s41597-022-01411-5
10.1177/089443939100900106
10.23915/distill.00033.ISSN2476-0757
10.1016/j.artint.2008.08.001
10.1126/sciadv.aau4996
10.1001/jama.2013.284427
10.1161/01.CIR.93.8.1527
10.1016/S2666-7568(23)00129-0
10.1007/BF02345755
10.1016/j.bspc.2019.02.028
10.3390/s20195606
10.1016/0895-7061(94)00175-b
10.3389/fgene.2019.00524
10.1109/iembs.2005.1615827
10.1007/978-981-10-4505-9_49
10.1007/s10115-021-01621-0
10.1016/j.eng.2019.08.016
10.1016/j.bspc.2020.102301
10.1109/TBME.2015.2480679
10.1186/s12987-020-00201-8
10.1016/j.ahj.2005.02.014
10.1145/3397269
10.1146/annurev-statistics-031017-100630
10.1007/s13534-019-00096-x
10.1109/JBHI.2017.2691715
10.1016/j.bspc.2020.101870
10.7551/mitpress/7503.003.0069
10.1161/01.CIR.6.4.553
10.1056/nejmc061756
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
2024 The Authors 2024 Authors
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: 2024 The Authors 2024 Authors
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/JBHI.2024.3377128
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2686
ExternalDocumentID PMC11100861
38478458
10_1109_JBHI_2024_3377128
10472032
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Royal Academy of Engineering Daphne Jackson Trust Fellowship grant
– fundername: National Natural Science Foundation of China
  grantid: 82102178
  funderid: 10.13039/501100001809
– fundername: Sichuan Science and Technology Program
  grantid: 2021YFH0179
– fundername: EPSRC Healthcare Technologies Challenge Award
  grantid: EP/N020774/1
– fundername: Wellcome Trust
  grantid: 217650/Z/19/Z
  funderid: 10.13039/100010269
– fundername: Wellcome Trust
– fundername: ;
– fundername: ;
  grantid: 217650/Z/19/Z
– fundername: ;
  grantid: 82102178
– fundername: ;
  grantid: 2021YFH0179
– fundername: ;
  grantid: EP/N020774/1
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c449t-c5f65f0b5eec186c29eed24b0e7b0f9c0af9eb65b10eeeeacddb1722487665c73
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221547700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Tue Sep 30 17:08:59 EDT 2025
Sun Sep 28 01:15:46 EDT 2025
Sun Jun 29 15:33:08 EDT 2025
Thu Apr 03 07:02:26 EDT 2025
Sat Nov 29 04:18:36 EST 2025
Tue Nov 18 22:23:50 EST 2025
Wed Aug 27 02:05:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-c5f65f0b5eec186c29eed24b0e7b0f9c0af9eb65b10eeeeacddb1722487665c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9203-3162
0000-0001-6362-7722
0000-0002-6140-3394
0000-0001-7645-623X
0000-0002-3269-2852
OpenAccessLink https://ieeexplore.ieee.org/document/10472032
PMID 38478458
PQID 3052183448
PQPubID 85417
PageCount 13
ParticipantIDs pubmed_primary_38478458
crossref_citationtrail_10_1109_JBHI_2024_3377128
crossref_primary_10_1109_JBHI_2024_3377128
proquest_miscellaneous_2957164452
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11100861
proquest_journals_3052183448
ieee_primary_10472032
