Injectable Mussel‐Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration

In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomaterials Ročník 278; s. 121169
Hlavní autori: Zhang, Fang-Xue, Liu, Peng, Ding, Wang, Meng, Qing-Bing, Su, Di-Han, Zhang, Qi-Chen, Lian, Rui-Xian, Yu, Bao-Qing, Zhao, Ming-Dong, Dong, Jian, Li, Yu-Lin, Jiang, Li-Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2021
Predmet:
ISSN:0142-9612, 1878-5905, 1878-5905
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance.
AbstractList In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance.
In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance.In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance.
In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance.
ArticleNumber 121169
Author Zhang, Fang-Xue
Ding, Wang
Lian, Rui-Xian
Jiang, Li-Bo
Yu, Bao-Qing
Meng, Qing-Bing
Dong, Jian
Liu, Peng
Su, Di-Han
Zhao, Ming-Dong
Li, Yu-Lin
Zhang, Qi-Chen
Author_xml – sequence: 1
  givenname: Fang-Xue
  surname: Zhang
  fullname: Zhang, Fang-Xue
  organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
– sequence: 2
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
  organization: Department of Orthopedic Surgery, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610110, China
– sequence: 3
  givenname: Wang
  surname: Ding
  fullname: Ding, Wang
  organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
– sequence: 4
  givenname: Qing-Bing
  surname: Meng
  fullname: Meng, Qing-Bing
  organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
– sequence: 5
  givenname: Di-Han
  surname: Su
  fullname: Su, Di-Han
  organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
– sequence: 6
  givenname: Qi-Chen
  orcidid: 0000-0001-8776-1766
  surname: Zhang
  fullname: Zhang, Qi-Chen
  organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
– sequence: 7
  givenname: Rui-Xian
  surname: Lian
  fullname: Lian, Rui-Xian
  organization: Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
– sequence: 8
  givenname: Bao-Qing
  surname: Yu
  fullname: Yu, Bao-Qing
  organization: Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No.2800 gongwei road, China
– sequence: 9
  givenname: Ming-Dong
  orcidid: 0000-0001-8469-5150
  surname: Zhao
  fullname: Zhao, Ming-Dong
  email: zhaonissan@163.com
  organization: Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508, Shanghai, China
– sequence: 10
  givenname: Jian
  surname: Dong
  fullname: Dong, Jian
  email: dong.jian@zs-hospital.sh.cn
  organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
– sequence: 11
  givenname: Yu-Lin
  surname: Li
  fullname: Li, Yu-Lin
  email: yulinli@ecust.edu.cn
  organization: Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
– sequence: 12
  givenname: Li-Bo
  orcidid: 0000-0002-5082-1849
  surname: Jiang
  fullname: Jiang, Li-Bo
  email: jiang.libo@zs-hospital.sh.cn
  organization: Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
BookMark eNqNkc2OFCEUhYmZSeyZ8R2IKzfVAlVFUa7U8a-TmbjRNaHgVhctBS3Qo71z495n9EmkbReT2dgbbgjnfvdwzwU688EDQk8pWVJC-fPNcrBhVhmiVS4tGWF0SRmlvH-EFlR0omp70p6hBaENq3pO2WN0kdKGlDtp2AL9XPkN6KwGB_h2lxK43z9-rXza2ggGT3Y9uT1WZoJk7wBPexPDGhz-ZvOE4XtIYYaExxAxeFNefNglrME5HEHHnc0z-IyVN1irmK1Ta8AGxjKxCIocoso2-Ct0Phb_8ORfvUSf3739dP2huvn4fnX96qbSTdPnalBd3Y4jUYdjoLxTXasG6ERjeDf2QgyN0N0wAGejYhwErYUiVCtda-jA1Jfo2ZG7jeHrDlKWs00Hu8pDcS4Zr7lgrejb_0tbQXhPmq4u0pdHqY4hpQij1Db__VeOyjpJiTyEJTfyfljyEJY8hlUQLx4gttHOKu5Pa35zbIayujsLUSZtwWswJUSdpQn2NMzrBxjtrLdauS-wPxXyB3yt1ng
CitedBy_id crossref_primary_10_1002_advs_202406428
crossref_primary_10_1089_ten_teb_2022_0190
crossref_primary_10_1016_j_actbio_2024_08_018
crossref_primary_10_1016_j_ijbiomac_2024_132126
crossref_primary_10_1016_j_jconrel_2023_06_039
crossref_primary_10_1016_j_carbpol_2023_121634
crossref_primary_10_3390_ijms23116010
crossref_primary_10_1146_annurev_matsci_080423_114451
crossref_primary_10_1002_adfm_202305603
crossref_primary_10_1002_adtp_202300428
crossref_primary_10_1021_acs_biomac_4c01682
crossref_primary_10_2147_IJN_S382737
crossref_primary_10_1016_j_mtbio_2025_101636
crossref_primary_10_1016_j_mtbio_2025_102164
crossref_primary_10_2217_rme_2022_0023
crossref_primary_10_1016_j_biopha_2024_117386
crossref_primary_10_1016_j_ijbiomac_2025_147475
crossref_primary_10_1177_03635465241262002
crossref_primary_10_1177_08853282251379151
crossref_primary_10_1016_j_reth_2025_04_020
crossref_primary_10_2147_IJN_S448667
crossref_primary_10_1016_j_bioactmat_2023_03_008
crossref_primary_10_1002_adfm_202302442
crossref_primary_10_1016_j_compositesb_2024_111970
crossref_primary_10_3390_bioengineering9030099
crossref_primary_10_1186_s13287_023_03295_7
crossref_primary_10_1021_acsami_5c02705
crossref_primary_10_1016_j_bonr_2022_101636
crossref_primary_10_3390_life12101567
crossref_primary_10_1016_j_cej_2023_143987
crossref_primary_10_3389_fbioe_2022_954501
crossref_primary_10_3389_fcell_2023_1209047
crossref_primary_10_1016_j_bioadv_2025_214383
crossref_primary_10_3390_nano13071236
crossref_primary_10_3390_biom14060667
crossref_primary_10_3390_gels9050431
crossref_primary_10_1002_marc_202300128
crossref_primary_10_1002_bmm2_12089
crossref_primary_10_1016_j_matdes_2022_111070
crossref_primary_10_1002_adma_202514604
crossref_primary_10_3389_fbioe_2025_1522303
crossref_primary_10_1016_j_bioactmat_2025_07_038
crossref_primary_10_3390_gels9100808
crossref_primary_10_1186_s12951_024_02462_z
crossref_primary_10_1016_j_cej_2024_150560
crossref_primary_10_1002_advs_202206306
crossref_primary_10_1002_advs_202308538
crossref_primary_10_1016_j_carbpol_2023_120899
crossref_primary_10_1016_j_ijbiomac_2024_135290
crossref_primary_10_1089_ten_tea_2023_0133
crossref_primary_10_1016_j_actbio_2022_09_069
crossref_primary_10_1002_advs_202417570
crossref_primary_10_1002_adfm_202316540
crossref_primary_10_1002_marc_202400835
crossref_primary_10_1093_burnst_tkaf041
crossref_primary_10_3389_fbioe_2022_1091360
crossref_primary_10_1016_j_cej_2025_165878
crossref_primary_10_1021_acs_nanolett_5c00985
crossref_primary_10_1039_D3NR00205E
crossref_primary_10_1088_1748_605X_ad525c
crossref_primary_10_1016_j_bioactmat_2024_08_018
crossref_primary_10_1177_08853282241281439
crossref_primary_10_2147_IJN_S456268
crossref_primary_10_1016_j_ijbiomac_2022_12_308
crossref_primary_10_3390_gels11070551
crossref_primary_10_1002_smll_202500150
crossref_primary_10_1016_j_nanoms_2025_05_008
crossref_primary_10_1016_j_progpolymsci_2023_101740
crossref_primary_10_3389_fcell_2024_1444358
crossref_primary_10_1088_1758_5090_acb73e
crossref_primary_10_1002_marc_202100785
crossref_primary_10_1016_j_ijbiomac_2023_125249
crossref_primary_10_1021_cbe_4c00173
crossref_primary_10_1002_INMD_20240015
crossref_primary_10_3390_biomedicines11071890
crossref_primary_10_1016_j_cej_2024_158132
crossref_primary_10_1016_j_ijbiomac_2024_135146
crossref_primary_10_1016_j_jare_2024_10_032
crossref_primary_10_1016_j_cej_2023_147195
crossref_primary_10_3389_fcell_2022_949690
crossref_primary_10_1021_acsomega_5c05254
crossref_primary_10_1186_s12951_023_01865_8
crossref_primary_10_1186_s40779_022_00439_3
crossref_primary_10_1016_j_biopha_2023_115135
crossref_primary_10_1016_j_cej_2023_143826
crossref_primary_10_1002_adhm_202304349
crossref_primary_10_1186_s12951_024_02608_z
crossref_primary_10_1002_adhm_202303255
crossref_primary_10_1016_j_tox_2024_153858
crossref_primary_10_1016_j_ijbiomac_2023_123541
crossref_primary_10_1088_1748_605X_acd977
crossref_primary_10_3389_fbioe_2023_1228250
crossref_primary_10_1021_acsami_5c02618
crossref_primary_10_3389_fbioe_2023_1190171
crossref_primary_10_1088_2053_1591_acf7b1
crossref_primary_10_1186_s12964_025_02156_5
crossref_primary_10_31083_j_fbl2908278
crossref_primary_10_3389_fbioe_2024_1331218
crossref_primary_10_1016_j_pmatsci_2025_101499
crossref_primary_10_1021_acsami_5c12778
crossref_primary_10_3389_fphar_2025_1484437
crossref_primary_10_3390_ijms241210199
crossref_primary_10_1016_j_tice_2024_102684
crossref_primary_10_1016_j_actbio_2022_03_038
crossref_primary_10_1016_j_knee_2025_04_020
crossref_primary_10_3389_fcell_2025_1460416
crossref_primary_10_1016_j_bioactmat_2023_02_024
crossref_primary_10_1002_advs_202305215
crossref_primary_10_1016_j_ijbiomac_2024_136689
crossref_primary_10_1016_j_actbio_2025_01_032
crossref_primary_10_1002_advs_202304922
crossref_primary_10_1016_j_jconrel_2023_01_060
crossref_primary_10_1016_j_actbio_2024_03_021
crossref_primary_10_1016_j_compositesb_2023_110857
crossref_primary_10_1002_adbi_202400623
crossref_primary_10_1016_j_cej_2025_167228
crossref_primary_10_1007_s40544_022_0607_8
crossref_primary_10_1016_j_bioadv_2024_214151
crossref_primary_10_1016_j_cej_2023_142942
crossref_primary_10_34133_bmr_0110
crossref_primary_10_3389_fimmu_2025_1567640
crossref_primary_10_1016_j_matdes_2024_112655
crossref_primary_10_1002_adfm_202502871
crossref_primary_10_1007_s13770_025_00749_2
crossref_primary_10_3390_biomedicines12040923
crossref_primary_10_1021_acsnano_4c11622
crossref_primary_10_2147_JPR_S407050
crossref_primary_10_3389_fmats_2023_1152378
crossref_primary_10_1002_cbdv_202402095
crossref_primary_10_1016_j_bioactmat_2024_04_017
crossref_primary_10_1039_D3BM02035E
crossref_primary_10_1002_adhm_202400431
crossref_primary_10_1002_smtd_202300996
crossref_primary_10_1186_s13287_024_03962_3
crossref_primary_10_1007_s13577_023_00970_y
crossref_primary_10_1016_j_ijbiomac_2024_130680
crossref_primary_10_1016_j_compositesb_2023_110964
crossref_primary_10_1016_j_carbpol_2024_122864
crossref_primary_10_1038_s41467_023_43334_8
crossref_primary_10_1080_10717544_2022_2152136
crossref_primary_10_3389_fbioe_2023_1264006
crossref_primary_10_1016_j_cej_2023_147146
crossref_primary_10_2147_IJN_S495971
crossref_primary_10_3389_fbioe_2022_1074536
crossref_primary_10_3390_pharmaceutics14030540
crossref_primary_10_1186_s12951_024_02779_9
crossref_primary_10_3390_pharmaceutics15051334
crossref_primary_10_1002_adtp_202300387
crossref_primary_10_3389_fbioe_2022_866627
crossref_primary_10_1016_j_cej_2024_154993
crossref_primary_10_34133_research_0700
crossref_primary_10_1021_acsami_5c07676
crossref_primary_10_3389_fbioe_2023_1167012
crossref_primary_10_1016_j_cej_2025_166322
crossref_primary_10_1016_j_eurpolymj_2024_113115
crossref_primary_10_1016_j_ijbiomac_2024_129679
crossref_primary_10_1016_j_cis_2023_103030
crossref_primary_10_1177_20417314241268189
crossref_primary_10_1016_j_cej_2025_167539
crossref_primary_10_1002_adfm_202415185
crossref_primary_10_1002_ctm2_70075
crossref_primary_10_1016_j_bioadv_2025_214362
crossref_primary_10_3390_bioengineering9040132
crossref_primary_10_1111_os_70059
crossref_primary_10_1016_j_cej_2024_158540
crossref_primary_10_1016_j_ijbiomac_2024_133495
crossref_primary_10_1016_j_carbpol_2024_122643
crossref_primary_10_3389_fbioe_2022_1082499
crossref_primary_10_1093_rb_rbac074
crossref_primary_10_1016_j_apmt_2022_101632
crossref_primary_10_1016_j_actbio_2024_02_020
crossref_primary_10_3389_fneur_2022_908468
crossref_primary_10_1080_21655979_2025_2501880
crossref_primary_10_1016_j_cis_2023_102982
crossref_primary_10_1016_j_ijbiomac_2025_140082
crossref_primary_10_3390_ijms25179149
crossref_primary_10_1007_s40259_025_00728_y
crossref_primary_10_2147_IJN_S386635
crossref_primary_10_1016_j_matdes_2023_111705
crossref_primary_10_3390_ijms25169100
crossref_primary_10_1002_adhm_202403734
crossref_primary_10_3390_mi13071073
crossref_primary_10_1186_s12951_023_02050_7
crossref_primary_10_1093_rb_rbae022
crossref_primary_10_1007_s42235_025_00715_7
crossref_primary_10_1016_j_ijbiomac_2024_129537
crossref_primary_10_1002_jev2_12435
crossref_primary_10_1002_adhm_202304194
crossref_primary_10_1002_anbr_202400029
crossref_primary_10_1002_adhm_202301597
crossref_primary_10_1016_j_arr_2023_101864
crossref_primary_10_1016_j_mtbio_2025_101496
crossref_primary_10_1016_j_ijbiomac_2025_145615
crossref_primary_10_3390_ijms252011092
crossref_primary_10_3389_fbioe_2024_1377142
crossref_primary_10_1002_pol_20230975
crossref_primary_10_1016_j_apmt_2022_101539
crossref_primary_10_1016_j_mtbio_2025_102100
crossref_primary_10_3390_gels11030190
crossref_primary_10_3390_ijms242015178
crossref_primary_10_3390_pharmaceutics14081616
crossref_primary_10_1186_s12951_022_01354_4
crossref_primary_10_1002_advs_202302988
crossref_primary_10_1111_jcmm_18242
crossref_primary_10_1016_j_ijbiomac_2025_142914
crossref_primary_10_1093_rb_rbad074
crossref_primary_10_1016_j_carbpol_2025_123809
crossref_primary_10_3389_fbioe_2024_1309946
crossref_primary_10_1002_adhm_202301006
crossref_primary_10_2147_IJN_S407044
crossref_primary_10_1002_smll_202503492
crossref_primary_10_3389_fbioe_2022_858656
crossref_primary_10_1016_j_ijbiomac_2025_143447
crossref_primary_10_1038_s41536_022_00269_w
crossref_primary_10_1134_S1560090423701233
crossref_primary_10_3390_polym15214228
Cites_doi 10.1039/C8TB01928B
10.1016/j.biomaterials.2019.03.022
10.1039/C8TB01990H
10.1007/s00167-019-05359-9
10.7150/thno.31017
10.1016/j.biomaterials.2013.10.017
10.1007/s12221-016-5795-2
10.1002/adfm.201901314
10.1016/j.stemcr.2013.10.012
10.1021/ie401239e
10.1016/j.matlet.2014.04.018
10.1039/b905802h
10.1126/sciadv.abg0628
10.1186/s13287-017-0632-0
10.1016/j.biomaterials.2019.02.006
10.1016/j.biomaterials.2009.12.033
10.1002/advs.202004786
10.1039/D0TB01562H
10.1021/acs.nanolett.0c00929
10.1021/acsbiomaterials.8b01309
10.1021/bi002718x
10.1016/j.actbio.2006.12.002
10.1016/S0140-6736(19)30417-9
10.1089/scd.2014.0316
10.1038/nrrheum.2013.109
10.1016/j.apsusc.2017.08.157
10.1016/j.lfs.2019.116743
10.1016/j.biomaterials.2018.01.056
10.1126/science.1222454
10.1038/s41586-019-1710-5
10.1016/j.progpolymsci.2021.101388
10.1021/acsomega.9b01302
10.1021/acsami.0c03478
10.1002/adhm.201801568
10.1038/am.2017.33
10.1056/NEJMoa052771
10.1021/acsami.9b01532
10.1016/j.jconrel.2019.07.040
10.1021/acscentsci.8b00764
10.1080/20013078.2020.1778883
10.1016/j.cej.2021.129323
10.3389/fcell.2020.00864
10.1016/j.actbio.2017.09.005
10.1016/j.actbio.2020.09.052
10.1038/s41591-020-1013-2
10.1038/nmat1890
10.1016/j.carbpol.2019.02.068
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.biomaterials.2021.121169
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 10_1016_j_biomaterials_2021_121169
S0142961221005263
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAYOK
AFCTW
BNPGV
RIG
SSH
9DU
AAYXX
CITATION
7X8
7S9
L.6
ID FETCH-LOGICAL-c449t-ba735ff0a5ff0b167a75abe784d67f988b48c7bbe62fa26e8138a01cac3ce7ed3
ISICitedReferencesCount 270
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710782400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sun Sep 28 06:33:23 EDT 2025
Thu Oct 02 11:51:19 EDT 2025
Sat Nov 29 07:29:01 EST 2025
Tue Nov 18 22:43:15 EST 2025
Sun Apr 06 06:54:26 EDT 2025
Tue Oct 14 19:30:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cell recruitment
Adhesive hydrogel
Exosomes
Cartilage defect
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-ba735ff0a5ff0b167a75abe784d67f988b48c7bbe62fa26e8138a01cac3ce7ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8776-1766
0000-0001-8469-5150
0000-0002-5082-1849
PQID 2580690473
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636825895
proquest_miscellaneous_2580690473
crossref_citationtrail_10_1016_j_biomaterials_2021_121169
crossref_primary_10_1016_j_biomaterials_2021_121169
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2021_121169
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2021_121169
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Biomaterials
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lv, Sun, Hu, Chen, Wang, Wu, Fu, Xia, Shao, Wang (bib47) 2020; 8
Murphy, Koepke, Lopez, Tong, Ambrosi, Gulati, Marecic, Wang, Ransom, Hoover, Steininger, Zhao, Walkiewicz, Quarto, Levi, Wan, Weissman, Goodman, Yang, Longaker, Chan (bib5) 2020; 26
Jiang, Su, Ding, Zhang, Li, Chen, Ding, Zhang, Dong (bib32) 2019; 29
Lo Presti, Rizzo, Farinola, Omenetto (bib22) 2021; n/a
Sogawa, Ifuku, Numata (bib23) 2019; 5
Fenbo, Xingyu, Bin (bib25) 2019; 213
Wang, Zhang, Zhang, Huang, Liu, Li, Zhang, Kundu, Wang (bib38) 2014; 4
Teramoto, Kameda, Tamada (bib39) 2008
Zeng, Xiong, Ding, Zhou, Li, Qiu, Liao, Xiong, Long, Liu (bib56) 2019; 234
Sakai, Kawakami (bib33) 2007; 3
Zhang, Ji, Lyon, Mehta, Zheng, Deng, Liu, Shagan, Mizrahi, Kohane (bib16) 2020; 12
H. Zhang, T. Bré Lp Fau - Zhao, Y. Zhao T Fau - Zheng, B. Zheng Y Fau - Newland, W. Newland B Fau - Wang, W. Wang, Mussel-inspired Hyperbranched Poly(amino Ester) Polymer as Strong Wet Tissue Adhesive, (1878-5905 (Electronic)).
Soares, Maia, Rayas-Duarte, Soldi (bib37) 2009; 23
Zhang, Bré, Zhao, Zheng, Newland, Wang (bib40) 2014; 35
Chen, Yang, Wang, Zhang, Heng, Wang, Ge (bib52) 2021; 6
Wu, Kuang, Chen, Yang, Zeng, Li, Chen, Huang, Fu, Li, Liu, Ni, Chen, Yang (bib51) 2019; 206
Strehin, Nahas, Arora, Nguyen, Elisseeff (bib41) 2010; 31
(bib43) 2017; 5
Zhu, Iqbal, Wang (bib14) 2019; 7
Pinnaratip, Bhuiyan, Meyers, Rajachar, Lee (bib15) 2019; 8
Waite, Qin (bib20) 2001; 40
Shabbir, Cox, Rodriguez-Menocal, Salgado, Van Badiavas (bib57) 2015; 24
Lolli, Sivasubramaniyan, Vainieri, Oieni, Kops, Yayon, van Osch (bib7) 2019; 309
Han, Yan, Wang, Fang, Zhang, Tang, Ding, Weng, Xu, Weng, Liu, Ren, Lu (bib11) 2017; 9
Radhakrishnan, Manigandan, Chinnaswamy, Subramanian, Sethuraman (bib6) 2018; 162
Cui, Liu (bib17) 2021; 116
Lu, Menghao, Pengfei, Donglin, Liwei, Jielong, Kefeng, Liming, Wai, Hongping (bib42) 2018; 10
Swanson, Zhang, Xiu, Gong, Eberle, Wang, Ma (bib49) 2020; 118
Chen, Wu, Huang, Suen, Cheng, Li, Hou, She, Zhang, Wang, Zheng, Zha (bib55) 2019; 11
Barry, Murphy (bib53) 2013; 9
Chen, Zheng, Wang, Tao, Xie, Xia, Gu, Chen, Qiu, Mei, Ning, Shi, Fang, Fan, Lin (bib28) 2019; 9
Cui, Chen, Zhao, Huang, Liu (bib34) 2020; 8
Pandey, Hakamivala, Xu, Hariharan, Radionov, Huang, Liao, Tang, Zimmern, Nguyen (bib44) 2018; 7
Wang, Yu, Liu, Zhou, Dai, Wu, Zhou, Heng, Zou, Ouyang, Liu (bib27) 2017; 8
Hunter, Bierma-Zeinstra (bib4) 2019; 393
Wu, Bluguermann, Kyupelyan, Latour, Gonzalez, Shah, Galic, Ge, Zhu, Petrigliano, Nsair, Miriuka, Li, Lyons, Crooks, McAllister, Van Handel, Adams, Evseenko (bib54) 2013; 1
Yu, Wang, Lu, Long, Zhang, Yan, You, Li (bib26) 2016; 17
Wang, Jiang, Shi, Zhang, Zhang, Wu (bib36) 2013; 52
Hua, Xia, Jia, Zhao, Zhao, Yan, Zhang, Tang, Zhou, Zhu, Lin (bib1) 2021; 7
Yan, Wang, Li, Ren, Yun, Zhang, Li, Yin (bib8) 2018; 6
Jiang, Ding, Ding, Su, Zhang, Zhang, Yin, Xiao, Li, Yuan, Dong (bib58) 2021; 418
Dompé, Cedano-Serrano, Heckert, van den Heuvel, van der Gucht, Tran, Hourdet, Creton, Kamperman (bib18) 2019; 31
Wang, Varghese, Sharma, Strehin, Fermanian, Gorham, Fairbrother, Cascio, Elisseeff (bib13) 2007; 6
Feng, Xu, Zhang, Yao, Zheng, Zheng, Wang, Wei, Xiao, Qin, Bian (bib48) 2019; 5
Huey, Hu, Athanasiou (bib2) 2012; 338
Orth, Gao, Madry (bib3) 2020; 28
Yuk, Varela, Nabzdyk, Mao, Padera, Roche, Zhao (bib19) 2019; 575
Zhang, Teo, Chuah, Lai, Lim, Toh (bib29) 2019; 200
Murphy, Kaplan (bib21) 2009; 19
Zhou, Zhang, Cai, Li, Mu, Zhang, Zhu, Jiang, Shen, Zhang, Ouyang (bib50) 2017; 63
Sawatjui, Damrongrungruang, Leeanansaksiri, Jearanaikoon, Limpaiboon (bib24) 2014; 126
Hu, Dong, Bu, Shen, Luo, Zhang, Zhao, Lv, Liu (bib30) 2020; 9
Clegg, Reda, Harris, Klein, O'Dell, Hooper, Bradley, Bingham, Weisman, Jackson, Lane, Cush, Moreland, Schumacher, Oddis, Wolfe, Molitor, Yocum, Schnitzer, Furst, Sawitzke, Shi, Brandt, Moskowitz, Williams (bib12) 2006; 354
Suneetha, Rao, Han (bib9) 2019; 4
Gao, Duan, Yang, Hu, Gao (bib10) 2018; 427
Wang, Yu, Liu, Zhou, Dai, Wu, Zhou, Heng, Zou, Ouyang, Liu (bib45) 2017; 8
(bib35) 2018; 106
Li, Zhang, Mu, Chen, Zhang, Cao, Gao (bib46) 2020; 20
Gao (10.1016/j.biomaterials.2021.121169_bib10) 2018; 427
Clegg (10.1016/j.biomaterials.2021.121169_bib12) 2006; 354
Han (10.1016/j.biomaterials.2021.121169_bib11) 2017; 9
Lu (10.1016/j.biomaterials.2021.121169_bib42) 2018; 10
Lo Presti (10.1016/j.biomaterials.2021.121169_bib22) 2021; n/a
Sogawa (10.1016/j.biomaterials.2021.121169_bib23) 2019; 5
Chen (10.1016/j.biomaterials.2021.121169_bib52) 2021; 6
Zeng (10.1016/j.biomaterials.2021.121169_bib56) 2019; 234
Sawatjui (10.1016/j.biomaterials.2021.121169_bib24) 2014; 126
10.1016/j.biomaterials.2021.121169_bib31
Murphy (10.1016/j.biomaterials.2021.121169_bib5) 2020; 26
Hunter (10.1016/j.biomaterials.2021.121169_bib4) 2019; 393
Zhu (10.1016/j.biomaterials.2021.121169_bib14) 2019; 7
Zhou (10.1016/j.biomaterials.2021.121169_bib50) 2017; 63
Dompé (10.1016/j.biomaterials.2021.121169_bib18) 2019; 31
Fenbo (10.1016/j.biomaterials.2021.121169_bib25) 2019; 213
Zhang (10.1016/j.biomaterials.2021.121169_bib40) 2014; 35
Cui (10.1016/j.biomaterials.2021.121169_bib34) 2020; 8
Sakai (10.1016/j.biomaterials.2021.121169_bib33) 2007; 3
Wu (10.1016/j.biomaterials.2021.121169_bib51) 2019; 206
Wang (10.1016/j.biomaterials.2021.121169_bib13) 2007; 6
Zhang (10.1016/j.biomaterials.2021.121169_bib16) 2020; 12
Lv (10.1016/j.biomaterials.2021.121169_bib47) 2020; 8
Radhakrishnan (10.1016/j.biomaterials.2021.121169_bib6) 2018; 162
Jiang (10.1016/j.biomaterials.2021.121169_bib58) 2021; 418
Li (10.1016/j.biomaterials.2021.121169_bib46) 2020; 20
Swanson (10.1016/j.biomaterials.2021.121169_bib49) 2020; 118
Cui (10.1016/j.biomaterials.2021.121169_bib17) 2021; 116
Chen (10.1016/j.biomaterials.2021.121169_bib55) 2019; 11
(10.1016/j.biomaterials.2021.121169_bib43) 2017; 5
Zhang (10.1016/j.biomaterials.2021.121169_bib29) 2019; 200
Yu (10.1016/j.biomaterials.2021.121169_bib26) 2016; 17
Huey (10.1016/j.biomaterials.2021.121169_bib2) 2012; 338
Hua (10.1016/j.biomaterials.2021.121169_bib1) 2021; 7
Lolli (10.1016/j.biomaterials.2021.121169_bib7) 2019; 309
Barry (10.1016/j.biomaterials.2021.121169_bib53) 2013; 9
Murphy (10.1016/j.biomaterials.2021.121169_bib21) 2009; 19
Soares (10.1016/j.biomaterials.2021.121169_bib37) 2009; 23
Shabbir (10.1016/j.biomaterials.2021.121169_bib57) 2015; 24
Teramoto (10.1016/j.biomaterials.2021.121169_bib39) 2008
Wu (10.1016/j.biomaterials.2021.121169_bib54) 2013; 1
Wang (10.1016/j.biomaterials.2021.121169_bib36) 2013; 52
Wang (10.1016/j.biomaterials.2021.121169_bib38) 2014; 4
Orth (10.1016/j.biomaterials.2021.121169_bib3) 2020; 28
Yuk (10.1016/j.biomaterials.2021.121169_bib19) 2019; 575
Feng (10.1016/j.biomaterials.2021.121169_bib48) 2019; 5
Yan (10.1016/j.biomaterials.2021.121169_bib8) 2018; 6
(10.1016/j.biomaterials.2021.121169_bib35) 2018; 106
Wang (10.1016/j.biomaterials.2021.121169_bib45) 2017; 8
Pinnaratip (10.1016/j.biomaterials.2021.121169_bib15) 2019; 8
Jiang (10.1016/j.biomaterials.2021.121169_bib32) 2019; 29
Waite (10.1016/j.biomaterials.2021.121169_bib20) 2001; 40
Suneetha (10.1016/j.biomaterials.2021.121169_bib9) 2019; 4
Wang (10.1016/j.biomaterials.2021.121169_bib27) 2017; 8
Strehin (10.1016/j.biomaterials.2021.121169_bib41) 2010; 31
Pandey (10.1016/j.biomaterials.2021.121169_bib44) 2018; 7
Chen (10.1016/j.biomaterials.2021.121169_bib28) 2019; 9
Hu (10.1016/j.biomaterials.2021.121169_bib30) 2020; 9
References_xml – volume: 338
  start-page: 917
  year: 2012
  ident: bib2
  article-title: Unlike bone, cartilage regeneration remains elusive
  publication-title: Science
– volume: n/a
  start-page: 2004786
  year: 2021
  ident: bib22
  article-title: Bioinspired biomaterial composite for all-water-based high-performance adhesives
  publication-title: Adv. Sci.
– volume: 20
  start-page: 4298
  year: 2020
  end-page: 4305
  ident: bib46
  article-title: Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury
  publication-title: Nano Lett.
– volume: 9
  start-page: 584
  year: 2013
  end-page: 594
  ident: bib53
  article-title: Mesenchymal stem cells in joint disease and repair
  publication-title: Nat. Rev. Rheumatol.
– volume: 7
  year: 2021
  ident: bib1
  article-title: Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy
  publication-title: Sci. Adv.
– volume: 418
  start-page: 129323
  year: 2021
  ident: bib58
  article-title: Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: e372
  year: 2017
  ident: bib11
  article-title: Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality
  publication-title: NPG Asia Mater.
– volume: 9
  start-page: 1778883
  year: 2020
  ident: bib30
  article-title: miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration
  publication-title: J. Extracell. Vesicles
– volume: 4
  start-page: 7064
  year: 2014
  ident: bib38
  article-title: Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel
  publication-title: For. Rep.
– volume: 8
  year: 2019
  ident: bib15
  article-title: Multifunctional biomedical adhesives
  publication-title: Adv. Health. Mater.
– volume: 31
  year: 2019
  ident: bib18
  article-title: Thermoresponsive complex coacervate-based underwater adhesive, advanced materials (deerfield beach, fla
– volume: 29
  start-page: 1901314
  year: 2019
  ident: bib32
  article-title: Salt-assisted toughening of protein hydrogel with controlled degradation for bone regeneration
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 5644
  year: 2019
  end-page: 5651
  ident: bib23
  article-title: 3,4-Dihydroxyphenylalanine (DOPA)-Containing silk fibroin: its enzymatic synthesis and adhesion properties
  publication-title: ACS Biomater. Sci. Eng.
– year: 2008
  ident: bib39
  article-title: Preparation of gel film fromBombyx moriSilk sericin and its characterization as a wound dressing
– volume: 118
  start-page: 215
  year: 2020
  end-page: 232
  ident: bib49
  article-title: Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation
  publication-title: Acta Biomater.
– volume: 575
  start-page: 169
  year: 2019
  end-page: 174
  ident: bib19
  article-title: Dry double-sided tape for adhesion of wet tissues and devices
  publication-title: Nature
– volume: 8
  start-page: 189
  year: 2017
  ident: bib45
  article-title: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix
  publication-title: Stem Cell Res. Ther.
– volume: 19
  start-page: 6443
  year: 2009
  end-page: 6450
  ident: bib21
  article-title: Biomedical applications of chemically-modified silk fibroin
  publication-title: J. Mater. Chem.
– volume: 17
  start-page: 324
  year: 2016
  end-page: 332
  ident: bib26
  article-title: Chondrogenic differentiation of rat mesenchymal stem cells on silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds
  publication-title: Fibers Polym.
– volume: 162
  start-page: 82
  year: 2018
  end-page: 98
  ident: bib6
  article-title: Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration
  publication-title: Biomaterials
– volume: 28
  start-page: 670
  year: 2020
  end-page: 706
  ident: bib3
  article-title: Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
– volume: 7
  start-page: 1741
  year: 2019
  end-page: 1752
  ident: bib14
  article-title: A DOPA-functionalized chondroitin sulfate-based adhesive hydrogel as a promising multi-functional bioadhesive
  publication-title: J. Mater. Chem. B
– volume: 31
  start-page: 2788
  year: 2010
  end-page: 2797
  ident: bib41
  article-title: A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel
  publication-title: Biomaterials
– volume: 10
  year: 2018
  ident: bib42
  article-title: Mussel-inspired tissue adhesive hydrogel based on polydopamine-chondroitin sulfate complex for growth-factor-free cartilage regeneration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2018
  ident: bib44
  article-title: Biodegradable nanoparticles enhanced adhesiveness of mussel-like hydrogels at tissue interface
  publication-title: other
– volume: 126
  start-page: 207
  year: 2014
  end-page: 210
  ident: bib24
  article-title: Fabrication and characterization of silk fibroin–gelatin/chondroitin sulfate/hyaluronic acid scaffold for biomedical applications
  publication-title: Mater. Lett.
– volume: 8
  year: 2020
  ident: bib34
  article-title: A novel injectable starch-based tissue adhesive for hemostasis
  publication-title: J. Mater. Chem. B
– volume: 309
  start-page: 220
  year: 2019
  end-page: 230
  ident: bib7
  article-title: Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells, J. Control
  publication-title: Release
– volume: 35
  start-page: 711
  year: 2014
  end-page: 719
  ident: bib40
  article-title: Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive
  publication-title: Biomaterials
– volume: 8
  start-page: 864
  year: 2020
  ident: bib47
  article-title: Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration
  publication-title: Front. Cell Dev. Biol.
– volume: 213
  start-page: 266
  year: 2019
  end-page: 275
  ident: bib25
  article-title: Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration
  publication-title: Carbohydr. Polym.
– volume: 354
  start-page: 795
  year: 2006
  end-page: 808
  ident: bib12
  article-title: Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis
  publication-title: N. Engl. J. Med.
– volume: 40
  start-page: 2887
  year: 2001
  end-page: 2893
  ident: bib20
  article-title: Polyphosphoprotein from the adhesive pads of Mytilus edulis
  publication-title: Biochemistry
– volume: 5
  year: 2017
  ident: bib43
  article-title: A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure
  publication-title: J. Mater. Chem. B
– volume: 234
  start-page: 116743
  year: 2019
  ident: bib56
  article-title: Study of bone repair mediated by recombination BMP-2/recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite
  publication-title: Life Sci.
– volume: 23
  start-page: 181
  year: 2009
  end-page: 187
  ident: bib37
  article-title: Properties of filmogenic solutions of gliadin crosslinked with 1-(3-dimethyl aminopropyl)-3-ethylcarbodiimidehydrochloride/
  publication-title: N-hydroxysuccinimide and cysteine
– volume: 6
  start-page: 385
  year: 2007
  end-page: 392
  ident: bib13
  article-title: Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration
  publication-title: Nat. Mater.
– volume: 63
  start-page: 64
  year: 2017
  end-page: 75
  ident: bib50
  article-title: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair
  publication-title: Acta Biomater.
– volume: 24
  start-page: 1635
  year: 2015
  end-page: 1647
  ident: bib57
  article-title: Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro
  publication-title: Stem Cell. Dev.
– volume: 12
  start-page: 17314
  year: 2020
  end-page: 17320
  ident: bib16
  article-title: Functionalized multiarmed polycaprolactones as biocompatible tissue adhesives
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 575
  year: 2013
  end-page: 589
  ident: bib54
  article-title: Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells
  publication-title: Stem Cell Reports
– volume: 26
  start-page: 1583
  year: 2020
  end-page: 1592
  ident: bib5
  article-title: Articular cartilage regeneration by activated skeletal stem cells
  publication-title: Nat. Med.
– volume: 6
  start-page: 1689
  year: 2021
  end-page: 1698
  ident: bib52
  article-title: Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration
  publication-title: Bioact. Mater.
– volume: 427
  start-page: 74
  year: 2018
  end-page: 82
  ident: bib10
  article-title: Mussel-inspired tough hydrogels with self-repairing and tissue adhesion
  publication-title: Appl. Surf. Sci.
– volume: 200
  start-page: 35
  year: 2019
  end-page: 47
  ident: bib29
  article-title: MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis
  publication-title: Biomaterials
– volume: 9
  start-page: 2439
  year: 2019
  end-page: 2459
  ident: bib28
  article-title: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration
  publication-title: Theranostics
– volume: 3
  start-page: 495
  year: 2007
  end-page: 501
  ident: bib33
  article-title: Synthesis and characterization of both ionically and enzymatically cross-linkable alginate
  publication-title: Acta Biomater.
– volume: 393
  start-page: 1745
  year: 2019
  end-page: 1759
  ident: bib4
  article-title: Osteoarthritis
  publication-title: Lancet
– volume: 116
  start-page: 101388
  year: 2021
  ident: bib17
  article-title: Recent advances in wet adhesives: adhesion mechanism, design principle and applications
  publication-title: Prog. Polym. Sci.
– volume: 106
  year: 2018
  ident: bib35
  article-title: Extracellular matrix particle–glycosaminoglycan composite hydrogels for regenerative medicine applications
  publication-title: J. Biomed. Mater. Res.
– volume: 4
  start-page: 12647
  year: 2019
  end-page: 12656
  ident: bib9
  article-title: Mussel-inspired cell/tissue-adhesive, hemostatic hydrogels for tissue engineering applications
  publication-title: ACS Omega
– volume: 8
  start-page: 189
  year: 2017
  ident: bib27
  article-title: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix
  publication-title: Stem Cell Res. Ther.
– volume: 6
  start-page: 6377
  year: 2018
  end-page: 6390
  ident: bib8
  article-title: Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties
  publication-title: J. Mater. Chem. B
– volume: 5
  start-page: 440
  year: 2019
  end-page: 450
  ident: bib48
  article-title: Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects
  publication-title: ACS Cent. Sci.
– volume: 11
  start-page: 14608
  year: 2019
  end-page: 14618
  ident: bib55
  article-title: Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 14828
  year: 2013
  end-page: 14836
  ident: bib36
  article-title: Dopamine-modified alginate beads reinforced by cross-linking via titanium coordination or self-polymerization and its application in enzyme immobilization
  publication-title: Ind. Eng. Chem. Res.
– volume: 206
  start-page: 87
  year: 2019
  end-page: 100
  ident: bib51
  article-title: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis
  publication-title: Biomaterials
– reference: H. Zhang, T. Bré Lp Fau - Zhao, Y. Zhao T Fau - Zheng, B. Zheng Y Fau - Newland, W. Newland B Fau - Wang, W. Wang, Mussel-inspired Hyperbranched Poly(amino Ester) Polymer as Strong Wet Tissue Adhesive, (1878-5905 (Electronic)).
– volume: 6
  start-page: 6377
  issue: 40
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121169_bib8
  article-title: Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01928B
– volume: 206
  start-page: 87
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib51
  article-title: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.03.022
– volume: 7
  start-page: 1741
  issue: 10
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib14
  article-title: A DOPA-functionalized chondroitin sulfate-based adhesive hydrogel as a promising multi-functional bioadhesive
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01990H
– volume: 5
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121169_bib43
  article-title: A mussel-inspired poly(γ-glutamic acid) tissue adhesive with high wet strength for wound closure
  publication-title: J. Mater. Chem. B
– volume: 28
  start-page: 670
  issue: 3
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121169_bib3
  article-title: Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature
  publication-title: Knee Surg. Sports Traumatol. Arthrosc.
  doi: 10.1007/s00167-019-05359-9
– volume: 9
  start-page: 2439
  issue: 9
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib28
  article-title: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration
  publication-title: Theranostics
  doi: 10.7150/thno.31017
– volume: 35
  start-page: 711
  issue: 2
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121169_bib40
  article-title: Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.10.017
– volume: 6
  start-page: 1689
  issue: 6
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121169_bib52
  article-title: Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration
  publication-title: Bioact. Mater.
– volume: 17
  start-page: 324
  issue: 3
  year: 2016
  ident: 10.1016/j.biomaterials.2021.121169_bib26
  article-title: Chondrogenic differentiation of rat mesenchymal stem cells on silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-016-5795-2
– volume: 29
  start-page: 1901314
  issue: 26
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib32
  article-title: Salt-assisted toughening of protein hydrogel with controlled degradation for bone regeneration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901314
– volume: 1
  start-page: 575
  issue: 6
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121169_bib54
  article-title: Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2013.10.012
– volume: 52
  start-page: 14828
  issue: 42
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121169_bib36
  article-title: Dopamine-modified alginate beads reinforced by cross-linking via titanium coordination or self-polymerization and its application in enzyme immobilization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401239e
– volume: 126
  start-page: 207
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121169_bib24
  article-title: Fabrication and characterization of silk fibroin–gelatin/chondroitin sulfate/hyaluronic acid scaffold for biomedical applications
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.04.018
– volume: 19
  start-page: 6443
  issue: 36
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121169_bib21
  article-title: Biomedical applications of chemically-modified silk fibroin
  publication-title: J. Mater. Chem.
  doi: 10.1039/b905802h
– volume: 7
  issue: 35
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121169_bib1
  article-title: Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg0628
– volume: 8
  start-page: 189
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121169_bib45
  article-title: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-017-0632-0
– volume: 200
  start-page: 35
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib29
  article-title: MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.02.006
– volume: 31
  start-page: 2788
  issue: 10
  year: 2010
  ident: 10.1016/j.biomaterials.2021.121169_bib41
  article-title: A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.033
– volume: n/a
  start-page: 2004786
  issue: n/a
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121169_bib22
  article-title: Bioinspired biomaterial composite for all-water-based high-performance adhesives
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004786
– volume: 7
  issue: 7
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121169_bib44
  article-title: Biodegradable nanoparticles enhanced adhesiveness of mussel-like hydrogels at tissue interface
  publication-title: other
– volume: 8
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121169_bib34
  article-title: A novel injectable starch-based tissue adhesive for hemostasis
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB01562H
– volume: 20
  start-page: 4298
  issue: 6
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121169_bib46
  article-title: Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00929
– volume: 5
  start-page: 5644
  issue: 11
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib23
  article-title: 3,4-Dihydroxyphenylalanine (DOPA)-Containing silk fibroin: its enzymatic synthesis and adhesion properties
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b01309
– volume: 8
  start-page: 189
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121169_bib27
  article-title: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/s13287-017-0632-0
– volume: 40
  start-page: 2887
  issue: 9
  year: 2001
  ident: 10.1016/j.biomaterials.2021.121169_bib20
  article-title: Polyphosphoprotein from the adhesive pads of Mytilus edulis
  publication-title: Biochemistry
  doi: 10.1021/bi002718x
– volume: 3
  start-page: 495
  issue: 4
  year: 2007
  ident: 10.1016/j.biomaterials.2021.121169_bib33
  article-title: Synthesis and characterization of both ionically and enzymatically cross-linkable alginate
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2006.12.002
– volume: 393
  start-page: 1745
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib4
  article-title: Osteoarthritis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)30417-9
– volume: 24
  start-page: 1635
  issue: 14
  year: 2015
  ident: 10.1016/j.biomaterials.2021.121169_bib57
  article-title: Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro
  publication-title: Stem Cell. Dev.
  doi: 10.1089/scd.2014.0316
– volume: 106
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121169_bib35
  article-title: Extracellular matrix particle–glycosaminoglycan composite hydrogels for regenerative medicine applications
  publication-title: J. Biomed. Mater. Res.
– volume: 9
  start-page: 584
  issue: 10
  year: 2013
  ident: 10.1016/j.biomaterials.2021.121169_bib53
  article-title: Mesenchymal stem cells in joint disease and repair
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2013.109
– volume: 427
  start-page: 74
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121169_bib10
  article-title: Mussel-inspired tough hydrogels with self-repairing and tissue adhesion
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.157
– volume: 234
  start-page: 116743
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib56
  article-title: Study of bone repair mediated by recombination BMP-2/recombination CXC chemokine Ligand-13-loaded hollow hydroxyapatite microspheres/chitosan composite
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2019.116743
– volume: 162
  start-page: 82
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121169_bib6
  article-title: Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.056
– volume: 338
  start-page: 917
  issue: 6109
  year: 2012
  ident: 10.1016/j.biomaterials.2021.121169_bib2
  article-title: Unlike bone, cartilage regeneration remains elusive
  publication-title: Science
  doi: 10.1126/science.1222454
– volume: 575
  start-page: 169
  issue: 7781
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib19
  article-title: Dry double-sided tape for adhesion of wet tissues and devices
  publication-title: Nature
  doi: 10.1038/s41586-019-1710-5
– volume: 4
  start-page: 7064
  year: 2014
  ident: 10.1016/j.biomaterials.2021.121169_bib38
  article-title: Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel
  publication-title: For. Rep.
– volume: 10
  year: 2018
  ident: 10.1016/j.biomaterials.2021.121169_bib42
  article-title: Mussel-inspired tissue adhesive hydrogel based on polydopamine-chondroitin sulfate complex for growth-factor-free cartilage regeneration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 101388
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121169_bib17
  article-title: Recent advances in wet adhesives: adhesion mechanism, design principle and applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2021.101388
– volume: 4
  start-page: 12647
  issue: 7
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib9
  article-title: Mussel-inspired cell/tissue-adhesive, hemostatic hydrogels for tissue engineering applications
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01302
– volume: 12
  start-page: 17314
  issue: 15
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121169_bib16
  article-title: Functionalized multiarmed polycaprolactones as biocompatible tissue adhesives
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03478
– volume: 8
  issue: 11
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib15
  article-title: Multifunctional biomedical adhesives
  publication-title: Adv. Health. Mater.
  doi: 10.1002/adhm.201801568
– volume: 9
  start-page: e372
  issue: 4
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121169_bib11
  article-title: Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.33
– volume: 354
  start-page: 795
  issue: 8
  year: 2006
  ident: 10.1016/j.biomaterials.2021.121169_bib12
  article-title: Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa052771
– volume: 11
  start-page: 14608
  issue: 16
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib55
  article-title: Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01532
– volume: 309
  start-page: 220
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib7
  article-title: Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells, J. Control
  publication-title: Release
  doi: 10.1016/j.jconrel.2019.07.040
– volume: 5
  start-page: 440
  issue: 3
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib48
  article-title: Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00764
– ident: 10.1016/j.biomaterials.2021.121169_bib31
– volume: 9
  start-page: 1778883
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121169_bib30
  article-title: miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration
  publication-title: J. Extracell. Vesicles
  doi: 10.1080/20013078.2020.1778883
– year: 2008
  ident: 10.1016/j.biomaterials.2021.121169_bib39
– volume: 23
  start-page: 181
  issue: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2021.121169_bib37
  article-title: Properties of filmogenic solutions of gliadin crosslinked with 1-(3-dimethyl aminopropyl)-3-ethylcarbodiimidehydrochloride/
  publication-title: N-hydroxysuccinimide and cysteine
– volume: 418
  start-page: 129323
  year: 2021
  ident: 10.1016/j.biomaterials.2021.121169_bib58
  article-title: Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129323
– volume: 8
  start-page: 864
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121169_bib47
  article-title: Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00864
– volume: 63
  start-page: 64
  year: 2017
  ident: 10.1016/j.biomaterials.2021.121169_bib50
  article-title: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.09.005
– volume: 118
  start-page: 215
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121169_bib49
  article-title: Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.09.052
– volume: 26
  start-page: 1583
  issue: 10
  year: 2020
  ident: 10.1016/j.biomaterials.2021.121169_bib5
  article-title: Articular cartilage regeneration by activated skeletal stem cells
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1013-2
– volume: 31
  issue: 21
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib18
  article-title: Thermoresponsive complex coacervate-based underwater adhesive, advanced materials (deerfield beach, fla
– volume: 6
  start-page: 385
  issue: 5
  year: 2007
  ident: 10.1016/j.biomaterials.2021.121169_bib13
  article-title: Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1890
– volume: 213
  start-page: 266
  year: 2019
  ident: 10.1016/j.biomaterials.2021.121169_bib25
  article-title: Strontium chondroitin sulfate/silk fibroin blend membrane containing microporous structure modulates macrophage responses for guided bone regeneration
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.02.068
SSID ssj0014042
Score 2.705093
Snippet In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121169
SubjectTerms adhesion
Adhesive hydrogel
arthroscopy
biocompatible materials
cartilage
Cartilage defect
Cell recruitment
chemokines
chondroitin sulfate
crosslinking
encapsulation
Exosomes
extracellular matrix
fibroins
gelation
hydrogels
inflation
osteoarthritis
rats
shear strength
Title Injectable Mussel‐Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961221005263
https://dx.doi.org/10.1016/j.biomaterials.2021.121169
https://www.proquest.com/docview/2580690473
https://www.proquest.com/docview/2636825895
Volume 278
WOSCitedRecordID wos000710782400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa6DSE4IBhMjB-TkbhNmZrEiWMhDgNtomibQBrQW-TEztapSqa0nbobB7jzN_KX8F5sJ2XTUBHi4lZunLj5vtgvz8_fI-QlUzAeFrrvARtyj-Uy9rJA5l4kVcBVIZhqJIU-H_Cjo2Q4FB96vW9uL8zFmJdlMp-L8_8KNdQB2Lh19i_gbk8KFfAdQIcSYIdyKeAHJbpWmh1Rh7PJRI_beIZBicvqYGGiRvH4cluqU91Er59eqro60TZgXc-rSYUaTo0aeKkqq-OKPv5tGCDr2agLTc-xB2MM_FG60UGu9UmjZN0C7laMRxUYx-YGXPNW78OnN5y1JDsYzUzwsJ1X0dK2yVe-yK4OQ3Kx7iP85r1xk7D1YQS-3czXOtbc5pouksn4OgNPxP5vg3VgEv5cG_iND-JsJ1v4Mzt4KZTP8E02mCvC2hjXFuD54a0XVW_CFbIW8EjA2Li2O9gbvm9Xo1i_ScLUdsiJ1zZxgjdd8SZD58qU39gxx_fJPfsCQncNcR6Qni7Xyd0FWcp1cvvQBlw8JN87NlHDpp9ffzgeUcMj6nhEHY8o8og6HlHgEe14RJFHdIFHFHhEWx5RwyO6yKNH5NP-3vHbd57N3OHljImpl0keRkXRl1hkfswlj2SmecJUzAuRJBlLcp5lOg4KGcQ68cNE9v1c5mGuuVbhBlktq1I_JlRqpQoVcVb0BZNhIcDUUlIUPGaxAGA2iXC3Oc2trD1mVxmnLn7xLF2EKEWIUgPRJgnbtudG3GWpVq8cmqnbvgwTbgpUXKr167a1NXKN8bp0-xeOQCnMBAiZLDWglwZRgrLjjId_OCYO4wQOFNGTf-zHU3Kne5KfkdVpPdPPya38Yjqa1FtkhQ-TLfsc_QLTU_WZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Injectable+Mussel%E2%80%90Inspired+highly+adhesive+hydrogel+with+exosomes+for+endogenous+cell+recruitment+and+cartilage+defect+regeneration&rft.jtitle=Biomaterials&rft.au=Zhang%2C+Fang-Xue&rft.au=Liu%2C+Peng&rft.au=Ding%2C+Wang&rft.au=Meng%2C+Qing-Bing&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.volume=278&rft_id=info:doi/10.1016%2Fj.biomaterials.2021.121169&rft.externalDocID=S0142961221005263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon