Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder

This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Quantum machine intelligence Ročník 7; číslo 1; s. 41
Hlavní autoři: Duffy, Callum, Hassanshahi, Mohammad, Jastrzebski, Marcin, Malik, Sarah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2025
Témata:
ISSN:2524-4906, 2524-4914, 2524-4914
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics ‘signal’ events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.
AbstractList This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics 'signal' events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics 'signal' events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.
This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at the Large Hadron Collider. We introduce a novel quantum autoencoder circuit ansatz that is specifically designed for this task and demonstrates superior performance compared to previous approaches. To assess its robustness, we evaluate the quantum autoencoder on various types of new physics ‘signal’ events and varying problem sizes. Additionally, we develop classical autoencoders that outperform previously proposed quantum autoencoders but remain outpaced by the new quantum ansatz, despite its significantly reduced number of trainable parameters. Finally, we investigate the properties of quantum autoencoder circuits, focusing on entanglement and magic. We introduce a novel metric in the context of parameterised quantum circuits, stabiliser 2-Rényi entropy to quantify magic, along with the previously studied Meyer-Wallach measure for entanglement. Intriguingly, both metrics decreased throughout the training process along with the decrease in the loss function. This appears to suggest that models preferentially learn parameters that reduce (but not minimise) these metrics. This study highlights the potential utility of quantum autoencoders in searching for physics beyond the standard model at the Large Hadron Collider and opens exciting avenues for further research into the role of entanglement and magic in quantum machine learning more generally.
ArticleNumber 41
Author Duffy, Callum
Hassanshahi, Mohammad
Malik, Sarah
Jastrzebski, Marcin
Author_xml – sequence: 1
  givenname: Callum
  surname: Duffy
  fullname: Duffy, Callum
  email: callum.duffy.22@ucl.ac.uk
  organization: Physics and Astronomy, University College London
– sequence: 2
  givenname: Mohammad
  surname: Hassanshahi
  fullname: Hassanshahi, Mohammad
  organization: Physics and Astronomy, University College London
– sequence: 3
  givenname: Marcin
  surname: Jastrzebski
  fullname: Jastrzebski, Marcin
  organization: Physics and Astronomy, University College London
– sequence: 4
  givenname: Sarah
  surname: Malik
  fullname: Malik, Sarah
  organization: Physics and Astronomy, University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40098753$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtPGzEQtiqqQoE_0EPlYy-mfmbXp6qKWqgUiUu5YnnXs8Ro1w62Nyj_vk4DqOXAxR5pvsfMfB_RUYgBEPrE6AWjtPmaJZetJJQrQuvTEvkOnXDFJZGayaOXmi6O0XnO97SiGiFbuviAjiWlum2UOEG3NyHPG0hbn8HhDnYxOJKLDc4mR6boYMSwhVCw87mPW0g7bAsua8CrqyV-9GWNLQ61MeKH2YYyT9jOJULoKzedofeDHTOcP_2n6Obnj9_LK7K6vvy1_L4ivZS6kJ4qrQfGgUlGZddxyalqOO-s7npmnRqEWwwKBqFs56hwltVaq7qUoO3gxCn6dtDdzN0Erq8DJzuaTfKTTTsTrTf_d4Jfm7u4NYzp6shlVfjypJDiwwy5mKkuDONoA8Q5G8GalutWUlGhn_81e3F5vmoFtAdAn2LOCQbT-2KLj3tvPxpGzT5Dc8jQ1PjM3wzNfgz-ivqs_iZJHEi5gsMdJHMf5xTqwd9i_QGPmK_i
CitedBy_id crossref_primary_10_3390_computers14080331
Cites_doi 10.1103/physreva.70.042311
10.1103/physreva.101.032308
10.1088/2632-2153/abc17d
10.1103/PRXQuantum.4.027001
10.1038/s41467-022-32550-3
10.1038/s42256-022-00441-3
10.1038/nature23879
10.1103/PRXQuantum.2.040316
10.1103/PhysRevX.12.021037
10.1007/s42484-021-00055-9
10.1103/PhysRevResearch.6.023218
10.1007/s42484-023-00103-6
10.1103/PhysRevD.105.076012
10.1103/PhysRevD.99.015014
10.1103/PhysRevLett.102.190501
10.1007/s41781-020-00047-7
10.1103/physrevresearch.3.033221
10.1016/s0370-2693(01)00238-6
10.1103/physrevlett.83.3370
10.1007/jhep02(2023)220
10.1126/science.abn7293
10.1103/PhysRevLett.126.062001
10.48550/arXiv.2312.09121
10.1007/jhep02(2014)057
10.1103/PhysRevLett.132.240602
10.1007/jhep04(2022)156
10.1063/1.1497700
10.1103/PhysRevA.110.L040403
10.1038/s41567-021-01287-z
10.1038/s41467-021-27045-6
10.1038/s41467-021-21728-w
10.26421/QIC3.6-5
10.1103/PhysRevD.109.052002
10.1002/qute.201900070
10.1103/PhysRevD.101.076015
10.1103/PhysRevLett.128.050402
10.48550/arXiv.2203.08805
10.1007/jhep10(2019)047
10.22331/q-2024-07-03-1395
10.1103/PRXQuantum.3.020333
10.1038/s41567-018-0124-x
10.1016/j.cpc.2015.01.024
10.1103/physrevd.105.095004
10.1007/jhep02(2021)212
10.1103/prxquantum.3.010313
10.1103/PhysRevD.106.036021
10.1103/PhysRevLett.129.090502
10.5281/zenodo.7696203
10.1007/jhep03(2022)066
10.1103/PhysRevA.83.032317
10.1140/epjc/s10052-019-6607-9
10.1088/2058-9565/aa8072
10.48550/arXiv.2003.05991
10.1126/science.abk3333
10.1051/epjconf/202024509013
10.1007/jhep07(2014)079
10.21468/SciPostPhys.12.1.045
10.1038/s41534-022-00666-5
10.1051/epjconf/202125103070
10.1038/s41467-018-07090-4
10.22331/q-2018-08-06-79
10.21236/ADA164453
10.1103/PhysRevD.105.055006
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s42484-025-00258-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2524-4914
ExternalDocumentID PMC11910424
40098753
10_1007_s42484_025_00258_4
Genre Journal Article
GrantInformation_xml – fundername: Science and Technology Facilities Council
  grantid: ST/W00674X/1,ST/W50788X/1
  funderid: http://dx.doi.org/10.13039/501100000271
– fundername: Royal Society
  grantid: RFERE210341,URFR201023
  funderid: http://dx.doi.org/10.13039/501100000288
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ATHPR
AXYYD
AYFIA
BGNMA
C6C
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABRTQ
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c449t-c0599f12e14104bb24205722ba9bc1ad5f3d6f5ef35abd03da1ef395000308fd3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001445080700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2524-4906
2524-4914
IngestDate Thu Aug 21 18:33:43 EDT 2025
Thu Oct 02 09:13:55 EDT 2025
Thu Apr 03 06:59:16 EDT 2025
Sat Nov 29 07:51:14 EST 2025
Tue Nov 18 21:04:35 EST 2025
Fri Jun 27 01:51:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Entanglement entropy
Quantum autoencoder
High-energy physics
Anomaly detection
Magic
Language English
License The Author(s) 2025.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-c0599f12e14104bb24205722ba9bc1ad5f3d6f5ef35abd03da1ef395000308fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s42484-025-00258-4
PMID 40098753
PQID 3178298403
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11910424
proquest_miscellaneous_3178298403
pubmed_primary_40098753
crossref_citationtrail_10_1007_s42484_025_00258_4
crossref_primary_10_1007_s42484_025_00258_4
springer_journals_10_1007_s42484_025_00258_4
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
PublicationTitle Quantum machine intelligence
PublicationTitleAbbrev Quantum Mach. Intell
PublicationTitleAlternate Quantum Mach Intell
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References ET Campbell (258_CR15) 2011; 83
DA Meyer (258_CR51) 2002; 43
HY Huang (258_CR34) 2022; 377
J Hajer (258_CR36) 2020; 101
V Mikuni (258_CR50) 2022; 105
A Kandala (258_CR39) 2017; 549
S Shin (258_CR67) 2024; 6
258_CR18
258_CR19
258_CR2
JJ Lejarza (258_CR48) 2022; 106
258_CR1
258_CR25
258_CR69
258_CR3
258_CR26
D Gross (258_CR28) 2009; 102
258_CR6
258_CR24
258_CR68
258_CR65
258_CR22
258_CR66
D Magano (258_CR49) 2022; 105
F Pan (258_CR57) 2022; 129
258_CR20
258_CR64
258_CR60
C Ortiz Marrero (258_CR55) 2021; 2
V Belis (258_CR7) 2021; 251
258_CR29
X Gao (258_CR27) 2022; 12
258_CR38
258_CR37
258_CR32
S Boixo (258_CR8) 2018; 14
258_CR30
258_CR74
258_CR72
258_CR73
258_CR70
J Romero (258_CR61) 2017; 2
258_CR71
B Nachman (258_CR52) 2021; 126
258_CR47
HY Huang (258_CR33) 2022; 376
258_CR45
258_CR43
L Randall (258_CR62) 1999; 83
258_CR41
J Bijnens (258_CR5) 2001; 503
258_CR42
258_CR9
T Haug (258_CR35) 2024; 132
Y Liu (258_CR40) 2021; 17
258_CR16
P Duckett (258_CR21) 2024; 109
258_CR17
258_CR14
258_CR58
258_CR59
T Sjöstrand (258_CR63) 2015; 191
258_CR12
RT D’Agnolo (258_CR23) 2019; 99
L Leone (258_CR44) 2022; 128
258_CR56
258_CR13
258_CR10
258_CR54
258_CR11
ZW Liu (258_CR46) 2022; 3
258_CR53
CW Bauer (258_CR4) 2023; 4
E Govorkova (258_CR31) 2022; 4
References_xml – ident: 258_CR66
  doi: 10.1103/physreva.70.042311
– ident: 258_CR64
  doi: 10.1103/physreva.101.032308
– ident: 258_CR32
  doi: 10.1088/2632-2153/abc17d
– ident: 258_CR72
– volume: 4
  year: 2023
  ident: 258_CR4
  publication-title: PRX Quant
  doi: 10.1103/PRXQuantum.4.027001
– ident: 258_CR16
  doi: 10.1038/s41467-022-32550-3
– ident: 258_CR24
– volume: 4
  start-page: 154
  issue: 2
  year: 2022
  ident: 258_CR31
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-022-00441-3
– volume: 549
  start-page: 242
  issue: 7671
  year: 2017
  ident: 258_CR39
  publication-title: Nat
  doi: 10.1038/nature23879
– volume: 2
  year: 2021
  ident: 258_CR55
  publication-title: Entanglement-induced barren plateaus. PRX Quant
  doi: 10.1103/PRXQuantum.2.040316
– volume: 12
  year: 2022
  ident: 258_CR27
  publication-title: Phys Rev X
  doi: 10.1103/PhysRevX.12.021037
– ident: 258_CR6
– ident: 258_CR70
  doi: 10.1007/s42484-021-00055-9
– volume: 6
  year: 2024
  ident: 258_CR67
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.6.023218
– ident: 258_CR37
– ident: 258_CR71
  doi: 10.1007/s42484-023-00103-6
– volume: 105
  year: 2022
  ident: 258_CR49
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.105.076012
– volume: 99
  year: 2019
  ident: 258_CR23
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.99.015014
– ident: 258_CR19
– ident: 258_CR42
– volume: 102
  year: 2009
  ident: 258_CR28
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.102.190501
– ident: 258_CR69
  doi: 10.1007/s41781-020-00047-7
– ident: 258_CR74
  doi: 10.1103/physrevresearch.3.033221
– volume: 503
  start-page: 341
  issue: 3–4
  year: 2001
  ident: 258_CR5
  publication-title: Phys Lett B
  doi: 10.1016/s0370-2693(01)00238-6
– volume: 83
  start-page: 3370
  issue: 17
  year: 1999
  ident: 258_CR62
  publication-title: Phys Rev Lett
  doi: 10.1103/physrevlett.83.3370
– ident: 258_CR1
  doi: 10.1007/jhep02(2023)220
– volume: 376
  start-page: 1182
  issue: 6598
  year: 2022
  ident: 258_CR33
  publication-title: Sci
  doi: 10.1126/science.abn7293
– volume: 126
  year: 2021
  ident: 258_CR52
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.126.062001
– ident: 258_CR17
  doi: 10.48550/arXiv.2312.09121
– ident: 258_CR20
  doi: 10.1007/jhep02(2014)057
– volume: 132
  year: 2024
  ident: 258_CR35
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.132.240602
– ident: 258_CR9
– ident: 258_CR29
  doi: 10.1007/jhep04(2022)156
– volume: 43
  start-page: 4273
  issue: 9
  year: 2002
  ident: 258_CR51
  publication-title: J Math Phys
  doi: 10.1063/1.1497700
– ident: 258_CR41
  doi: 10.1103/PhysRevA.110.L040403
– volume: 17
  start-page: 1013
  issue: 9
  year: 2021
  ident: 258_CR40
  publication-title: Nat Phys
  doi: 10.1038/s41567-021-01287-z
– ident: 258_CR73
  doi: 10.1038/s41467-021-27045-6
– ident: 258_CR18
  doi: 10.1038/s41467-021-21728-w
– ident: 258_CR12
  doi: 10.26421/QIC3.6-5
– volume: 109
  year: 2024
  ident: 258_CR21
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.109.052002
– ident: 258_CR45
– ident: 258_CR65
  doi: 10.1002/qute.201900070
– ident: 258_CR26
– volume: 101
  year: 2020
  ident: 258_CR36
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.101.076015
– volume: 128
  year: 2022
  ident: 258_CR44
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.128.050402
– ident: 258_CR22
  doi: 10.48550/arXiv.2203.08805
– ident: 258_CR14
  doi: 10.1007/jhep10(2019)047
– ident: 258_CR43
  doi: 10.22331/q-2024-07-03-1395
– volume: 3
  year: 2022
  ident: 258_CR46
  publication-title: Many-body quantum magic. PRX Quant
  doi: 10.1103/PRXQuantum.3.020333
– volume: 14
  start-page: 595
  issue: 6
  year: 2018
  ident: 258_CR8
  publication-title: Nat Phys
  doi: 10.1038/s41567-018-0124-x
– volume: 191
  start-page: 159
  year: 2015
  ident: 258_CR63
  publication-title: Comput Phys Commun
  doi: 10.1016/j.cpc.2015.01.024
– ident: 258_CR53
  doi: 10.1103/physrevd.105.095004
– ident: 258_CR13
  doi: 10.1007/jhep02(2021)212
– ident: 258_CR38
  doi: 10.1103/prxquantum.3.010313
– volume: 106
  year: 2022
  ident: 258_CR48
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.106.036021
– volume: 129
  year: 2022
  ident: 258_CR57
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.129.090502
– ident: 258_CR11
  doi: 10.5281/zenodo.7696203
– ident: 258_CR25
  doi: 10.1007/jhep03(2022)066
– volume: 83
  year: 2011
  ident: 258_CR15
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.83.032317
– ident: 258_CR3
  doi: 10.1140/epjc/s10052-019-6607-9
– volume: 2
  issue: 4
  year: 2017
  ident: 258_CR61
  publication-title: Quant Sci Technol
  doi: 10.1088/2058-9565/aa8072
– ident: 258_CR10
  doi: 10.48550/arXiv.2003.05991
– volume: 377
  start-page: 3333
  issue: 6613
  year: 2022
  ident: 258_CR34
  publication-title: Sci
  doi: 10.1126/science.abk3333
– ident: 258_CR68
  doi: 10.1051/epjconf/202024509013
– ident: 258_CR2
  doi: 10.1007/jhep07(2014)079
– ident: 258_CR30
– ident: 258_CR56
  doi: 10.21468/SciPostPhys.12.1.045
– ident: 258_CR59
– ident: 258_CR54
  doi: 10.1038/s41534-022-00666-5
– volume: 251
  start-page: 03070
  year: 2021
  ident: 258_CR7
  publication-title: EPJ Web Conf
  doi: 10.1051/epjconf/202125103070
– ident: 258_CR47
  doi: 10.1038/s41467-018-07090-4
– ident: 258_CR58
  doi: 10.22331/q-2018-08-06-79
– ident: 258_CR60
  doi: 10.21236/ADA164453
– volume: 105
  year: 2022
  ident: 258_CR50
  publication-title: Phys Rev D
  doi: 10.1103/PhysRevD.105.055006
SSID ssj0002734806
Score 2.3002036
Snippet This study explores the potential of unsupervised anomaly detection for identifying physics beyond the standard model that may appear at proton collisions at...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Artificial Intelligence
Computational Intelligence
Engineering
Quantum Information Technology
Spintronics
Title Unsupervised beyond-standard-model event discovery at the LHC with a novel quantum autoencoder
URI https://link.springer.com/article/10.1007/s42484-025-00258-4
https://www.ncbi.nlm.nih.gov/pubmed/40098753
https://www.proquest.com/docview/3178298403
https://pubmed.ncbi.nlm.nih.gov/PMC11910424
Volume 7
WOSCitedRecordID wos001445080700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2524-4914
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734806
  issn: 2524-4906
  databaseCode: RSV
  dateStart: 20190501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6KEcgFIe4SUjcWstJbazax8RAnFACLUF7alR4odAgixsEiT-PR5vErEFIdFbJDtWMjP2jOfxDcAh41YVXg1TrrS_oBit_J4zjiKUFmPGDQdDE5pNDC8u5GikLtuisKrLdu9CkuGk7ovdBBNSUGy_iopaUjEPi17dSWzY8Ov3de9ZCYAtoakmS5mgQsWDtlrm_WVmNdIbM_NttuQ_IdOgiU5X_u8fVmG5tTzJ0VRUvsGcLddg6RUe4Xf4e1VWzQOeHpU1pAjFLbRzNtDQNIcExCeCxbyY_PlM8pp4G5Kcnx0T9OmSnJR-4I48Np5nzT3Jm3qMYJnGTtbh6vTkz_EZbRswUC2EqqlG8BaXMIvJoKIovDr35h1jRa4KneQmddwMXGodT_PCxNzkiX9W6RQFxxm-AQvluLRbQJzkseZpol2KIH-2iJmWzCmtpRSpiyNIOiZkukUnxyYZd1mPqxxol3myZYF2mYjgR__OwxSb48PZBx1vM7-FMC6Sl3bcVJk3oSRT_qbLI9ic8rpfTyDgqr_SRSBnpKCfgPDcsyPl7U2A6UboPAwsR_CzE4asPSCqD75z-3PTd-ArC_KEjqFdWKgnjd2DL_qpvq0m-zA_HMn9sD9eAP2ACO4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBH0CLRHmh5FFIeNRI3sJTYzq59rCqqRSyrqrSoJ6zED1GpzbabpBL_Ho83iViKKsEtkh0rscee8djzDcA7xp0qgxqmXJmwQbFGhTlnPUWUFmPWj0djG5NNjGczeXamjrqgsLq_7d4fScaVegh2E0xIQTH9KipqScV9WBdBYyEx__jrt8GzEoEtMakmy5mgQqWjLlrm782saqRbZubt25J_HJlGTXS49X__sA2POsuT7C9F5THcc9UT2PyNR_gUvp9WdXuFq0ftLCljcAvtnQ00Js0hkfhEMJgXL3_-JEVDgg1JppMDgj5dUpAqFFyQ6zaMWXtJiraZIyzTusUzOD38eHIwoV0CBmqEUA01CG_xGXN4GVSUZVDnwbxjrCxUabLC5p7bkc-d53lR2pTbIgvPKl9ScLzlO7BWzSv3AoiXPDU8z4zPEfLnypQZybwyRkqR-zSBrB8EbTo6OSbJuNADVzn2nQ7dpmPfaZHA--GdqyWb487ab_ux1WEK4blIUbl5W-tgQkmmwk6XJ_B8OdZDewKBq2FLl4BckYKhAuK5V0uq8x8R043oPDxYTuBDLwy6WyDqO75z99-q78HDycmXqZ5-mn1-CRssyhY6iV7BWrNo3Wt4YG6a83rxJs6SXzG3Cuo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFD_oFNGHzW87N43gm4a1SXpv8ijbLhPHZaCTPRnafOBg9l5vW8H_3pz0g10nA9lbIWloc05yvn8H4C3jTpVBDFOuTDBQrFHhzFlPEUqLMeunk6mNzSam87k8O1Mnl6r4Y7b7EJLsahoQpalq9pbW742Fb4IJKSi2YkWhLam4DXcEJtKjvf756-hlieAtscEmy5mgQqWTvnLm38usS6crKufVzMm_wqdRKs22bv4_D2Gz10jJh46FHsEtVz2GB5dwCp_At9Oqbpd4q9TOkjIWvdDBCUFjMx0SkaAIFvliUuhvUjQk6Jbk-GifoK-XFKQKAxfkZxto2f4gRdssEETTutVTOJ0dftk_on1jBmqEUA01COriM-YwSVSUZRDzQe1jrCxUabLC5p7bic-d53lR2pTbIgvPKu_Qcbzlz2CjWlTuBRAveWp4nhmfI_ifK1NmJPPKGClF7tMEsoEg2vSo5dg840KPeMtx73TYNh33TosE3o3vLDvMjmtnvxnorMPRwnhJUblFW-ugWkmmggXME3je0X1cTyAQazD1EpBrHDFOQNju9ZHq_HuE70ZIPQw4J_B-YAzdXxz1Nd-5_X_TX8O9k4OZPv44__QS7rPIWug72oGNZtW6XbhrfjXn9epVPDB_AOjLE84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+beyond-standard-model+event+discovery+at+the+LHC+with+a+novel+quantum+autoencoder&rft.jtitle=Quantum+machine+intelligence&rft.au=Duffy%2C+Callum&rft.au=Hassanshahi%2C+Mohammad&rft.au=Jastrzebski%2C+Marcin&rft.au=Malik%2C+Sarah&rft.date=2025-06-01&rft.issn=2524-4914&rft.eissn=2524-4914&rft.volume=7&rft.issue=1&rft.spage=41&rft_id=info:doi/10.1007%2Fs42484-025-00258-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-4906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-4906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-4906&client=summon