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref17
Ding (ref29) 2019
ref39
ref38
ref19
ref18
Chung (ref33) 2014
Zhao (ref34) 2019
Goudet (ref25) 2017
ref24
ref23
ref45
Pearl (ref16) 2000; 19
ref26
ref20
ref42
ref41
ref22
ref44
ref43
(ref1) 2018
ref28
ref27
ref8
ref7
ref9
ref4
Shimizu (ref21) 2006; 7
ref3
ref6
Pearl (ref15) 2018
ref5
ref40
References_xml – ident: ref45
  doi: 10.1161/01.cir.84.2.482
– year: 2014
  ident: ref33
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– ident: ref40
  doi: 10.1109/ieeestd.2019.8859685
– ident: ref14
  doi: 10.1016/j.compbiomed.2023.106900
– ident: ref38
  doi: 10.1076/brhm.30.2.178.1422
– ident: ref6
  doi: 10.1109/JBHI.2016.2620995
– ident: ref28
  doi: 10.1038/s41598-017-11507-3
– ident: ref11
  doi: 10.1016/j.artmed.2020.101919
– ident: ref37
  doi: 10.2307/1912791.1969
– ident: ref27
  doi: 10.1038/s41597-022-01411-5
– ident: ref24
  doi: 10.1177/089443939100900106
– ident: ref23
  doi: 10.23915/distill.00033.ISSN2476-0757
– ident: ref30
  doi: 10.1016/j.artint.2008.08.001
– ident: ref22
  doi: 10.1126/sciadv.aau4996
– ident: ref2
  doi: 10.1001/jama.2013.284427
– volume-title: World Health Statistics 2018
  year: 2018
  ident: ref1
– ident: ref44
  doi: 10.1161/01.CIR.93.8.1527
– ident: ref3
  doi: 10.1016/S2666-7568(23)00129-0
– volume: 19
  volume-title: Causality: Models, Reasoning and Inference
  year: 2000
  ident: ref16
– ident: ref7
  doi: 10.1007/BF02345755
– ident: ref12
  doi: 10.1016/j.bspc.2019.02.028
– ident: ref13
  doi: 10.3390/s20195606
– year: 2019
  ident: ref29
  article-title: Feature exploration for knowledge-guided and data-driven approach based cuffless blood pressure measurement
– ident: ref39
  doi: 10.1016/0895-7061(94)00175-b
– ident: ref19
  doi: 10.3389/fgene.2019.00524
– ident: ref35
  doi: 10.1109/iembs.2005.1615827
– ident: ref41
  doi: 10.1007/978-981-10-4505-9_49
– ident: ref20
  doi: 10.1007/s10115-021-01621-0
– ident: ref17
  doi: 10.1016/j.eng.2019.08.016
– ident: ref36
  doi: 10.1016/j.bspc.2020.102301
– ident: ref8
  doi: 10.1109/TBME.2015.2480679
– year: 2017
  ident: ref25
  article-title: Causal generative neural networks
– year: 2019
  ident: ref34
  article-title: PairNorm: Tackling oversmoothing in GNNs
– ident: ref9
  doi: 10.1186/s12987-020-00201-8
– ident: ref4
  doi: 10.1016/j.ahj.2005.02.014
– ident: ref18
  doi: 10.1145/3397269
– ident: ref31
  doi: 10.1146/annurev-statistics-031017-100630
– ident: ref42
  doi: 10.1007/s13534-019-00096-x
– ident: ref26
  doi: 10.1109/JBHI.2017.2691715
– ident: ref10
  doi: 10.1016/j.bspc.2020.101870
– ident: ref32
  doi: 10.7551/mitpress/7503.003.0069
– ident: ref43
  doi: 10.1161/01.CIR.6.4.553
– ident: ref5
  doi: 10.1056/nejmc061756
– volume: 7
  start-page: 2003
  issue: 10
  year: 2006
  ident: ref21
  article-title: A linear non-Gaussian acyclic model for causal discovery
  publication-title: J. Mach. Learn. Res.
– volume-title: The Book of Why: The New Science of Cause and Effect
  year: 2018
  ident: ref15
SSID ssj0000816896
Score 2.4597824
Snippet Causalityholds profound potentials to dissipate confusion and improve accuracy in cuffless continuous blood pressure (BP) estimation, an area often neglected...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2674
SubjectTerms Adult
Age groups
Aged
Algorithms
Amplitude alteration
Biomedical monitoring
Blood pressure
Blood Pressure - physiology
Blood Pressure Determination - methods
Causality
cuffless continuous blood pressure
Electrocardiography
Estimation
Feature extraction
Female
Graph neural networks
Humans
Hypertension
Inference algorithms
Male
Middle Aged
Neural networks
Neural Networks, Computer
Physiology
Pressure estimation
pulse transit time
Signal Processing, Computer-Assisted
Spatial data
spatio-temporal graph neural network
Transit time
Young Adult
Title CiGNN: A Causality-Informed and Graph Neural Network Based Framework for Cuffless Continuous Blood Pressure Estimation
URI https://ieeexplore.ieee.org/document/10472032
https://www.ncbi.nlm.nih.gov/pubmed/38478458
https://www.proquest.com/docview/3052183448
https://www.proquest.com/docview/2957164452
https://pubmed.ncbi.nlm.nih.gov/PMC11100861
Volume 28
WOSCitedRecordID wos001221547700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdrGaUvW7t1W7q2aLCngVt_SJa1tyY07cZm9rBB3owsn2igOCOJ-_f3TnJMOrrB3gQ6Ccun-5B09zvGPmYiawRAEiWUISOMTaJC1Fmkc6sKpyToxoO4flNlWcxm-kefrO5zYQDAB5_BOTX9W36zsB1dlV0QrABV_N5hO0qpkKw1XKj4ChK-HleKjQglUfSvmEmsL76Ob77gaTAV51mmFCrlfbaXoWYuBBV73zJJvsbKU-7mn1GTW2Zo-vI_F3DAXvT-Jr8MG-SQPYP2Fdv73r-ov2b3k_l1WX7ml3xiupV3yqOQogQNN23DrwnRmhOGB05ThqBxPkbb1_DpJrCLIz2fdM7dod7kBHg1b7tFt-JjCovnIQVxCfwK9UlIlTxiv6ZXPyc3UV-LIbJC6HVkpculi2sJYJMit6lG45qKOgZVx07b2DgNdS7rJMZVozZvmhp9oxTPQ3kurcresN120cI7xo2TtQKVNyDRfbDGGPI7tXDgsrg2asTiDTsq2wOVU72Mu8ofWGJdETMrYmbVM3PEPg1DfgeUjn8RHxFntggDU0bsZMP0qhfkVZVRcjPVIsFhH4ZuFEF6VzEt4L-sUi3p1CkkTvE27JFh8s0eG7Hi0e4ZCAje-3FPO7_1MN8JofkVeXL8l-99z_ZpWSH68oTtrpcdnLLn9n49Xy3PUERmxZkXkQeIFwy3
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgoLEXPgcrDDAST0jZ8mHHMW9rta6DLuJhSHuLHOesVZpS1Db7-3dnp1WHAIk3S_5QnPvw2Xf3O8Y-ZyJrBEASJZQhI4xNokLUWaRzqwqnJOjGg7hOVVkWV1f6R5-s7nNhAMAHn8ERNb0vv5nbjp7KjglWgCp-P2SPpBBpEtK1Nk8qvoaEr8iVYiNCWRS9HzOJ9fG34eQc74OpOMoypVAt77HdDHVzIajc-9ah5Kus_Mng_D1ucusgGj_7zy08Z097i5OfBBZ5wR5A-5LtXvQ-9VfsdjQ7K8uv_ISPTLf0ZnkUkpSg4aZt-BlhWnNC8cBlyhA2zod4-jV8vA7t4jiejzrnblBzcoK8mrXdvFvyIQXG85CEuAB-iholJEvus5_j08vRJOqrMURWCL2KrHS5dHEtAWxS5DbVeLymoo5B1bHTNjZOQ53LOolx16jPm6ZG6yjFG1GeS6uy12ynnbdwwLhxslag8gYkGhDWGEOWpxYOXBbXRg1YvCZHZXuocqqYcVP5K0usKyJmRcSsemIO2JfNlF8Bp-Nfg_eJMlsDA1EG7HBN9KoX5WWVUXozVSPBaZ823SiE5FkxLeC_rFIt6d4pJC7xJvDIZvE1jw1YcY97NgMI4Pt-Tzu79kDfCeH5FXny9i_f-5E9mVxeTKvpefn9HdujLYZYzEO2s1p08J49trer2XLxwQvKHUizDxY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CiGNN%3A+A+Causality-Informed+and+Graph+Neural+Network+Based+Framework+for+Cuffless+Continuous+Blood+Pressure+Estimation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Liu%2C+Lei&rft.au=Lu%2C+Huiqi&rft.au=Whelan%2C+Maxine&rft.au=Chen%2C+Yifan&rft.date=2024-05-01&rft.pub=IEEE&rft.issn=2168-2194&rft.volume=28&rft.issue=5&rft.spage=2674&rft.epage=2686&rft_id=info:doi/10.1109%2FJBHI.2024.3377128&rft_id=info%3Apmid%2F38478458&rft.externalDocID=10472032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon