Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder
This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrate...
Uloženo v:
| Vydáno v: | Quantum machine intelligence Ročník 7; číslo 1; s. 41 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.06.2025
|
| Témata: | |
| ISSN: | 2524-4906, 2524-4914, 2524-4914 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics ‘signal’ events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally. |
|---|---|
| AbstractList | This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics 'signal' events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics 'signal' events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally. This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics ‘signal’ events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally. |
| ArticleNumber | 41 |
| Author | Duffy, Callum Hassanshahi, Mohammad Malik, Sarah Jastrzebski, Marcin |
| Author_xml | – sequence: 1 givenname: Callum surname: Duffy fullname: Duffy, Callum email: callum.duffy.22@ucl.ac.uk organization: Physics and Astronomy, University College London – sequence: 2 givenname: Mohammad surname: Hassanshahi fullname: Hassanshahi, Mohammad organization: Physics and Astronomy, University College London – sequence: 3 givenname: Marcin surname: Jastrzebski fullname: Jastrzebski, Marcin organization: Physics and Astronomy, University College London – sequence: 4 givenname: Sarah surname: Malik fullname: Malik, Sarah organization: Physics and Astronomy, University College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40098753$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UUtPGzEQtiqqQoE_0EPlYy-mfmbXp6qKWqgUiUu5YnnXs8Ro1w62Nyj_vk4DqOXAxR5pvsfMfB_RUYgBEPrE6AWjtPmaJZetJJQrQuvTEvkOnXDFJZGayaOXmi6O0XnO97SiGiFbuviAjiWlum2UOEG3NyHPG0hbn8HhDnYxOJKLDc4mR6boYMSwhVCw87mPW0g7bAsua8CrqyV-9GWNLQ61MeKH2YYyT9jOJULoKzedofeDHTOcP_2n6Obnj9_LK7K6vvy1_L4ivZS6kJ4qrQfGgUlGZddxyalqOO-s7npmnRqEWwwKBqFs56hwltVaq7qUoO3gxCn6dtDdzN0Erq8DJzuaTfKTTTsTrTf_d4Jfm7u4NYzp6shlVfjypJDiwwy5mKkuDONoA8Q5G8GalutWUlGhn_81e3F5vmoFtAdAn2LOCQbT-2KLj3tvPxpGzT5Dc8jQ1PjM3wzNfgz-ivqs_iZJHEi5gsMdJHMf5xTqwd9i_QGPmK_i |
| CitedBy_id | crossref_primary_10_3390_computers14080331 |
| Cites_doi | 10.1103/physreva.70.042311 10.1103/physreva.101.032308 10.1088/2632-2153/abc17d 10.1103/PRXQuantum.4.027001 10.1038/s41467-022-32550-3 10.1038/s42256-022-00441-3 10.1038/nature23879 10.1103/PRXQuantum.2.040316 10.1103/PhysRevX.12.021037 10.1007/s42484-021-00055-9 10.1103/PhysRevResearch.6.023218 10.1007/s42484-023-00103-6 10.1103/PhysRevD.105.076012 10.1103/PhysRevD.99.015014 10.1103/PhysRevLett.102.190501 10.1007/s41781-020-00047-7 10.1103/physrevresearch.3.033221 10.1016/s0370-2693(01)00238-6 10.1103/physrevlett.83.3370 10.1007/jhep02(2023)220 10.1126/science.abn7293 10.1103/PhysRevLett.126.062001 10.48550/arXiv.2312.09121 10.1007/jhep02(2014)057 10.1103/PhysRevLett.132.240602 10.1007/jhep04(2022)156 10.1063/1.1497700 10.1103/PhysRevA.110.L040403 10.1038/s41567-021-01287-z 10.1038/s41467-021-27045-6 10.1038/s41467-021-21728-w 10.26421/QIC3.6-5 10.1103/PhysRevD.109.052002 10.1002/qute.201900070 10.1103/PhysRevD.101.076015 10.1103/PhysRevLett.128.050402 10.48550/arXiv.2203.08805 10.1007/jhep10(2019)047 10.22331/q-2024-07-03-1395 10.1103/PRXQuantum.3.020333 10.1038/s41567-018-0124-x 10.1016/j.cpc.2015.01.024 10.1103/physrevd.105.095004 10.1007/jhep02(2021)212 10.1103/prxquantum.3.010313 10.1103/PhysRevD.106.036021 10.1103/PhysRevLett.129.090502 10.5281/zenodo.7696203 10.1007/jhep03(2022)066 10.1103/PhysRevA.83.032317 10.1140/epjc/s10052-019-6607-9 10.1088/2058-9565/aa8072 10.48550/arXiv.2003.05991 10.1126/science.abk3333 10.1051/epjconf/202024509013 10.1007/jhep07(2014)079 10.21468/SciPostPhys.12.1.045 10.1038/s41534-022-00666-5 10.1051/epjconf/202125103070 10.1038/s41467-018-07090-4 10.22331/q-2018-08-06-79 10.21236/ADA164453 10.1103/PhysRevD.105.055006 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1007/s42484-025-00258-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2524-4914 |
| ExternalDocumentID | PMC11910424 40098753 10_1007_s42484_025_00258_4 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Science and Technology Facilities Council grantid: ST/W00674X/1,ST/W50788X/1 funderid: http://dx.doi.org/10.13039/501100000271 – fundername: Royal Society grantid: RFERE210341,URFR201023 funderid: http://dx.doi.org/10.13039/501100000288 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AHPBZ AHWEU AIGIU AILAN AITGF AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ATHPR AXYYD AYFIA BGNMA C6C DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABRTQ CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c449t-c0599f12e14104bb24205722ba9bc1ad5f3d6f5ef35abd03da1ef395000308fd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445080700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2524-4906 2524-4914 |
| IngestDate | Thu Aug 21 18:33:43 EDT 2025 Thu Oct 02 09:13:55 EDT 2025 Thu Apr 03 06:59:16 EDT 2025 Sat Nov 29 07:51:14 EST 2025 Tue Nov 18 21:04:35 EST 2025 Fri Jun 27 01:51:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Entanglement entropy Quantum autoencoder High-energy physics Anomaly detection Magic |
| Language | English |
| License | The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c449t-c0599f12e14104bb24205722ba9bc1ad5f3d6f5ef35abd03da1ef395000308fd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s42484-025-00258-4 |
| PMID | 40098753 |
| PQID | 3178298403 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11910424 proquest_miscellaneous_3178298403 pubmed_primary_40098753 crossref_citationtrail_10_1007_s42484_025_00258_4 crossref_primary_10_1007_s42484_025_00258_4 springer_journals_10_1007_s42484_025_00258_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Switzerland |
| PublicationTitle | Quantum machine intelligence |
| PublicationTitleAbbrev | Quantum Mach. Intell |
| PublicationTitleAlternate | Quantum Mach Intell |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | ET Campbell (258_CR15) 2011; 83 DA Meyer (258_CR51) 2002; 43 HY Huang (258_CR34) 2022; 377 J Hajer (258_CR36) 2020; 101 V Mikuni (258_CR50) 2022; 105 A Kandala (258_CR39) 2017; 549 S Shin (258_CR67) 2024; 6 258_CR18 258_CR19 258_CR2 JJ Lejarza (258_CR48) 2022; 106 258_CR1 258_CR25 258_CR69 258_CR3 258_CR26 D Gross (258_CR28) 2009; 102 258_CR6 258_CR24 258_CR68 258_CR65 258_CR22 258_CR66 D Magano (258_CR49) 2022; 105 F Pan (258_CR57) 2022; 129 258_CR20 258_CR64 258_CR60 C Ortiz Marrero (258_CR55) 2021; 2 V Belis (258_CR7) 2021; 251 258_CR29 X Gao (258_CR27) 2022; 12 258_CR38 258_CR37 258_CR32 S Boixo (258_CR8) 2018; 14 258_CR30 258_CR74 258_CR72 258_CR73 258_CR70 J Romero (258_CR61) 2017; 2 258_CR71 B Nachman (258_CR52) 2021; 126 258_CR47 HY Huang (258_CR33) 2022; 376 258_CR45 258_CR43 L Randall (258_CR62) 1999; 83 258_CR41 J Bijnens (258_CR5) 2001; 503 258_CR42 258_CR9 T Haug (258_CR35) 2024; 132 Y Liu (258_CR40) 2021; 17 258_CR16 P Duckett (258_CR21) 2024; 109 258_CR17 258_CR14 258_CR58 258_CR59 T Sjöstrand (258_CR63) 2015; 191 258_CR12 RT D’Agnolo (258_CR23) 2019; 99 L Leone (258_CR44) 2022; 128 258_CR56 258_CR13 258_CR10 258_CR54 258_CR11 ZW Liu (258_CR46) 2022; 3 258_CR53 CW Bauer (258_CR4) 2023; 4 E Govorkova (258_CR31) 2022; 4 |
| References_xml | – ident: 258_CR66 doi: 10.1103/physreva.70.042311 – ident: 258_CR64 doi: 10.1103/physreva.101.032308 – ident: 258_CR32 doi: 10.1088/2632-2153/abc17d – ident: 258_CR72 – volume: 4 year: 2023 ident: 258_CR4 publication-title: PRX Quant doi: 10.1103/PRXQuantum.4.027001 – ident: 258_CR16 doi: 10.1038/s41467-022-32550-3 – ident: 258_CR24 – volume: 4 start-page: 154 issue: 2 year: 2022 ident: 258_CR31 publication-title: Nat Mach Intell doi: 10.1038/s42256-022-00441-3 – volume: 549 start-page: 242 issue: 7671 year: 2017 ident: 258_CR39 publication-title: Nat doi: 10.1038/nature23879 – volume: 2 year: 2021 ident: 258_CR55 publication-title: Entanglement-induced barren plateaus. PRX Quant doi: 10.1103/PRXQuantum.2.040316 – volume: 12 year: 2022 ident: 258_CR27 publication-title: Phys Rev X doi: 10.1103/PhysRevX.12.021037 – ident: 258_CR6 – ident: 258_CR70 doi: 10.1007/s42484-021-00055-9 – volume: 6 year: 2024 ident: 258_CR67 publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.6.023218 – ident: 258_CR37 – ident: 258_CR71 doi: 10.1007/s42484-023-00103-6 – volume: 105 year: 2022 ident: 258_CR49 publication-title: Phys Rev D doi: 10.1103/PhysRevD.105.076012 – volume: 99 year: 2019 ident: 258_CR23 publication-title: Phys Rev D doi: 10.1103/PhysRevD.99.015014 – ident: 258_CR19 – ident: 258_CR42 – volume: 102 year: 2009 ident: 258_CR28 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.102.190501 – ident: 258_CR69 doi: 10.1007/s41781-020-00047-7 – ident: 258_CR74 doi: 10.1103/physrevresearch.3.033221 – volume: 503 start-page: 341 issue: 3–4 year: 2001 ident: 258_CR5 publication-title: Phys Lett B doi: 10.1016/s0370-2693(01)00238-6 – volume: 83 start-page: 3370 issue: 17 year: 1999 ident: 258_CR62 publication-title: Phys Rev Lett doi: 10.1103/physrevlett.83.3370 – ident: 258_CR1 doi: 10.1007/jhep02(2023)220 – volume: 376 start-page: 1182 issue: 6598 year: 2022 ident: 258_CR33 publication-title: Sci doi: 10.1126/science.abn7293 – volume: 126 year: 2021 ident: 258_CR52 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.126.062001 – ident: 258_CR17 doi: 10.48550/arXiv.2312.09121 – ident: 258_CR20 doi: 10.1007/jhep02(2014)057 – volume: 132 year: 2024 ident: 258_CR35 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.132.240602 – ident: 258_CR9 – ident: 258_CR29 doi: 10.1007/jhep04(2022)156 – volume: 43 start-page: 4273 issue: 9 year: 2002 ident: 258_CR51 publication-title: J Math Phys doi: 10.1063/1.1497700 – ident: 258_CR41 doi: 10.1103/PhysRevA.110.L040403 – volume: 17 start-page: 1013 issue: 9 year: 2021 ident: 258_CR40 publication-title: Nat Phys doi: 10.1038/s41567-021-01287-z – ident: 258_CR73 doi: 10.1038/s41467-021-27045-6 – ident: 258_CR18 doi: 10.1038/s41467-021-21728-w – ident: 258_CR12 doi: 10.26421/QIC3.6-5 – volume: 109 year: 2024 ident: 258_CR21 publication-title: Phys Rev D doi: 10.1103/PhysRevD.109.052002 – ident: 258_CR45 – ident: 258_CR65 doi: 10.1002/qute.201900070 – ident: 258_CR26 – volume: 101 year: 2020 ident: 258_CR36 publication-title: Phys Rev D doi: 10.1103/PhysRevD.101.076015 – volume: 128 year: 2022 ident: 258_CR44 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.128.050402 – ident: 258_CR22 doi: 10.48550/arXiv.2203.08805 – ident: 258_CR14 doi: 10.1007/jhep10(2019)047 – ident: 258_CR43 doi: 10.22331/q-2024-07-03-1395 – volume: 3 year: 2022 ident: 258_CR46 publication-title: Many-body quantum magic. PRX Quant doi: 10.1103/PRXQuantum.3.020333 – volume: 14 start-page: 595 issue: 6 year: 2018 ident: 258_CR8 publication-title: Nat Phys doi: 10.1038/s41567-018-0124-x – volume: 191 start-page: 159 year: 2015 ident: 258_CR63 publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2015.01.024 – ident: 258_CR53 doi: 10.1103/physrevd.105.095004 – ident: 258_CR13 doi: 10.1007/jhep02(2021)212 – ident: 258_CR38 doi: 10.1103/prxquantum.3.010313 – volume: 106 year: 2022 ident: 258_CR48 publication-title: Phys Rev D doi: 10.1103/PhysRevD.106.036021 – volume: 129 year: 2022 ident: 258_CR57 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.129.090502 – ident: 258_CR11 doi: 10.5281/zenodo.7696203 – ident: 258_CR25 doi: 10.1007/jhep03(2022)066 – volume: 83 year: 2011 ident: 258_CR15 publication-title: Phys Rev A doi: 10.1103/PhysRevA.83.032317 – ident: 258_CR3 doi: 10.1140/epjc/s10052-019-6607-9 – volume: 2 issue: 4 year: 2017 ident: 258_CR61 publication-title: Quant Sci Technol doi: 10.1088/2058-9565/aa8072 – ident: 258_CR10 doi: 10.48550/arXiv.2003.05991 – volume: 377 start-page: 3333 issue: 6613 year: 2022 ident: 258_CR34 publication-title: Sci doi: 10.1126/science.abk3333 – ident: 258_CR68 doi: 10.1051/epjconf/202024509013 – ident: 258_CR2 doi: 10.1007/jhep07(2014)079 – ident: 258_CR30 – ident: 258_CR56 doi: 10.21468/SciPostPhys.12.1.045 – ident: 258_CR59 – ident: 258_CR54 doi: 10.1038/s41534-022-00666-5 – volume: 251 start-page: 03070 year: 2021 ident: 258_CR7 publication-title: EPJ Web Conf doi: 10.1051/epjconf/202125103070 – ident: 258_CR47 doi: 10.1038/s41467-018-07090-4 – ident: 258_CR58 doi: 10.22331/q-2018-08-06-79 – ident: 258_CR60 doi: 10.21236/ADA164453 – volume: 105 year: 2022 ident: 258_CR50 publication-title: Phys Rev D doi: 10.1103/PhysRevD.105.055006 |
| SSID | ssj0002734806 |
| Score | 2.3002036 |
| Snippet | This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 41 |
| SubjectTerms | Artificial Intelligence Computational Intelligence Engineering Quantum Information Technology Spintronics |
| Title | Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder |
| URI | https://link.springer.com/article/10.1007/s42484-025-00258-4 https://www.ncbi.nlm.nih.gov/pubmed/40098753 https://www.proquest.com/docview/3178298403 https://pubmed.ncbi.nlm.nih.gov/PMC11910424 |
| Volume | 7 |
| WOSCitedRecordID | wos001445080700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2524-4914 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734806 issn: 2524-4906 databaseCode: RSV dateStart: 20190501 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6KEcgFIe4SUjcWstJbazax8RAnFACLUF7alR4odAgixsEiT-PR5vErEFIdFbJDtWMjP2jOfxDcAh41YVXg1TrrS_oBit_J4zjiKUFmPGDQdDE5pNDC8u5GikLtuisKrLdu9CkuGk7ovdBBNSUGy_iopaUjEPi17dSWzY8Ov3de9ZCYAtoakmS5mgQsWDtlrm_WVmNdIbM_NttuQ_IdOgiU5X_u8fVmG5tTzJ0VRUvsGcLddg6RUe4Xf4e1VWzQOeHpU1pAjFLbRzNtDQNIcExCeCxbyY_PlM8pp4G5Kcnx0T9OmSnJR-4I48Np5nzT3Jm3qMYJnGTtbh6vTkz_EZbRswUC2EqqlG8BaXMIvJoKIovDr35h1jRa4KneQmddwMXGodT_PCxNzkiX9W6RQFxxm-AQvluLRbQJzkseZpol2KIH-2iJmWzCmtpRSpiyNIOiZkukUnxyYZd1mPqxxol3myZYF2mYjgR__OwxSb48PZBx1vM7-FMC6Sl3bcVJk3oSRT_qbLI9ic8rpfTyDgqr_SRSBnpKCfgPDcsyPl7U2A6UboPAwsR_CzE4asPSCqD75z-3PTd-ArC_KEjqFdWKgnjd2DL_qpvq0m-zA_HMn9sD9eAP2ACO4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBH0CLRHmh5FFIeNRI3sJTYzq59rCqqRSyrqrSoJ6zED1GpzbabpBL_Ho83iViKKsEtkh0rscee8djzDcA7xp0qgxqmXJmwQbFGhTlnPUWUFmPWj0djG5NNjGczeXamjrqgsLq_7d4fScaVegh2E0xIQTH9KipqScV9WBdBYyEx__jrt8GzEoEtMakmy5mgQqWjLlrm782saqRbZubt25J_HJlGTXS49X__sA2POsuT7C9F5THcc9UT2PyNR_gUvp9WdXuFq0ftLCljcAvtnQ00Js0hkfhEMJgXL3_-JEVDgg1JppMDgj5dUpAqFFyQ6zaMWXtJiraZIyzTusUzOD38eHIwoV0CBmqEUA01CG_xGXN4GVSUZVDnwbxjrCxUabLC5p7bkc-d53lR2pTbIgvPKl9ScLzlO7BWzSv3AoiXPDU8z4zPEfLnypQZybwyRkqR-zSBrB8EbTo6OSbJuNADVzn2nQ7dpmPfaZHA--GdqyWb487ab_ux1WEK4blIUbl5W-tgQkmmwk6XJ_B8OdZDewKBq2FLl4BckYKhAuK5V0uq8x8R043oPDxYTuBDLwy6WyDqO75z99-q78HDycmXqZ5-mn1-CRssyhY6iV7BWrNo3Wt4YG6a83rxJs6SXzG3Cuo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFD_oFNGHzW87N43gm4a1SXpv8ijbLhPHZaCTPRnafOBg9l5vW8H_3pz0g10nA9lbIWloc05yvn8H4C3jTpVBDFOuTDBQrFHhzFlPEUqLMeunk6mNzSam87k8O1Mnl6r4Y7b7EJLsahoQpalq9pbW742Fb4IJKSi2YkWhLam4DXcEJtKjvf756-hlieAtscEmy5mgQqWTvnLm38usS6crKufVzMm_wqdRKs22bv4_D2Gz10jJh46FHsEtVz2GB5dwCp_At9Oqbpd4q9TOkjIWvdDBCUFjMx0SkaAIFvliUuhvUjQk6Jbk-GifoK-XFKQKAxfkZxto2f4gRdssEETTutVTOJ0dftk_on1jBmqEUA01COriM-YwSVSUZRDzQe1jrCxUabLC5p7bic-d53lR2pTbIgvPKu_Qcbzlz2CjWlTuBRAveWp4nhmfI_ifK1NmJPPKGClF7tMEsoEg2vSo5dg840KPeMtx73TYNh33TosE3o3vLDvMjmtnvxnorMPRwnhJUblFW-ugWkmmggXME3je0X1cTyAQazD1EpBrHDFOQNju9ZHq_HuE70ZIPQw4J_B-YAzdXxz1Nd-5_X_TX8O9k4OZPv44__QS7rPIWug72oGNZtW6XbhrfjXn9epVPDB_AOjLE84 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+beyond-standard-model+event+discovery+at+the+LHC+with+a+novel+quantum+autoencoder&rft.jtitle=Quantum+machine+intelligence&rft.au=Duffy%2C+Callum&rft.au=Hassanshahi%2C+Mohammad&rft.au=Jastrzebski%2C+Marcin&rft.au=Malik%2C+Sarah&rft.date=2025-06-01&rft.issn=2524-4914&rft.eissn=2524-4914&rft.volume=7&rft.issue=1&rft.spage=41&rft_id=info:doi/10.1007%2Fs42484-025-00258-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-4906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-4906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-4906&client=summon |