Injectable Mussel‐Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration
In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present...
Uložené v:
| Vydané v: | Biomaterials Ročník 278; s. 121169 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2021
|
| Predmet: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance. |
|---|---|
| AbstractList | In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance. In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance.In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance. In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance. |
| ArticleNumber | 121169 |
| Author | Zhang, Fang-Xue Ding, Wang Lian, Rui-Xian Jiang, Li-Bo Yu, Bao-Qing Meng, Qing-Bing Dong, Jian Liu, Peng Su, Di-Han Zhao, Ming-Dong Li, Yu-Lin Zhang, Qi-Chen |
| Author_xml | – sequence: 1 givenname: Fang-Xue surname: Zhang fullname: Zhang, Fang-Xue organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China – sequence: 2 givenname: Peng surname: Liu fullname: Liu, Peng organization: Department of Orthopedic Surgery, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610110, China – sequence: 3 givenname: Wang surname: Ding fullname: Ding, Wang organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China – sequence: 4 givenname: Qing-Bing surname: Meng fullname: Meng, Qing-Bing organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China – sequence: 5 givenname: Di-Han surname: Su fullname: Su, Di-Han organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China – sequence: 6 givenname: Qi-Chen orcidid: 0000-0001-8776-1766 surname: Zhang fullname: Zhang, Qi-Chen organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China – sequence: 7 givenname: Rui-Xian surname: Lian fullname: Lian, Rui-Xian organization: Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China – sequence: 8 givenname: Bao-Qing surname: Yu fullname: Yu, Bao-Qing organization: Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No.2800 gongwei road, China – sequence: 9 givenname: Ming-Dong orcidid: 0000-0001-8469-5150 surname: Zhao fullname: Zhao, Ming-Dong email: zhaonissan@163.com organization: Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508, Shanghai, China – sequence: 10 givenname: Jian surname: Dong fullname: Dong, Jian email: dong.jian@zs-hospital.sh.cn organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China – sequence: 11 givenname: Yu-Lin surname: Li fullname: Li, Yu-Lin email: yulinli@ecust.edu.cn organization: Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China – sequence: 12 givenname: Li-Bo orcidid: 0000-0002-5082-1849 surname: Jiang fullname: Jiang, Li-Bo email: jiang.libo@zs-hospital.sh.cn organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China |
| BookMark | eNqNkc2OFCEUhYmZSeyZ8R2IKzfVAlVFUa7U8a-TmbjRNaHgVhctBS3Qo71z495n9EmkbReT2dgbbgjnfvdwzwU688EDQk8pWVJC-fPNcrBhVhmiVS4tGWF0SRmlvH-EFlR0omp70p6hBaENq3pO2WN0kdKGlDtp2AL9XPkN6KwGB_h2lxK43z9-rXza2ggGT3Y9uT1WZoJk7wBPexPDGhz-ZvOE4XtIYYaExxAxeFNefNglrME5HEHHnc0z-IyVN1irmK1Ta8AGxjKxCIocoso2-Ct0Phb_8ORfvUSf3739dP2huvn4fnX96qbSTdPnalBd3Y4jUYdjoLxTXasG6ERjeDf2QgyN0N0wAGejYhwErYUiVCtda-jA1Jfo2ZG7jeHrDlKWs00Hu8pDcS4Zr7lgrejb_0tbQXhPmq4u0pdHqY4hpQij1Db__VeOyjpJiTyEJTfyfljyEJY8hlUQLx4gttHOKu5Pa35zbIayujsLUSZtwWswJUSdpQn2NMzrBxjtrLdauS-wPxXyB3yt1ng |
| CitedBy_id | crossref_primary_10_1002_advs_202406428 crossref_primary_10_1089_ten_teb_2022_0190 crossref_primary_10_1016_j_actbio_2024_08_018 crossref_primary_10_1016_j_ijbiomac_2024_132126 crossref_primary_10_1016_j_jconrel_2023_06_039 crossref_primary_10_1016_j_carbpol_2023_121634 crossref_primary_10_3390_ijms23116010 crossref_primary_10_1146_annurev_matsci_080423_114451 crossref_primary_10_1002_adfm_202305603 crossref_primary_10_1002_adtp_202300428 crossref_primary_10_1021_acs_biomac_4c01682 crossref_primary_10_2147_IJN_S382737 crossref_primary_10_1016_j_mtbio_2025_101636 crossref_primary_10_1016_j_mtbio_2025_102164 crossref_primary_10_2217_rme_2022_0023 crossref_primary_10_1016_j_biopha_2024_117386 crossref_primary_10_1016_j_ijbiomac_2025_147475 crossref_primary_10_1177_03635465241262002 crossref_primary_10_1177_08853282251379151 crossref_primary_10_1016_j_reth_2025_04_020 crossref_primary_10_2147_IJN_S448667 crossref_primary_10_1016_j_bioactmat_2023_03_008 crossref_primary_10_1002_adfm_202302442 crossref_primary_10_1016_j_compositesb_2024_111970 crossref_primary_10_3390_bioengineering9030099 crossref_primary_10_1186_s13287_023_03295_7 crossref_primary_10_1021_acsami_5c02705 crossref_primary_10_1016_j_bonr_2022_101636 crossref_primary_10_3390_life12101567 crossref_primary_10_1016_j_cej_2023_143987 crossref_primary_10_3389_fbioe_2022_954501 crossref_primary_10_3389_fcell_2023_1209047 crossref_primary_10_1016_j_bioadv_2025_214383 crossref_primary_10_3390_nano13071236 crossref_primary_10_3390_biom14060667 crossref_primary_10_3390_gels9050431 crossref_primary_10_1002_marc_202300128 crossref_primary_10_1002_bmm2_12089 crossref_primary_10_1016_j_matdes_2022_111070 crossref_primary_10_1002_adma_202514604 crossref_primary_10_3389_fbioe_2025_1522303 crossref_primary_10_1016_j_bioactmat_2025_07_038 crossref_primary_10_3390_gels9100808 crossref_primary_10_1186_s12951_024_02462_z crossref_primary_10_1016_j_cej_2024_150560 crossref_primary_10_1002_advs_202206306 crossref_primary_10_1002_advs_202308538 crossref_primary_10_1016_j_carbpol_2023_120899 crossref_primary_10_1016_j_ijbiomac_2024_135290 crossref_primary_10_1089_ten_tea_2023_0133 crossref_primary_10_1016_j_actbio_2022_09_069 crossref_primary_10_1002_advs_202417570 crossref_primary_10_1002_adfm_202316540 crossref_primary_10_1002_marc_202400835 crossref_primary_10_1093_burnst_tkaf041 crossref_primary_10_3389_fbioe_2022_1091360 crossref_primary_10_1016_j_cej_2025_165878 crossref_primary_10_1021_acs_nanolett_5c00985 crossref_primary_10_1039_D3NR00205E crossref_primary_10_1088_1748_605X_ad525c crossref_primary_10_1016_j_bioactmat_2024_08_018 crossref_primary_10_1177_08853282241281439 crossref_primary_10_2147_IJN_S456268 crossref_primary_10_1016_j_ijbiomac_2022_12_308 crossref_primary_10_3390_gels11070551 crossref_primary_10_1002_smll_202500150 crossref_primary_10_1016_j_nanoms_2025_05_008 crossref_primary_10_1016_j_progpolymsci_2023_101740 crossref_primary_10_3389_fcell_2024_1444358 crossref_primary_10_1088_1758_5090_acb73e crossref_primary_10_1002_marc_202100785 crossref_primary_10_1016_j_ijbiomac_2023_125249 crossref_primary_10_1021_cbe_4c00173 crossref_primary_10_1002_INMD_20240015 crossref_primary_10_3390_biomedicines11071890 crossref_primary_10_1016_j_cej_2024_158132 crossref_primary_10_1016_j_ijbiomac_2024_135146 crossref_primary_10_1016_j_jare_2024_10_032 crossref_primary_10_1016_j_cej_2023_147195 crossref_primary_10_3389_fcell_2022_949690 crossref_primary_10_1021_acsomega_5c05254 crossref_primary_10_1186_s12951_023_01865_8 crossref_primary_10_1186_s40779_022_00439_3 crossref_primary_10_1016_j_biopha_2023_115135 crossref_primary_10_1016_j_cej_2023_143826 crossref_primary_10_1002_adhm_202304349 crossref_primary_10_1186_s12951_024_02608_z crossref_primary_10_1002_adhm_202303255 crossref_primary_10_1016_j_tox_2024_153858 crossref_primary_10_1016_j_ijbiomac_2023_123541 crossref_primary_10_1088_1748_605X_acd977 crossref_primary_10_3389_fbioe_2023_1228250 crossref_primary_10_1021_acsami_5c02618 crossref_primary_10_3389_fbioe_2023_1190171 crossref_primary_10_1088_2053_1591_acf7b1 crossref_primary_10_1186_s12964_025_02156_5 crossref_primary_10_31083_j_fbl2908278 crossref_primary_10_3389_fbioe_2024_1331218 crossref_primary_10_1016_j_pmatsci_2025_101499 crossref_primary_10_1021_acsami_5c12778 crossref_primary_10_3389_fphar_2025_1484437 crossref_primary_10_3390_ijms241210199 crossref_primary_10_1016_j_tice_2024_102684 crossref_primary_10_1016_j_actbio_2022_03_038 crossref_primary_10_1016_j_knee_2025_04_020 crossref_primary_10_3389_fcell_2025_1460416 crossref_primary_10_1016_j_bioactmat_2023_02_024 crossref_primary_10_1002_advs_202305215 crossref_primary_10_1016_j_ijbiomac_2024_136689 crossref_primary_10_1016_j_actbio_2025_01_032 crossref_primary_10_1002_advs_202304922 crossref_primary_10_1016_j_jconrel_2023_01_060 crossref_primary_10_1016_j_actbio_2024_03_021 crossref_primary_10_1016_j_compositesb_2023_110857 crossref_primary_10_1002_adbi_202400623 crossref_primary_10_1016_j_cej_2025_167228 crossref_primary_10_1007_s40544_022_0607_8 crossref_primary_10_1016_j_bioadv_2024_214151 crossref_primary_10_1016_j_cej_2023_142942 crossref_primary_10_34133_bmr_0110 crossref_primary_10_3389_fimmu_2025_1567640 crossref_primary_10_1016_j_matdes_2024_112655 crossref_primary_10_1002_adfm_202502871 crossref_primary_10_1007_s13770_025_00749_2 crossref_primary_10_3390_biomedicines12040923 crossref_primary_10_1021_acsnano_4c11622 crossref_primary_10_2147_JPR_S407050 crossref_primary_10_3389_fmats_2023_1152378 crossref_primary_10_1002_cbdv_202402095 crossref_primary_10_1016_j_bioactmat_2024_04_017 crossref_primary_10_1039_D3BM02035E crossref_primary_10_1002_adhm_202400431 crossref_primary_10_1002_smtd_202300996 crossref_primary_10_1186_s13287_024_03962_3 crossref_primary_10_1007_s13577_023_00970_y crossref_primary_10_1016_j_ijbiomac_2024_130680 crossref_primary_10_1016_j_compositesb_2023_110964 crossref_primary_10_1016_j_carbpol_2024_122864 crossref_primary_10_1038_s41467_023_43334_8 crossref_primary_10_1080_10717544_2022_2152136 crossref_primary_10_3389_fbioe_2023_1264006 crossref_primary_10_1016_j_cej_2023_147146 crossref_primary_10_2147_IJN_S495971 crossref_primary_10_3389_fbioe_2022_1074536 crossref_primary_10_3390_pharmaceutics14030540 crossref_primary_10_1186_s12951_024_02779_9 crossref_primary_10_3390_pharmaceutics15051334 crossref_primary_10_1002_adtp_202300387 crossref_primary_10_3389_fbioe_2022_866627 crossref_primary_10_1016_j_cej_2024_154993 crossref_primary_10_34133_research_0700 crossref_primary_10_1021_acsami_5c07676 crossref_primary_10_3389_fbioe_2023_1167012 crossref_primary_10_1016_j_cej_2025_166322 crossref_primary_10_1016_j_eurpolymj_2024_113115 crossref_primary_10_1016_j_ijbiomac_2024_129679 crossref_primary_10_1016_j_cis_2023_103030 crossref_primary_10_1177_20417314241268189 crossref_primary_10_1016_j_cej_2025_167539 crossref_primary_10_1002_adfm_202415185 crossref_primary_10_1002_ctm2_70075 crossref_primary_10_1016_j_bioadv_2025_214362 crossref_primary_10_3390_bioengineering9040132 crossref_primary_10_1111_os_70059 crossref_primary_10_1016_j_cej_2024_158540 crossref_primary_10_1016_j_ijbiomac_2024_133495 crossref_primary_10_1016_j_carbpol_2024_122643 crossref_primary_10_3389_fbioe_2022_1082499 crossref_primary_10_1093_rb_rbac074 crossref_primary_10_1016_j_apmt_2022_101632 crossref_primary_10_1016_j_actbio_2024_02_020 crossref_primary_10_3389_fneur_2022_908468 crossref_primary_10_1080_21655979_2025_2501880 crossref_primary_10_1016_j_cis_2023_102982 crossref_primary_10_1016_j_ijbiomac_2025_140082 crossref_primary_10_3390_ijms25179149 crossref_primary_10_1007_s40259_025_00728_y crossref_primary_10_2147_IJN_S386635 crossref_primary_10_1016_j_matdes_2023_111705 crossref_primary_10_3390_ijms25169100 crossref_primary_10_1002_adhm_202403734 crossref_primary_10_3390_mi13071073 crossref_primary_10_1186_s12951_023_02050_7 crossref_primary_10_1093_rb_rbae022 crossref_primary_10_1007_s42235_025_00715_7 crossref_primary_10_1016_j_ijbiomac_2024_129537 crossref_primary_10_1002_jev2_12435 crossref_primary_10_1002_adhm_202304194 crossref_primary_10_1002_anbr_202400029 crossref_primary_10_1002_adhm_202301597 crossref_primary_10_1016_j_arr_2023_101864 crossref_primary_10_1016_j_mtbio_2025_101496 crossref_primary_10_1016_j_ijbiomac_2025_145615 crossref_primary_10_3390_ijms252011092 crossref_primary_10_3389_fbioe_2024_1377142 crossref_primary_10_1002_pol_20230975 crossref_primary_10_1016_j_apmt_2022_101539 crossref_primary_10_1016_j_mtbio_2025_102100 crossref_primary_10_3390_gels11030190 crossref_primary_10_3390_ijms242015178 crossref_primary_10_3390_pharmaceutics14081616 crossref_primary_10_1186_s12951_022_01354_4 crossref_primary_10_1002_advs_202302988 crossref_primary_10_1111_jcmm_18242 crossref_primary_10_1016_j_ijbiomac_2025_142914 crossref_primary_10_1093_rb_rbad074 crossref_primary_10_1016_j_carbpol_2025_123809 crossref_primary_10_3389_fbioe_2024_1309946 crossref_primary_10_1002_adhm_202301006 crossref_primary_10_2147_IJN_S407044 crossref_primary_10_1002_smll_202503492 crossref_primary_10_3389_fbioe_2022_858656 crossref_primary_10_1016_j_ijbiomac_2025_143447 crossref_primary_10_1038_s41536_022_00269_w crossref_primary_10_1134_S1560090423701233 crossref_primary_10_3390_polym15214228 |
| Cites_doi | 10.1039/C8TB01928B 10.1016/j.biomaterials.2019.03.022 10.1039/C8TB01990H 10.1007/s00167-019-05359-9 10.7150/thno.31017 10.1016/j.biomaterials.2013.10.017 10.1007/s12221-016-5795-2 10.1002/adfm.201901314 10.1016/j.stemcr.2013.10.012 10.1021/ie401239e 10.1016/j.matlet.2014.04.018 10.1039/b905802h 10.1126/sciadv.abg0628 10.1186/s13287-017-0632-0 10.1016/j.biomaterials.2019.02.006 10.1016/j.biomaterials.2009.12.033 10.1002/advs.202004786 10.1039/D0TB01562H 10.1021/acs.nanolett.0c00929 10.1021/acsbiomaterials.8b01309 10.1021/bi002718x 10.1016/j.actbio.2006.12.002 10.1016/S0140-6736(19)30417-9 10.1089/scd.2014.0316 10.1038/nrrheum.2013.109 10.1016/j.apsusc.2017.08.157 10.1016/j.lfs.2019.116743 10.1016/j.biomaterials.2018.01.056 10.1126/science.1222454 10.1038/s41586-019-1710-5 10.1016/j.progpolymsci.2021.101388 10.1021/acsomega.9b01302 10.1021/acsami.0c03478 10.1002/adhm.201801568 10.1038/am.2017.33 10.1056/NEJMoa052771 10.1021/acsami.9b01532 10.1016/j.jconrel.2019.07.040 10.1021/acscentsci.8b00764 10.1080/20013078.2020.1778883 10.1016/j.cej.2021.129323 10.3389/fcell.2020.00864 10.1016/j.actbio.2017.09.005 10.1016/j.actbio.2020.09.052 10.1038/s41591-020-1013-2 10.1038/nmat1890 10.1016/j.carbpol.2019.02.068 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.biomaterials.2021.121169 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| ExternalDocumentID | 10_1016_j_biomaterials_2021_121169 S0142961221005263 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAYOK AFCTW BNPGV RIG SSH 9DU AAYXX CITATION 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c449t-ba735ff0a5ff0b167a75abe784d67f988b48c7bbe62fa26e8138a01cac3ce7ed3 |
| ISICitedReferencesCount | 270 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710782400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sun Sep 28 06:33:23 EDT 2025 Thu Oct 02 11:51:19 EDT 2025 Sat Nov 29 07:29:01 EST 2025 Tue Nov 18 22:43:15 EST 2025 Sun Apr 06 06:54:26 EDT 2025 Tue Oct 14 19:30:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cell recruitment Adhesive hydrogel Exosomes Cartilage defect |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c449t-ba735ff0a5ff0b167a75abe784d67f988b48c7bbe62fa26e8138a01cac3ce7ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8776-1766 0000-0001-8469-5150 0000-0002-5082-1849 |
| PQID | 2580690473 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2636825895 proquest_miscellaneous_2580690473 crossref_citationtrail_10_1016_j_biomaterials_2021_121169 crossref_primary_10_1016_j_biomaterials_2021_121169 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2021_121169 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2021_121169 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomaterials |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lv, Sun, Hu, Chen, Wang, Wu, Fu, Xia, Shao, Wang (bib47) 2020; 8 Murphy, Koepke, Lopez, Tong, Ambrosi, Gulati, Marecic, Wang, Ransom, Hoover, Steininger, Zhao, Walkiewicz, Quarto, Levi, Wan, Weissman, Goodman, Yang, Longaker, Chan (bib5) 2020; 26 Jiang, Su, Ding, Zhang, Li, Chen, Ding, Zhang, Dong (bib32) 2019; 29 Lo Presti, Rizzo, Farinola, Omenetto (bib22) 2021; n/a Sogawa, Ifuku, Numata (bib23) 2019; 5 Fenbo, Xingyu, Bin (bib25) 2019; 213 Wang, Zhang, Zhang, Huang, Liu, Li, Zhang, Kundu, Wang (bib38) 2014; 4 Teramoto, Kameda, Tamada (bib39) 2008 Zeng, Xiong, Ding, Zhou, Li, Qiu, Liao, Xiong, Long, Liu (bib56) 2019; 234 Sakai, Kawakami (bib33) 2007; 3 Zhang, Ji, Lyon, Mehta, Zheng, Deng, Liu, Shagan, Mizrahi, Kohane (bib16) 2020; 12 H. Zhang, T. Bré Lp Fau - Zhao, Y. Zhao T Fau - Zheng, B. Zheng Y Fau - Newland, W. Newland B Fau - Wang, W. Wang, Mussel-inspired Hyperbranched Poly(amino Ester) Polymer as Strong Wet Tissue Adhesive, (1878-5905 (Electronic)). Soares, Maia, Rayas-Duarte, Soldi (bib37) 2009; 23 Zhang, Bré, Zhao, Zheng, Newland, Wang (bib40) 2014; 35 Chen, Yang, Wang, Zhang, Heng, Wang, Ge (bib52) 2021; 6 Wu, Kuang, Chen, Yang, Zeng, Li, Chen, Huang, Fu, Li, Liu, Ni, Chen, Yang (bib51) 2019; 206 Strehin, Nahas, Arora, Nguyen, Elisseeff (bib41) 2010; 31 (bib43) 2017; 5 Zhu, Iqbal, Wang (bib14) 2019; 7 Pinnaratip, Bhuiyan, Meyers, Rajachar, Lee (bib15) 2019; 8 Waite, Qin (bib20) 2001; 40 Shabbir, Cox, Rodriguez-Menocal, Salgado, Van Badiavas (bib57) 2015; 24 Lolli, Sivasubramaniyan, Vainieri, Oieni, Kops, Yayon, van Osch (bib7) 2019; 309 Han, Yan, Wang, Fang, Zhang, Tang, Ding, Weng, Xu, Weng, Liu, Ren, Lu (bib11) 2017; 9 Radhakrishnan, Manigandan, Chinnaswamy, Subramanian, Sethuraman (bib6) 2018; 162 Cui, Liu (bib17) 2021; 116 Lu, Menghao, Pengfei, Donglin, Liwei, Jielong, Kefeng, Liming, Wai, Hongping (bib42) 2018; 10 Swanson, Zhang, Xiu, Gong, Eberle, Wang, Ma (bib49) 2020; 118 Chen, Wu, Huang, Suen, Cheng, Li, Hou, She, Zhang, Wang, Zheng, Zha (bib55) 2019; 11 Barry, Murphy (bib53) 2013; 9 Chen, Zheng, Wang, Tao, Xie, Xia, Gu, Chen, Qiu, Mei, Ning, Shi, Fang, Fan, Lin (bib28) 2019; 9 Cui, Chen, Zhao, Huang, Liu (bib34) 2020; 8 Pandey, Hakamivala, Xu, Hariharan, Radionov, Huang, Liao, Tang, Zimmern, Nguyen (bib44) 2018; 7 Wang, Yu, Liu, Zhou, Dai, Wu, Zhou, Heng, Zou, Ouyang, Liu (bib27) 2017; 8 Hunter, Bierma-Zeinstra (bib4) 2019; 393 Wu, Bluguermann, Kyupelyan, Latour, Gonzalez, Shah, Galic, Ge, Zhu, Petrigliano, Nsair, Miriuka, Li, Lyons, Crooks, McAllister, Van Handel, Adams, Evseenko (bib54) 2013; 1 Yu, Wang, Lu, Long, Zhang, Yan, You, Li (bib26) 2016; 17 Wang, Jiang, Shi, Zhang, Zhang, Wu (bib36) 2013; 52 Hua, Xia, Jia, Zhao, Zhao, Yan, Zhang, Tang, Zhou, Zhu, Lin (bib1) 2021; 7 Yan, Wang, Li, Ren, Yun, Zhang, Li, Yin (bib8) 2018; 6 Jiang, Ding, Ding, Su, Zhang, Zhang, Yin, Xiao, Li, Yuan, Dong (bib58) 2021; 418 Dompé, Cedano-Serrano, Heckert, van den Heuvel, van der Gucht, Tran, Hourdet, Creton, Kamperman (bib18) 2019; 31 Wang, Varghese, Sharma, Strehin, Fermanian, Gorham, Fairbrother, Cascio, Elisseeff (bib13) 2007; 6 Feng, Xu, Zhang, Yao, Zheng, Zheng, Wang, Wei, Xiao, Qin, Bian (bib48) 2019; 5 Huey, Hu, Athanasiou (bib2) 2012; 338 Orth, Gao, Madry (bib3) 2020; 28 Yuk, Varela, Nabzdyk, Mao, Padera, Roche, Zhao (bib19) 2019; 575 Zhang, Teo, Chuah, Lai, Lim, Toh (bib29) 2019; 200 Murphy, Kaplan (bib21) 2009; 19 Zhou, Zhang, Cai, Li, Mu, Zhang, Zhu, Jiang, Shen, Zhang, Ouyang (bib50) 2017; 63 Sawatjui, Damrongrungruang, Leeanansaksiri, Jearanaikoon, Limpaiboon (bib24) 2014; 126 Hu, Dong, Bu, Shen, Luo, Zhang, Zhao, Lv, Liu (bib30) 2020; 9 Clegg, Reda, Harris, Klein, O'Dell, Hooper, Bradley, Bingham, Weisman, Jackson, Lane, Cush, Moreland, Schumacher, Oddis, Wolfe, Molitor, Yocum, Schnitzer, Furst, Sawitzke, Shi, Brandt, Moskowitz, Williams (bib12) 2006; 354 Suneetha, Rao, Han (bib9) 2019; 4 Gao, Duan, Yang, Hu, Gao (bib10) 2018; 427 Wang, Yu, Liu, Zhou, Dai, Wu, Zhou, Heng, Zou, Ouyang, Liu (bib45) 2017; 8 (bib35) 2018; 106 Li, Zhang, Mu, Chen, Zhang, Cao, Gao (bib46) 2020; 20 Gao (10.1016/j.biomaterials.2021.121169_bib10) 2018; 427 Clegg (10.1016/j.biomaterials.2021.121169_bib12) 2006; 354 Han (10.1016/j.biomaterials.2021.121169_bib11) 2017; 9 Lu (10.1016/j.biomaterials.2021.121169_bib42) 2018; 10 Lo Presti (10.1016/j.biomaterials.2021.121169_bib22) 2021; n/a Sogawa (10.1016/j.biomaterials.2021.121169_bib23) 2019; 5 Chen (10.1016/j.biomaterials.2021.121169_bib52) 2021; 6 Zeng (10.1016/j.biomaterials.2021.121169_bib56) 2019; 234 Sawatjui (10.1016/j.biomaterials.2021.121169_bib24) 2014; 126 10.1016/j.biomaterials.2021.121169_bib31 Murphy (10.1016/j.biomaterials.2021.121169_bib5) 2020; 26 Hunter (10.1016/j.biomaterials.2021.121169_bib4) 2019; 393 Zhu (10.1016/j.biomaterials.2021.121169_bib14) 2019; 7 Zhou (10.1016/j.biomaterials.2021.121169_bib50) 2017; 63 Dompé (10.1016/j.biomaterials.2021.121169_bib18) 2019; 31 Fenbo (10.1016/j.biomaterials.2021.121169_bib25) 2019; 213 Zhang (10.1016/j.biomaterials.2021.121169_bib40) 2014; 35 Cui (10.1016/j.biomaterials.2021.121169_bib34) 2020; 8 Sakai (10.1016/j.biomaterials.2021.121169_bib33) 2007; 3 Wu (10.1016/j.biomaterials.2021.121169_bib51) 2019; 206 Wang (10.1016/j.biomaterials.2021.121169_bib13) 2007; 6 Zhang (10.1016/j.biomaterials.2021.121169_bib16) 2020; 12 Lv (10.1016/j.biomaterials.2021.121169_bib47) 2020; 8 Radhakrishnan (10.1016/j.biomaterials.2021.121169_bib6) 2018; 162 Jiang (10.1016/j.biomaterials.2021.121169_bib58) 2021; 418 Li (10.1016/j.biomaterials.2021.121169_bib46) 2020; 20 Swanson (10.1016/j.biomaterials.2021.121169_bib49) 2020; 118 Cui (10.1016/j.biomaterials.2021.121169_bib17) 2021; 116 Chen (10.1016/j.biomaterials.2021.121169_bib55) 2019; 11 (10.1016/j.biomaterials.2021.121169_bib43) 2017; 5 Zhang (10.1016/j.biomaterials.2021.121169_bib29) 2019; 200 Yu (10.1016/j.biomaterials.2021.121169_bib26) 2016; 17 Huey (10.1016/j.biomaterials.2021.121169_bib2) 2012; 338 Hua (10.1016/j.biomaterials.2021.121169_bib1) 2021; 7 Lolli (10.1016/j.biomaterials.2021.121169_bib7) 2019; 309 Barry (10.1016/j.biomaterials.2021.121169_bib53) 2013; 9 Murphy (10.1016/j.biomaterials.2021.121169_bib21) 2009; 19 Soares (10.1016/j.biomaterials.2021.121169_bib37) 2009; 23 Shabbir (10.1016/j.biomaterials.2021.121169_bib57) 2015; 24 Teramoto (10.1016/j.biomaterials.2021.121169_bib39) 2008 Wu (10.1016/j.biomaterials.2021.121169_bib54) 2013; 1 Wang (10.1016/j.biomaterials.2021.121169_bib36) 2013; 52 Wang (10.1016/j.biomaterials.2021.121169_bib38) 2014; 4 Orth (10.1016/j.biomaterials.2021.121169_bib3) 2020; 28 Yuk (10.1016/j.biomaterials.2021.121169_bib19) 2019; 575 Feng (10.1016/j.biomaterials.2021.121169_bib48) 2019; 5 Yan (10.1016/j.biomaterials.2021.121169_bib8) 2018; 6 (10.1016/j.biomaterials.2021.121169_bib35) 2018; 106 Wang (10.1016/j.biomaterials.2021.121169_bib45) 2017; 8 Pinnaratip (10.1016/j.biomaterials.2021.121169_bib15) 2019; 8 Jiang (10.1016/j.biomaterials.2021.121169_bib32) 2019; 29 Waite (10.1016/j.biomaterials.2021.121169_bib20) 2001; 40 Suneetha (10.1016/j.biomaterials.2021.121169_bib9) 2019; 4 Wang (10.1016/j.biomaterials.2021.121169_bib27) 2017; 8 Strehin (10.1016/j.biomaterials.2021.121169_bib41) 2010; 31 Pandey (10.1016/j.biomaterials.2021.121169_bib44) 2018; 7 Chen (10.1016/j.biomaterials.2021.121169_bib28) 2019; 9 Hu (10.1016/j.biomaterials.2021.121169_bib30) 2020; 9 |
| References_xml | – volume: 338 start-page: 917 year: 2012 ident: bib2 article-title: Unlike bone, cartilage regeneration remains elusive publication-title: Science – volume: n/a start-page: 2004786 year: 2021 ident: bib22 article-title: Bioinspired biomaterial composite for all-water-based high-performance adhesives publication-title: Adv. Sci. – volume: 20 start-page: 4298 year: 2020 end-page: 4305 ident: bib46 article-title: Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury publication-title: Nano Lett. – volume: 9 start-page: 584 year: 2013 end-page: 594 ident: bib53 article-title: Mesenchymal stem cells in joint disease and repair publication-title: Nat. Rev. Rheumatol. – volume: 7 year: 2021 ident: bib1 article-title: Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy publication-title: Sci. Adv. – volume: 418 start-page: 129323 year: 2021 ident: bib58 article-title: Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration publication-title: Chem. Eng. J. – volume: 9 start-page: e372 year: 2017 ident: bib11 article-title: Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality publication-title: NPG Asia Mater. – volume: 9 start-page: 1778883 year: 2020 ident: bib30 article-title: miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration publication-title: J. Extracell. Vesicles – volume: 4 start-page: 7064 year: 2014 ident: bib38 article-title: Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel publication-title: For. Rep. – volume: 8 year: 2019 ident: bib15 article-title: Multifunctional biomedical adhesives publication-title: Adv. Health. Mater. – volume: 31 year: 2019 ident: bib18 article-title: Thermoresponsive complex coacervate-based underwater adhesive, advanced materials (deerfield beach, fla – volume: 29 start-page: 1901314 year: 2019 ident: bib32 article-title: Salt-assisted toughening of protein hydrogel with controlled degradation for bone regeneration publication-title: Adv. Funct. Mater. – volume: 5 start-page: 5644 year: 2019 end-page: 5651 ident: bib23 article-title: 3,4-Dihydroxyphenylalanine (DOPA)-Containing silk fibroin: its enzymatic synthesis and adhesion properties publication-title: ACS Biomater. Sci. Eng. – year: 2008 ident: bib39 article-title: Preparation of gel film fromBombyx moriSilk sericin and its characterization as a wound dressing – volume: 118 start-page: 215 year: 2020 end-page: 232 ident: bib49 article-title: Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation publication-title: Acta Biomater. – volume: 575 start-page: 169 year: 2019 end-page: 174 ident: bib19 article-title: Dry double-sided tape for adhesion of wet tissues and devices publication-title: Nature – volume: 8 start-page: 189 year: 2017 ident: bib45 article-title: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix publication-title: Stem Cell Res. Ther. – volume: 19 start-page: 6443 year: 2009 end-page: 6450 ident: bib21 article-title: Biomedical applications of chemically-modified silk fibroin publication-title: J. Mater. Chem. – volume: 17 start-page: 324 year: 2016 end-page: 332 ident: bib26 article-title: Chondrogenic differentiation of rat mesenchymal stem cells on silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds publication-title: Fibers Polym. – volume: 162 start-page: 82 year: 2018 end-page: 98 ident: bib6 article-title: Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration publication-title: Biomaterials – volume: 28 start-page: 670 year: 2020 end-page: 706 ident: bib3 article-title: Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature publication-title: Knee Surg. Sports Traumatol. Arthrosc. – volume: 7 start-page: 1741 year: 2019 end-page: 1752 ident: bib14 article-title: A DOPA-functionalized chondroitin sulfate-based adhesive hydrogel as a promising multi-functional bioadhesive publication-title: J. Mater. Chem. B – volume: 31 start-page: 2788 year: 2010 end-page: 2797 ident: bib41 article-title: A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel publication-title: Biomaterials – volume: 10 year: 2018 ident: bib42 article-title: Mussel-inspired tissue adhesive hydrogel based on polydopamine-chondroitin sulfate complex for growth-factor-free cartilage regeneration publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2018 ident: bib44 article-title: Biodegradable nanoparticles enhanced adhesiveness of mussel-like hydrogels at tissue interface publication-title: other – volume: 126 start-page: 207 year: 2014 end-page: 210 ident: bib24 article-title: Fabrication and characterization of silk fibroin–gelatin/chondroitin sulfate/hyaluronic acid scaffold for biomedical applications publication-title: Mater. Lett. – volume: 8 year: 2020 ident: bib34 article-title: A novel injectable starch-based tissue adhesive for hemostasis publication-title: J. Mater. Chem. B – volume: 309 start-page: 220 year: 2019 end-page: 230 ident: bib7 article-title: Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells, J. Control publication-title: Release – volume: 35 start-page: 711 year: 2014 end-page: 719 ident: bib40 article-title: Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive publication-title: Biomaterials – volume: 8 start-page: 864 year: 2020 ident: bib47 article-title: Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration publication-title: Front. Cell Dev. Biol. – volume: 213 start-page: 266 year: 2019 end-page: 275 ident: bib25 article-title: Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration publication-title: Carbohydr. Polym. – volume: 354 start-page: 795 year: 2006 end-page: 808 ident: bib12 article-title: Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis publication-title: N. Engl. J. Med. – volume: 40 start-page: 2887 year: 2001 end-page: 2893 ident: bib20 article-title: Polyphosphoprotein from the adhesive pads of Mytilus edulis publication-title: Biochemistry – volume: 5 year: 2017 ident: bib43 article-title: A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure publication-title: J. Mater. Chem. B – volume: 234 start-page: 116743 year: 2019 ident: bib56 article-title: Study of bone repair mediated by recombination BMP-2/recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite publication-title: Life Sci. – volume: 23 start-page: 181 year: 2009 end-page: 187 ident: bib37 article-title: Properties of filmogenic solutions of gliadin crosslinked with 1-(3-dimethyl aminopropyl)-3-ethylcarbodiimidehydrochloride/ publication-title: N-hydroxysuccinimide and cysteine – volume: 6 start-page: 385 year: 2007 end-page: 392 ident: bib13 article-title: Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration publication-title: Nat. Mater. – volume: 63 start-page: 64 year: 2017 end-page: 75 ident: bib50 article-title: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair publication-title: Acta Biomater. – volume: 24 start-page: 1635 year: 2015 end-page: 1647 ident: bib57 article-title: Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro publication-title: Stem Cell. Dev. – volume: 12 start-page: 17314 year: 2020 end-page: 17320 ident: bib16 article-title: Functionalized multiarmed polycaprolactones as biocompatible tissue adhesives publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 575 year: 2013 end-page: 589 ident: bib54 article-title: Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells publication-title: Stem Cell Reports – volume: 26 start-page: 1583 year: 2020 end-page: 1592 ident: bib5 article-title: Articular cartilage regeneration by activated skeletal stem cells publication-title: Nat. Med. – volume: 6 start-page: 1689 year: 2021 end-page: 1698 ident: bib52 article-title: Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration publication-title: Bioact. Mater. – volume: 427 start-page: 74 year: 2018 end-page: 82 ident: bib10 article-title: Mussel-inspired tough hydrogels with self-repairing and tissue adhesion publication-title: Appl. Surf. Sci. – volume: 200 start-page: 35 year: 2019 end-page: 47 ident: bib29 article-title: MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis publication-title: Biomaterials – volume: 9 start-page: 2439 year: 2019 end-page: 2459 ident: bib28 article-title: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration publication-title: Theranostics – volume: 3 start-page: 495 year: 2007 end-page: 501 ident: bib33 article-title: Synthesis and characterization of both ionically and enzymatically cross-linkable alginate publication-title: Acta Biomater. – volume: 393 start-page: 1745 year: 2019 end-page: 1759 ident: bib4 article-title: Osteoarthritis publication-title: Lancet – volume: 116 start-page: 101388 year: 2021 ident: bib17 article-title: Recent advances in wet adhesives: adhesion mechanism, design principle and applications publication-title: Prog. Polym. Sci. – volume: 106 year: 2018 ident: bib35 article-title: Extracellular matrix particle–glycosaminoglycan composite hydrogels for regenerative medicine applications publication-title: J. Biomed. Mater. Res. – volume: 4 start-page: 12647 year: 2019 end-page: 12656 ident: bib9 article-title: Mussel-inspired cell/tissue-adhesive, hemostatic hydrogels for tissue engineering applications publication-title: ACS Omega – volume: 8 start-page: 189 year: 2017 ident: bib27 article-title: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix publication-title: Stem Cell Res. Ther. – volume: 6 start-page: 6377 year: 2018 end-page: 6390 ident: bib8 article-title: Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties publication-title: J. Mater. Chem. B – volume: 5 start-page: 440 year: 2019 end-page: 450 ident: bib48 article-title: Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects publication-title: ACS Cent. Sci. – volume: 11 start-page: 14608 year: 2019 end-page: 14618 ident: bib55 article-title: Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 14828 year: 2013 end-page: 14836 ident: bib36 article-title: Dopamine-modified alginate beads reinforced by cross-linking via titanium coordination or self-polymerization and its application in enzyme immobilization publication-title: Ind. Eng. Chem. Res. – volume: 206 start-page: 87 year: 2019 end-page: 100 ident: bib51 article-title: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis publication-title: Biomaterials – reference: H. Zhang, T. Bré Lp Fau - Zhao, Y. Zhao T Fau - Zheng, B. Zheng Y Fau - Newland, W. Newland B Fau - Wang, W. Wang, Mussel-inspired Hyperbranched Poly(amino Ester) Polymer as Strong Wet Tissue Adhesive, (1878-5905 (Electronic)). – volume: 6 start-page: 6377 issue: 40 year: 2018 ident: 10.1016/j.biomaterials.2021.121169_bib8 article-title: Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01928B – volume: 206 start-page: 87 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib51 article-title: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.03.022 – volume: 7 start-page: 1741 issue: 10 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib14 article-title: A DOPA-functionalized chondroitin sulfate-based adhesive hydrogel as a promising multi-functional bioadhesive publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01990H – volume: 5 year: 2017 ident: 10.1016/j.biomaterials.2021.121169_bib43 article-title: A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure publication-title: J. Mater. Chem. B – volume: 28 start-page: 670 issue: 3 year: 2020 ident: 10.1016/j.biomaterials.2021.121169_bib3 article-title: Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature publication-title: Knee Surg. Sports Traumatol. Arthrosc. doi: 10.1007/s00167-019-05359-9 – volume: 9 start-page: 2439 issue: 9 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib28 article-title: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration publication-title: Theranostics doi: 10.7150/thno.31017 – volume: 35 start-page: 711 issue: 2 year: 2014 ident: 10.1016/j.biomaterials.2021.121169_bib40 article-title: Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.10.017 – volume: 6 start-page: 1689 issue: 6 year: 2021 ident: 10.1016/j.biomaterials.2021.121169_bib52 article-title: Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration publication-title: Bioact. Mater. – volume: 17 start-page: 324 issue: 3 year: 2016 ident: 10.1016/j.biomaterials.2021.121169_bib26 article-title: Chondrogenic differentiation of rat mesenchymal stem cells on silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds publication-title: Fibers Polym. doi: 10.1007/s12221-016-5795-2 – volume: 29 start-page: 1901314 issue: 26 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib32 article-title: Salt-assisted toughening of protein hydrogel with controlled degradation for bone regeneration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901314 – volume: 1 start-page: 575 issue: 6 year: 2013 ident: 10.1016/j.biomaterials.2021.121169_bib54 article-title: Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2013.10.012 – volume: 52 start-page: 14828 issue: 42 year: 2013 ident: 10.1016/j.biomaterials.2021.121169_bib36 article-title: Dopamine-modified alginate beads reinforced by cross-linking via titanium coordination or self-polymerization and its application in enzyme immobilization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401239e – volume: 126 start-page: 207 year: 2014 ident: 10.1016/j.biomaterials.2021.121169_bib24 article-title: Fabrication and characterization of silk fibroin–gelatin/chondroitin sulfate/hyaluronic acid scaffold for biomedical applications publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.04.018 – volume: 19 start-page: 6443 issue: 36 year: 2009 ident: 10.1016/j.biomaterials.2021.121169_bib21 article-title: Biomedical applications of chemically-modified silk fibroin publication-title: J. Mater. Chem. doi: 10.1039/b905802h – volume: 7 issue: 35 year: 2021 ident: 10.1016/j.biomaterials.2021.121169_bib1 article-title: Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy publication-title: Sci. Adv. doi: 10.1126/sciadv.abg0628 – volume: 8 start-page: 189 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2021.121169_bib45 article-title: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-017-0632-0 – volume: 200 start-page: 35 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib29 article-title: MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.02.006 – volume: 31 start-page: 2788 issue: 10 year: 2010 ident: 10.1016/j.biomaterials.2021.121169_bib41 article-title: A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.033 – volume: n/a start-page: 2004786 issue: n/a year: 2021 ident: 10.1016/j.biomaterials.2021.121169_bib22 article-title: Bioinspired biomaterial composite for all-water-based high-performance adhesives publication-title: Adv. Sci. doi: 10.1002/advs.202004786 – volume: 7 issue: 7 year: 2018 ident: 10.1016/j.biomaterials.2021.121169_bib44 article-title: Biodegradable nanoparticles enhanced adhesiveness of mussel-like hydrogels at tissue interface publication-title: other – volume: 8 year: 2020 ident: 10.1016/j.biomaterials.2021.121169_bib34 article-title: A novel injectable starch-based tissue adhesive for hemostasis publication-title: J. Mater. Chem. B doi: 10.1039/D0TB01562H – volume: 20 start-page: 4298 issue: 6 year: 2020 ident: 10.1016/j.biomaterials.2021.121169_bib46 article-title: Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00929 – volume: 5 start-page: 5644 issue: 11 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib23 article-title: 3,4-Dihydroxyphenylalanine (DOPA)-Containing silk fibroin: its enzymatic synthesis and adhesion properties publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b01309 – volume: 8 start-page: 189 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2021.121169_bib27 article-title: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-017-0632-0 – volume: 40 start-page: 2887 issue: 9 year: 2001 ident: 10.1016/j.biomaterials.2021.121169_bib20 article-title: Polyphosphoprotein from the adhesive pads of Mytilus edulis publication-title: Biochemistry doi: 10.1021/bi002718x – volume: 3 start-page: 495 issue: 4 year: 2007 ident: 10.1016/j.biomaterials.2021.121169_bib33 article-title: Synthesis and characterization of both ionically and enzymatically cross-linkable alginate publication-title: Acta Biomater. doi: 10.1016/j.actbio.2006.12.002 – volume: 393 start-page: 1745 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib4 article-title: Osteoarthritis publication-title: Lancet doi: 10.1016/S0140-6736(19)30417-9 – volume: 24 start-page: 1635 issue: 14 year: 2015 ident: 10.1016/j.biomaterials.2021.121169_bib57 article-title: Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro publication-title: Stem Cell. Dev. doi: 10.1089/scd.2014.0316 – volume: 106 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2021.121169_bib35 article-title: Extracellular matrix particle–glycosaminoglycan composite hydrogels for regenerative medicine applications publication-title: J. Biomed. Mater. Res. – volume: 9 start-page: 584 issue: 10 year: 2013 ident: 10.1016/j.biomaterials.2021.121169_bib53 article-title: Mesenchymal stem cells in joint disease and repair publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2013.109 – volume: 427 start-page: 74 year: 2018 ident: 10.1016/j.biomaterials.2021.121169_bib10 article-title: Mussel-inspired tough hydrogels with self-repairing and tissue adhesion publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.157 – volume: 234 start-page: 116743 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib56 article-title: Study of bone repair mediated by recombination BMP-2/recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite publication-title: Life Sci. doi: 10.1016/j.lfs.2019.116743 – volume: 162 start-page: 82 year: 2018 ident: 10.1016/j.biomaterials.2021.121169_bib6 article-title: Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.01.056 – volume: 338 start-page: 917 issue: 6109 year: 2012 ident: 10.1016/j.biomaterials.2021.121169_bib2 article-title: Unlike bone, cartilage regeneration remains elusive publication-title: Science doi: 10.1126/science.1222454 – volume: 575 start-page: 169 issue: 7781 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib19 article-title: Dry double-sided tape for adhesion of wet tissues and devices publication-title: Nature doi: 10.1038/s41586-019-1710-5 – volume: 4 start-page: 7064 year: 2014 ident: 10.1016/j.biomaterials.2021.121169_bib38 article-title: Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel publication-title: For. Rep. – volume: 10 year: 2018 ident: 10.1016/j.biomaterials.2021.121169_bib42 article-title: Mussel-inspired tissue adhesive hydrogel based on polydopamine-chondroitin sulfate complex for growth-factor-free cartilage regeneration publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 101388 year: 2021 ident: 10.1016/j.biomaterials.2021.121169_bib17 article-title: Recent advances in wet adhesives: adhesion mechanism, design principle and applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2021.101388 – volume: 4 start-page: 12647 issue: 7 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib9 article-title: Mussel-inspired cell/tissue-adhesive, hemostatic hydrogels for tissue engineering applications publication-title: ACS Omega doi: 10.1021/acsomega.9b01302 – volume: 12 start-page: 17314 issue: 15 year: 2020 ident: 10.1016/j.biomaterials.2021.121169_bib16 article-title: Functionalized multiarmed polycaprolactones as biocompatible tissue adhesives publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03478 – volume: 8 issue: 11 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib15 article-title: Multifunctional biomedical adhesives publication-title: Adv. Health. Mater. doi: 10.1002/adhm.201801568 – volume: 9 start-page: e372 issue: 4 year: 2017 ident: 10.1016/j.biomaterials.2021.121169_bib11 article-title: Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality publication-title: NPG Asia Mater. doi: 10.1038/am.2017.33 – volume: 354 start-page: 795 issue: 8 year: 2006 ident: 10.1016/j.biomaterials.2021.121169_bib12 article-title: Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa052771 – volume: 11 start-page: 14608 issue: 16 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib55 article-title: Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01532 – volume: 309 start-page: 220 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib7 article-title: Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells, J. Control publication-title: Release doi: 10.1016/j.jconrel.2019.07.040 – volume: 5 start-page: 440 issue: 3 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib48 article-title: Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00764 – ident: 10.1016/j.biomaterials.2021.121169_bib31 – volume: 9 start-page: 1778883 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.121169_bib30 article-title: miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2020.1778883 – year: 2008 ident: 10.1016/j.biomaterials.2021.121169_bib39 – volume: 23 start-page: 181 issue: 1 year: 2009 ident: 10.1016/j.biomaterials.2021.121169_bib37 article-title: Properties of filmogenic solutions of gliadin crosslinked with 1-(3-dimethyl aminopropyl)-3-ethylcarbodiimidehydrochloride/ publication-title: N-hydroxysuccinimide and cysteine – volume: 418 start-page: 129323 year: 2021 ident: 10.1016/j.biomaterials.2021.121169_bib58 article-title: Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129323 – volume: 8 start-page: 864 year: 2020 ident: 10.1016/j.biomaterials.2021.121169_bib47 article-title: Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00864 – volume: 63 start-page: 64 year: 2017 ident: 10.1016/j.biomaterials.2021.121169_bib50 article-title: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.09.005 – volume: 118 start-page: 215 year: 2020 ident: 10.1016/j.biomaterials.2021.121169_bib49 article-title: Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.09.052 – volume: 26 start-page: 1583 issue: 10 year: 2020 ident: 10.1016/j.biomaterials.2021.121169_bib5 article-title: Articular cartilage regeneration by activated skeletal stem cells publication-title: Nat. Med. doi: 10.1038/s41591-020-1013-2 – volume: 31 issue: 21 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib18 article-title: Thermoresponsive complex coacervate-based underwater adhesive, advanced materials (deerfield beach, fla – volume: 6 start-page: 385 issue: 5 year: 2007 ident: 10.1016/j.biomaterials.2021.121169_bib13 article-title: Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration publication-title: Nat. Mater. doi: 10.1038/nmat1890 – volume: 213 start-page: 266 year: 2019 ident: 10.1016/j.biomaterials.2021.121169_bib25 article-title: Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.02.068 |
| SSID | ssj0014042 |
| Score | 2.705093 |
| Snippet | In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121169 |
| SubjectTerms | adhesion Adhesive hydrogel arthroscopy biocompatible materials cartilage Cartilage defect Cell recruitment chemokines chondroitin sulfate crosslinking encapsulation Exosomes extracellular matrix fibroins gelation hydrogels inflation osteoarthritis rats shear strength |
| Title | Injectable Mussel‐Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961221005263 https://dx.doi.org/10.1016/j.biomaterials.2021.121169 https://www.proquest.com/docview/2580690473 https://www.proquest.com/docview/2636825895 |
| Volume | 278 |
| WOSCitedRecordID | wos000710782400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DSE4IBhMjB-TkbhNmZrEiWMhDgNtomibQBrQW-TEztapSqa0nbobB7jzN_KX8F5sJ2XTUBHi4lZunLj5vtgvz8_fI-QlUzAeFrrvARtyj-Uy9rJA5l4kVcBVIZhqJIU-H_Cjo2Q4FB96vW9uL8zFmJdlMp-L8_8KNdQB2Lh19i_gbk8KFfAdQIcSYIdyKeAHJbpWmh1Rh7PJRI_beIZBicvqYGGiRvH4cluqU91Er59eqro60TZgXc-rSYUaTo0aeKkqq-OKPv5tGCDr2agLTc-xB2MM_FG60UGu9UmjZN0C7laMRxUYx-YGXPNW78OnN5y1JDsYzUzwsJ1X0dK2yVe-yK4OQ3Kx7iP85r1xk7D1YQS-3czXOtbc5pouksn4OgNPxP5vg3VgEv5cG_iND-JsJ1v4Mzt4KZTP8E02mCvC2hjXFuD54a0XVW_CFbIW8EjA2Li2O9gbvm9Xo1i_ScLUdsiJ1zZxgjdd8SZD58qU39gxx_fJPfsCQncNcR6Qni7Xyd0FWcp1cvvQBlw8JN87NlHDpp9ffzgeUcMj6nhEHY8o8og6HlHgEe14RJFHdIFHFHhEWx5RwyO6yKNH5NP-3vHbd57N3OHljImpl0keRkXRl1hkfswlj2SmecJUzAuRJBlLcp5lOg4KGcQ68cNE9v1c5mGuuVbhBlktq1I_JlRqpQoVcVb0BZNhIcDUUlIUPGaxAGA2iXC3Oc2trD1mVxmnLn7xLF2EKEWIUgPRJgnbtudG3GWpVq8cmqnbvgwTbgpUXKr167a1NXKN8bp0-xeOQCnMBAiZLDWglwZRgrLjjId_OCYO4wQOFNGTf-zHU3Kne5KfkdVpPdPPya38Yjqa1FtkhQ-TLfsc_QLTU_WZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Injectable+Mussel%E2%80%90Inspired+highly+adhesive+hydrogel+with+exosomes+for+endogenous+cell+recruitment+and+cartilage+defect+regeneration&rft.jtitle=Biomaterials&rft.au=Zhang%2C+Fang-Xue&rft.au=Liu%2C+Peng&rft.au=Ding%2C+Wang&rft.au=Meng%2C+Qing-Bing&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.volume=278&rft_id=info:doi/10.1016%2Fj.biomaterials.2021.121169&rft.externalDocID=S0142961221005263 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |