A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion
Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic bu...
Saved in:
| Published in: | Biomaterials Vol. 276; p. 120838 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2021
|
| Subjects: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G’), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing. |
|---|---|
| AbstractList | Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G’), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing. Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G'), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing.Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G'), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing. Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe³⁺ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G’), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing. |
| ArticleNumber | 120838 |
| Author | Yuan, Yang Fan, Daidi Shen, Shihong |
| Author_xml | – sequence: 1 givenname: Yang surname: Yuan fullname: Yuan, Yang email: 1106826514@qq.com organization: Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China – sequence: 2 givenname: Shihong orcidid: 0000-0003-1448-9823 surname: Shen fullname: Shen, Shihong email: shenshihong@nwu.edu.cn organization: Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China – sequence: 3 givenname: Daidi orcidid: 0000-0001-9798-1674 surname: Fan fullname: Fan, Daidi email: fandaidi@nwu.edu.cn organization: Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China |
| BookMark | eNqNks1u1DAUhS1UJKaFd7BYsSBT2_nvilIoIFViA2vr2rlpPHXsYCdFeSTeEofpAnU1K-tK55xrn8_n5Mx5h4S85WzPGa8uD3tl_AgzBgM27gUTfM8Fa_LmBdnxpm6ysmXlGdkxXoisrbh4Rc5jPLA0s0LsyJ9rOg1rNNrrAUejwdLOL8oi1cHHmFnjHrCj42Jn0y9Oz8a7pBnWLvh7tLT3gXarg2SlagmO_vaL6-iAkJz3VzQOMCGFDqYZlLFmXt9T4w6o05iWRLR99iSmU_AThnmlkBLQDeB0Wg3dgDFtfU1e9umN-ObpvCA_bz__uPma3X3_8u3m-i7TRdHOGZSIlRBKYVeDxoYr1eZ5yRRrkENVcF0rDiB4KVI10DR13rQqrwXrhaq6Mr8g74656Tq_FoyzHE3UaC049EuUoixzUbBK1KdIeVvUoiiS9Ooo_VdrwF5OwYwQVsmZ3FDKg_wfpdxQyiPKZP7wzKzNDBuKOYCxp0V8OkZgqu7RYJBRG9wKNiHBkJ03p8V8fBajE7rt2zzgemrIX_aO4Y0 |
| CitedBy_id | crossref_primary_10_1002_adhm_202101722 crossref_primary_10_1007_s10876_024_02638_5 crossref_primary_10_1016_j_eurpolymj_2024_113712 crossref_primary_10_1016_j_ijbiomac_2024_135519 crossref_primary_10_1002_advs_202206771 crossref_primary_10_1016_j_cej_2024_151787 crossref_primary_10_1002_mabi_202100308 crossref_primary_10_1016_j_colsurfa_2021_127657 crossref_primary_10_1016_j_carbpol_2024_122203 crossref_primary_10_1016_j_mtchem_2022_100968 crossref_primary_10_1002_adfm_202205315 crossref_primary_10_1016_j_ijbiomac_2023_128275 crossref_primary_10_1002_cjoc_202300167 crossref_primary_10_3389_fbioe_2022_876936 crossref_primary_10_1088_1748_605X_acef86 crossref_primary_10_1016_j_ijbiomac_2023_127868 crossref_primary_10_1016_j_ijbiomac_2024_130851 crossref_primary_10_1016_j_eurpolymj_2022_111548 crossref_primary_10_1016_j_biomaterials_2024_122959 crossref_primary_10_1002_adhm_202202309 crossref_primary_10_1093_rb_rbaf031 crossref_primary_10_1016_j_colsurfb_2023_113493 crossref_primary_10_1016_j_colsurfa_2024_133145 crossref_primary_10_1146_annurev_chembioeng_082323_093537 crossref_primary_10_1016_j_cej_2024_152513 crossref_primary_10_1016_j_ijbiomac_2023_128284 crossref_primary_10_1088_2515_7639_ad06cc crossref_primary_10_1016_j_ijbiomac_2025_142572 crossref_primary_10_1016_j_mtbio_2025_101522 crossref_primary_10_1002_mabi_202400049 crossref_primary_10_1002_smll_202205489 crossref_primary_10_1016_j_apmt_2024_102340 crossref_primary_10_1039_D3BM00260H crossref_primary_10_1016_j_matdes_2022_110669 crossref_primary_10_1016_j_desal_2023_116461 crossref_primary_10_1016_j_ijbiomac_2024_133558 crossref_primary_10_1016_j_biomaterials_2025_123642 crossref_primary_10_1016_j_carbpol_2024_121931 crossref_primary_10_1016_j_cej_2023_143987 crossref_primary_10_1016_j_carbpol_2024_121812 crossref_primary_10_3390_ijms24032447 crossref_primary_10_1002_adma_202208622 crossref_primary_10_1016_j_ijbiomac_2024_138688 crossref_primary_10_1016_j_ijbiomac_2025_143519 crossref_primary_10_1016_j_cej_2025_159537 crossref_primary_10_1002_bmm2_12089 crossref_primary_10_1016_j_cej_2022_140553 crossref_primary_10_1016_j_cej_2023_142092 crossref_primary_10_1016_j_bioactmat_2022_01_004 crossref_primary_10_1016_j_mtbio_2025_101973 crossref_primary_10_1039_D2BM00602B crossref_primary_10_1007_s00289_025_05876_3 crossref_primary_10_1016_j_actbio_2022_09_077 crossref_primary_10_1002_advs_202405924 crossref_primary_10_1016_j_ijbiomac_2022_10_255 crossref_primary_10_1007_s12274_023_5751_6 crossref_primary_10_2147_IJN_S508036 crossref_primary_10_1002_advs_202206306 crossref_primary_10_1016_j_mattod_2024_08_010 crossref_primary_10_1002_anie_202318035 crossref_primary_10_1002_adfm_202314402 crossref_primary_10_1016_j_indcrop_2024_118811 crossref_primary_10_1016_j_jcis_2025_02_005 crossref_primary_10_1016_j_jconrel_2023_09_010 crossref_primary_10_1016_j_jep_2023_117638 crossref_primary_10_1016_j_cej_2021_133859 crossref_primary_10_1021_acssuschemeng_4c07993 crossref_primary_10_1016_j_carbpol_2022_120180 crossref_primary_10_1016_j_jmbbm_2023_106081 crossref_primary_10_3389_fbioe_2023_1283771 crossref_primary_10_1002_adhm_202303042 crossref_primary_10_1016_j_ijbiomac_2024_131235 crossref_primary_10_1016_j_cej_2024_156087 crossref_primary_10_1039_D2BM00575A crossref_primary_10_1002_adhm_202303157 crossref_primary_10_1016_j_compositesb_2023_110672 crossref_primary_10_1007_s11431_023_2509_4 crossref_primary_10_1208_s12249_024_03013_3 crossref_primary_10_1002_adhm_202203387 crossref_primary_10_1080_15583724_2022_2041032 crossref_primary_10_3390_ma15031225 crossref_primary_10_1016_j_ijbiomac_2023_125001 crossref_primary_10_1021_cbe_4c00173 crossref_primary_10_1002_adtp_202300125 crossref_primary_10_2147_JIR_S492465 crossref_primary_10_1016_j_apmt_2022_101362 crossref_primary_10_34133_bmr_0031 crossref_primary_10_1016_j_carbpol_2025_123626 crossref_primary_10_1016_j_ijbiomac_2024_136486 crossref_primary_10_1007_s10934_023_01535_y crossref_primary_10_1016_j_ijbiomac_2022_11_069 crossref_primary_10_1186_s12951_024_02547_9 crossref_primary_10_1016_j_ijbiomac_2024_136239 crossref_primary_10_1016_j_ijbiomac_2024_137209 crossref_primary_10_1016_j_bioactmat_2022_01_038 crossref_primary_10_1002_adhm_202500600 crossref_primary_10_1016_j_mtbio_2025_101686 crossref_primary_10_3390_ma16052024 crossref_primary_10_1039_D5BM00781J crossref_primary_10_3390_ma16031215 crossref_primary_10_1016_j_carbpol_2025_123639 crossref_primary_10_1016_j_carbpol_2025_123636 crossref_primary_10_1002_advs_202408783 crossref_primary_10_1016_j_actbio_2024_10_046 crossref_primary_10_1080_25740881_2024_2360170 crossref_primary_10_1016_j_apmt_2025_102906 crossref_primary_10_3390_gels8020122 crossref_primary_10_1002_btm2_10373 crossref_primary_10_1016_j_ijbiomac_2024_135381 crossref_primary_10_1039_D4BM01097C crossref_primary_10_1016_j_desal_2024_117640 crossref_primary_10_3389_fbioe_2023_1190171 crossref_primary_10_1016_j_ijbiomac_2023_125029 crossref_primary_10_1016_j_jconrel_2024_10_053 crossref_primary_10_1002_adhm_202304117 crossref_primary_10_1016_j_ijbiomac_2022_03_147 crossref_primary_10_1002_adhm_202300431 crossref_primary_10_1016_j_cej_2024_158478 crossref_primary_10_1039_D3NR01624B crossref_primary_10_1186_s40824_022_00268_4 crossref_primary_10_1007_s13233_023_00156_3 crossref_primary_10_1002_adfm_202515705 crossref_primary_10_1016_j_carbpol_2024_122045 crossref_primary_10_1016_j_ijbiomac_2024_130225 crossref_primary_10_1186_s12951_022_01634_z crossref_primary_10_1021_acsami_5c03857 crossref_primary_10_1016_j_bioactmat_2022_04_032 crossref_primary_10_1021_acsnano_5c06003 crossref_primary_10_3390_nano14241992 crossref_primary_10_1208_s12249_021_02102_x crossref_primary_10_1002_ange_202318035 crossref_primary_10_1002_anbr_202200115 crossref_primary_10_1016_j_cej_2024_153335 crossref_primary_10_34133_bmr_0233 crossref_primary_10_1016_j_foodres_2025_116456 crossref_primary_10_1016_j_ijbiomac_2025_143254 crossref_primary_10_1016_j_ijbiomac_2023_126014 crossref_primary_10_1016_j_mtbio_2025_101809 crossref_primary_10_1002_tcr_202200155 crossref_primary_10_1186_s40580_024_00447_0 crossref_primary_10_1016_j_matdes_2022_110598 crossref_primary_10_1016_j_colsurfb_2022_112825 crossref_primary_10_1016_j_biomaterials_2022_121908 crossref_primary_10_1016_j_carbpol_2025_123780 crossref_primary_10_1016_j_compositesb_2021_109402 crossref_primary_10_1016_j_carbpol_2023_120831 crossref_primary_10_1016_j_bioadv_2024_213851 crossref_primary_10_1016_j_carbpol_2021_118961 crossref_primary_10_1016_j_ijbiomac_2024_135471 crossref_primary_10_1039_D3MH00326D crossref_primary_10_1016_j_apmt_2022_101442 crossref_primary_10_1002_smll_202506587 crossref_primary_10_1016_j_carbpol_2022_119558 crossref_primary_10_1016_j_ijbiomac_2025_142273 crossref_primary_10_1016_j_ijbiomac_2023_127116 crossref_primary_10_1016_j_mtphys_2023_101316 crossref_primary_10_1021_acs_langmuir_5c01674 crossref_primary_10_1016_j_actbio_2023_01_045 crossref_primary_10_1016_j_mtcomm_2025_113552 crossref_primary_10_1002_smtd_202200949 crossref_primary_10_1016_j_carbpol_2024_122865 crossref_primary_10_1016_j_cej_2023_141966 crossref_primary_10_1016_j_ijbiomac_2024_135577 crossref_primary_10_1016_j_cej_2022_138076 crossref_primary_10_1016_j_cej_2022_138077 crossref_primary_10_1016_j_ijpharm_2024_124767 crossref_primary_10_1016_j_apmt_2022_101576 crossref_primary_10_1016_j_jddst_2024_105903 crossref_primary_10_1016_j_reactfunctpolym_2022_105378 crossref_primary_10_1007_s12274_022_4236_3 crossref_primary_10_1002_macp_202300211 crossref_primary_10_1080_14686996_2022_2076568 crossref_primary_10_1016_j_eurpolymj_2025_113723 crossref_primary_10_1016_j_carbpol_2023_121340 crossref_primary_10_1002_admt_202101382 crossref_primary_10_1007_s10570_024_06166_3 crossref_primary_10_1016_j_ijbiomac_2024_132615 crossref_primary_10_1002_adma_202504829 crossref_primary_10_1002_advs_202207352 crossref_primary_10_1002_smll_202309485 crossref_primary_10_1186_s12951_023_01879_2 crossref_primary_10_1002_advs_202407148 crossref_primary_10_1016_j_carbpol_2023_121589 crossref_primary_10_1016_j_fmre_2025_01_008 crossref_primary_10_1016_j_actbio_2022_04_041 crossref_primary_10_1002_adfm_202503948 crossref_primary_10_1016_j_ijbiomac_2024_138956 crossref_primary_10_1016_j_mtcomm_2024_109218 crossref_primary_10_1016_j_apmt_2022_101586 crossref_primary_10_1016_j_ijbiomac_2025_142832 crossref_primary_10_1016_j_colsurfb_2023_113639 crossref_primary_10_3390_polym15122744 crossref_primary_10_1002_adhm_202301206 crossref_primary_10_1002_adfm_202207466 crossref_primary_10_1039_D2BM00338D crossref_primary_10_1021_acs_biomac_5c01183 crossref_primary_10_3389_fphys_2023_1206211 crossref_primary_10_1016_j_cej_2025_167777 crossref_primary_10_1016_j_ijbiomac_2023_123294 crossref_primary_10_1039_D2BM00397J crossref_primary_10_1002_cbdv_202500817 crossref_primary_10_1016_j_biomaterials_2024_122891 crossref_primary_10_1002_mabi_202300520 crossref_primary_10_1016_j_eurpolymj_2024_113232 crossref_primary_10_1002_adma_202300840 crossref_primary_10_1002_admt_202400547 crossref_primary_10_1016_j_ijbiomac_2024_135553 crossref_primary_10_1002_adhm_202302470 crossref_primary_10_1016_j_carbpol_2024_122643 crossref_primary_10_1016_j_ijbiomac_2024_139125 crossref_primary_10_3390_gels10040241 crossref_primary_10_1186_s12951_022_01390_0 crossref_primary_10_1016_j_bioactmat_2021_11_036 crossref_primary_10_3390_ijms232112716 crossref_primary_10_1016_j_carbpol_2022_119585 crossref_primary_10_3390_polym16081031 crossref_primary_10_1016_j_apmt_2024_102206 crossref_primary_10_1016_j_progpolymsci_2024_101857 crossref_primary_10_1088_1748_605X_acd318 crossref_primary_10_1016_j_cis_2023_102982 crossref_primary_10_1016_j_ijbiomac_2022_12_024 crossref_primary_10_1049_bsb2_12064 crossref_primary_10_1016_j_colsurfb_2024_114250 crossref_primary_10_1016_j_carbpol_2022_120450 crossref_primary_10_1002_adhm_202403734 crossref_primary_10_1016_j_ijbiomac_2024_133363 crossref_primary_10_1002_adfm_202305992 crossref_primary_10_1016_j_indcrop_2022_115567 crossref_primary_10_1093_rb_rbae024 crossref_primary_10_1016_j_matdes_2022_111086 crossref_primary_10_1016_j_cej_2025_162653 crossref_primary_10_1016_j_ijbiomac_2025_140751 crossref_primary_10_1016_j_cej_2023_141362 crossref_primary_10_1016_j_mtchem_2022_101272 crossref_primary_10_1016_j_ijbiomac_2023_123271 crossref_primary_10_3390_foods12061304 crossref_primary_10_1016_j_jconrel_2023_03_005 crossref_primary_10_1016_j_bioadv_2025_214462 crossref_primary_10_1016_j_cej_2024_154161 crossref_primary_10_3390_molecules28104034 crossref_primary_10_1007_s10311_023_01629_8 crossref_primary_10_1016_j_ijbiomac_2024_137279 crossref_primary_10_3390_polym17070959 crossref_primary_10_1002_adhm_202403198 crossref_primary_10_1016_j_ijbiomac_2025_140965 crossref_primary_10_1016_j_fpsl_2025_101519 crossref_primary_10_1002_cjoc_202300264 crossref_primary_10_1007_s10570_025_06551_6 crossref_primary_10_1016_j_colsurfb_2023_113424 crossref_primary_10_1016_j_biomaterials_2025_123318 crossref_primary_10_1016_j_bioadv_2025_214219 crossref_primary_10_1016_j_ijbiomac_2024_129300 crossref_primary_10_1002_pol_20230859 crossref_primary_10_1002_advs_202206585 crossref_primary_10_1177_09592989251326661 crossref_primary_10_1016_j_foodhyd_2025_111219 crossref_primary_10_1016_j_actbio_2023_04_021 crossref_primary_10_1016_j_ijbiomac_2022_12_169 crossref_primary_10_1016_j_carbpol_2023_120854 crossref_primary_10_1016_j_nantod_2024_102559 crossref_primary_10_1016_j_bioadv_2022_213034 crossref_primary_10_1016_j_ijbiomac_2025_141826 crossref_primary_10_1039_D3BM02068A crossref_primary_10_1002_adfm_202314202 crossref_primary_10_1016_j_ijbiomac_2025_140851 crossref_primary_10_1016_j_carbpol_2022_119336 crossref_primary_10_1016_j_jddst_2024_105951 crossref_primary_10_1016_j_matdes_2023_111960 |
| Cites_doi | 10.1016/j.colsurfb.2016.10.021 10.1002/smll.201303568 10.1002/advs.201900867 10.1016/j.actbio.2019.03.057 10.1016/j.msec.2019.03.093 10.1021/acs.macromol.6b01198 10.1016/j.biomaterials.2018.08.044 10.1007/s13233-019-7026-3 10.1021/acsami.8b01740 10.1002/pen.25037 10.1177/1759720X13514669 10.1002/jbm.a.34364 10.1016/j.biomaterials.2018.09.003 10.1002/adfm.201901314 10.1039/C8TB03181A 10.1016/j.actbio.2020.02.039 10.1021/bm4014827 10.1038/s41467-019-10004-7 10.1016/j.actbio.2021.01.038 10.1002/adfm.201505372 10.1039/C5RA16912G 10.1002/adma.201700533 10.1002/adfm.201904156 10.1021/acsmacrolett.7b00172 10.1002/smll.201900046 10.1039/C5TB00990A 10.1016/j.biomaterials.2017.04.040 10.1002/adv.20264 10.1039/C3TB20696C 10.1002/adfm.202001196 10.1021/acsapm.9b00143 10.1002/bio.2475 10.3109/21691401.2015.1129622 10.1039/C8TB01776J 10.1016/j.biomaterials.2019.01.020 10.1016/j.biomaterials.2017.01.011 10.1016/j.actbio.2020.03.040 10.1021/acs.chemrev.0c00345 10.1073/pnas.1115973108 10.1021/acsami.8b14526 10.1021/acs.chemmater.9b01301 10.1038/s41467-019-10243-8 10.1016/j.jbiomech.2008.06.008 10.1016/j.cej.2019.01.028 10.1021/acsami.7b10260 10.1039/C4TB01221F 10.1016/j.biomaterials.2018.06.037 10.1002/adma.201601613 10.1016/j.biomaterials.2014.01.050 10.1016/j.compositesa.2016.06.002 10.1021/acsami.6b10491 10.1021/jp206347u 10.1002/adfm.202000130 10.1016/j.jare.2010.05.004 10.1016/j.biomaterials.2020.120477 10.1002/adfm.201801386 10.1038/srep19077 10.1002/adfm.201606619 10.1016/j.cej.2020.125994 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7S9 L.6 7X8 |
| DOI | 10.1016/j.biomaterials.2021.120838 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| ExternalDocumentID | 10_1016_j_biomaterials_2021_120838 S0142961221001940 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c449t-a5ee622bbed7ace81bb93350b08e1a641c7b1aa2152590a887389b3720f2b6d53 |
| ISICitedReferencesCount | 344 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690384900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Sun Sep 28 08:08:13 EDT 2025 Sun Sep 28 09:05:30 EDT 2025 Sat Nov 29 07:24:26 EST 2025 Tue Nov 18 22:25:14 EST 2025 Fri Feb 23 02:43:39 EST 2024 Tue Oct 14 19:30:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Double cross-linked Shape adaptability Injectable self-healing Dynamic wounds Tissue adhesion Burn wound dressing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c449t-a5ee622bbed7ace81bb93350b08e1a641c7b1aa2152590a887389b3720f2b6d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1448-9823 0000-0001-9798-1674 |
| PQID | 2551947244 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2553240627 proquest_miscellaneous_2551947244 crossref_primary_10_1016_j_biomaterials_2021_120838 crossref_citationtrail_10_1016_j_biomaterials_2021_120838 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2021_120838 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2021_120838 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 20210901 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomaterials |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Guo, Mi, Sun (bib32) 2018; 6 Ninan, Forget, Shastri, Voelcker, Blencowe (bib43) 2016; 8 Kładna, Berczyński, Kruk, Michalska, Aboul-Enein (bib48) 2013; 28 Eldin, Soliman, Hashem, Tamer (bib51) 2012; 31 Ha, Chae, Lee, Kim, Yoon, Sen, Lee, Kim, Cho, Cho (bib21) 2021; 266 Sun, Zhang, Shen, Sebastian, Dickinson, Fox-Talbot, Reinblatt, Steenbergen, Harmon, Gerecht (bib57) 2011; 108 Qin, Zhang, Li, Cong, Yu (bib17) 2019; 10 Liang, Zhao, Hu, Chen, Yin, Ma, Guo (bib59) 2019; 15 Wei, Gerecht (bib25) 2018; 185 Dong, A, Rodrigues, Li, Kwon, Kosaric, Khong, Gao, Wang, Gurtner (bib26) 2017; 27 Munoz-Pinto, Guiza-Arguello, Becerra-Bayona, Erndt-Marino, Samavedi, Malmut, Russell, Hook, Hahn (bib44) 2015; 3 Cheng, Cai, Ye, Yu, Chen, Yan, Qi, Wang, Liu, Cui, Deng (bib58) 2020; 30 Li, Chen, Li, Li, Xie, Ma, Zhao, Hou, Yuan (bib13) 2020; 30 Wang, Lv, Feng, Li, Zhang (bib54) 2018; 59 Li, Yuan, Dong, Duan, Tian, He, Chen (bib18) 2015; 5 Iuga, Alvarez-Idaboy, Vivier-Bunge (bib49) 2011; 115 Fan, Deng, Li, Chery, Su, Zhu, Kambayashi, Blankenhorn, Han, Cheng (bib5) 2019; 197 Choi, Choi, Jung, Cho (bib20) 2014; 2 Lee, Chang, Kim, Gite, Chung, Sohn (bib22) 2016; 49 Li, Wang, Jin, Deng, Nie, Sun, Wu, Wei, Gong (bib27) 2014; 35 Ying, Zhou, Wang, Su, Ma, Lv, Chen (bib36) 2019; 101 Wang, Jiang, Hua, Darabi, Song, Song, Zhong, Xing, Qiu (bib47) 2016; 26 Narkhede, Crenshaw, Crossman, Shevde, Rao (bib46) 2020; 107 Yuan, Wu, Fang, Wei, Gu, El-Hamshary, Al-Deyab, Morsi, Mo (bib30) 2017; 45 Missirlis, Spatz (bib45) 2014; 15 Dong, Cui, Qu, Wang, Kwon, Barrera, Elvassore, Gurtner (bib2) 2020; 108 Lei, Li, Wang, Yuan, Ge, Li, Mu (bib39) 2019; 1 Taylor M (bib9) 2016; 28 Chen, Wang, Deng, Hu, Dong (bib11) 2013; 101 Holt, Tripathi, Morgan (bib40) 2008; 41 Pan, Yuan, Guo, Geng, Fei, Fan, Li, Yuan, Yan, Mo (bib29) 2014; 2 Chen, Yu, Wu, Wang, Ren, Zhao (bib34) 2018; 28 Tu, Chen, Li, Liu, Zhu, Chen, Xiao, Liu, Ramakrishna, He (bib8) 2019; 90 Qu, Zhao, Liang, Zhang, Ma, Guo (bib7) 2018; 183 Song, Kim, Lee, Davaa, Baskaran, Yang (bib14) 2019; 27 Tanpichai, Oksman (bib31) 2016; 88 Hong, Zhou, Hua, Zhang, Ni, Pan, Zhang, Jiang, Yang, Lin, Zou, Yu, Arnot, Zou, Zhu, Zhang, Ouyang (bib35) 2019; 10 Zhang, He, Shi, Liang, Guo (bib4) 2020; 400 Zhao, Wu, Guo, Dong, Qiu, Ma (bib15) 2017; 122 Guo, Bae, Fang, Li, Zhao, Yu (bib38) 2020; 120 Wang, Zhang, Yang, Fu, Xu, Li, Zhang, Wang, Lee (bib19) 2020; 30 Wang, Yang, Li, Zhang, Zhang, Wang, Lee (bib10) 2021; 124 Qu, Zhao, Liang, Xu, Ma, Guo (bib56) 2019; 362 Neto, Cibrão, Correia, Carvalho, Luz, Ferrer, Botelho, Picart, Alves, Mano (bib28) 2014; 10 Tian, Qiu, Yuan, Lei, Wang, Bai, Liu, Chen (bib53) 2018; 10 Foster, Lensmeyer, Zhang, Chakma, Flum, Via, Sparks, Konkolewicz (bib41) 2017; 6 Henrotin, Pesesse, Lambert (bib24) 2014; 6 Liu, Yao, Tian, Wei, Song, Qiao (bib55) 2018; 179 Gao, Xu, Liang, Li, Peng, Wu, Zhao, Cui, Ruan, Liu (bib6) 2019; 6 Yergoz, Hastar, Cimenci, Ozkan, Tekinay, Guler, Tekinay (bib1) 2017; 134 da Silva, da Silva, Modolo, Alves, de Resende, Martins, de Fátima (bib52) 2011; 2 Li, Yang, Zeng, Wu, Wei, Tao (bib42) 2019; 31 Huang, Wang, Huang, Wang, Chen, Zhang, Zhang (bib3) 2018; 10 Darabi, Khosrozadeh, Mbeleck, Liu, Chang, Jiang, Cai, Wang, Luo, Xing (bib12) 2017; 29 Jiang, Su, Ding, Zhang, Li, Chen, Ding, Zhang, Dong (bib16) 2019; 29 Shi, Wang, Qu, Liao, Chu, Zhang, Luo, Qian (bib37) 2016; 6 Xue, Li, Li, Sun, Zhang, Xu, Kang (bib23) 2017; 9 Zhao, Zhao, Hu, Ma, Chao, Sun, Fu, Zhang (bib33) 2019; 7 Li, Zhang, Shi, Tao, Wei, Wang (bib50) 2017; 149 Dong (10.1016/j.biomaterials.2021.120838_bib2) 2020; 108 Li (10.1016/j.biomaterials.2021.120838_bib27) 2014; 35 Iuga (10.1016/j.biomaterials.2021.120838_bib49) 2011; 115 Qin (10.1016/j.biomaterials.2021.120838_bib17) 2019; 10 Huang (10.1016/j.biomaterials.2021.120838_bib3) 2018; 10 Wang (10.1016/j.biomaterials.2021.120838_bib19) 2020; 30 Narkhede (10.1016/j.biomaterials.2021.120838_bib46) 2020; 107 Wang (10.1016/j.biomaterials.2021.120838_bib54) 2018; 59 Liu (10.1016/j.biomaterials.2021.120838_bib55) 2018; 179 Guo (10.1016/j.biomaterials.2021.120838_bib38) 2020; 120 Chen (10.1016/j.biomaterials.2021.120838_bib11) 2013; 101 Ha (10.1016/j.biomaterials.2021.120838_bib21) 2021; 266 Tu (10.1016/j.biomaterials.2021.120838_bib8) 2019; 90 Li (10.1016/j.biomaterials.2021.120838_bib13) 2020; 30 Liang (10.1016/j.biomaterials.2021.120838_bib59) 2019; 15 Missirlis (10.1016/j.biomaterials.2021.120838_bib45) 2014; 15 Kładna (10.1016/j.biomaterials.2021.120838_bib48) 2013; 28 Jiang (10.1016/j.biomaterials.2021.120838_bib16) 2019; 29 Hong (10.1016/j.biomaterials.2021.120838_bib35) 2019; 10 Zhang (10.1016/j.biomaterials.2021.120838_bib4) 2020; 400 Holt (10.1016/j.biomaterials.2021.120838_bib40) 2008; 41 Foster (10.1016/j.biomaterials.2021.120838_bib41) 2017; 6 Neto (10.1016/j.biomaterials.2021.120838_bib28) 2014; 10 Ninan (10.1016/j.biomaterials.2021.120838_bib43) 2016; 8 da Silva (10.1016/j.biomaterials.2021.120838_bib52) 2011; 2 Gao (10.1016/j.biomaterials.2021.120838_bib6) 2019; 6 Xue (10.1016/j.biomaterials.2021.120838_bib23) 2017; 9 Munoz-Pinto (10.1016/j.biomaterials.2021.120838_bib44) 2015; 3 Wang (10.1016/j.biomaterials.2021.120838_bib47) 2016; 26 Fan (10.1016/j.biomaterials.2021.120838_bib5) 2019; 197 Cheng (10.1016/j.biomaterials.2021.120838_bib58) 2020; 30 Tian (10.1016/j.biomaterials.2021.120838_bib53) 2018; 10 Zhao (10.1016/j.biomaterials.2021.120838_bib15) 2017; 122 Lee (10.1016/j.biomaterials.2021.120838_bib22) 2016; 49 Zhao (10.1016/j.biomaterials.2021.120838_bib33) 2019; 7 Dong (10.1016/j.biomaterials.2021.120838_bib26) 2017; 27 Li (10.1016/j.biomaterials.2021.120838_bib50) 2017; 149 Eldin (10.1016/j.biomaterials.2021.120838_bib51) 2012; 31 Chen (10.1016/j.biomaterials.2021.120838_bib34) 2018; 28 Shi (10.1016/j.biomaterials.2021.120838_bib37) 2016; 6 Qu (10.1016/j.biomaterials.2021.120838_bib7) 2018; 183 Tanpichai (10.1016/j.biomaterials.2021.120838_bib31) 2016; 88 Yergoz (10.1016/j.biomaterials.2021.120838_bib1) 2017; 134 Li (10.1016/j.biomaterials.2021.120838_bib42) 2019; 31 Henrotin (10.1016/j.biomaterials.2021.120838_bib24) 2014; 6 Guo (10.1016/j.biomaterials.2021.120838_bib32) 2018; 6 Taylor M (10.1016/j.biomaterials.2021.120838_bib9) 2016; 28 Song (10.1016/j.biomaterials.2021.120838_bib14) 2019; 27 Yuan (10.1016/j.biomaterials.2021.120838_bib30) 2017; 45 Li (10.1016/j.biomaterials.2021.120838_bib18) 2015; 5 Sun (10.1016/j.biomaterials.2021.120838_bib57) 2011; 108 Lei (10.1016/j.biomaterials.2021.120838_bib39) 2019; 1 Choi (10.1016/j.biomaterials.2021.120838_bib20) 2014; 2 Wei (10.1016/j.biomaterials.2021.120838_bib25) 2018; 185 Wang (10.1016/j.biomaterials.2021.120838_bib10) 2021; 124 Darabi (10.1016/j.biomaterials.2021.120838_bib12) 2017; 29 Pan (10.1016/j.biomaterials.2021.120838_bib29) 2014; 2 Ying (10.1016/j.biomaterials.2021.120838_bib36) 2019; 101 Qu (10.1016/j.biomaterials.2021.120838_bib56) 2019; 362 |
| References_xml | – volume: 108 start-page: 56 year: 2020 end-page: 66 ident: bib2 article-title: Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury publication-title: Acta Biomater. – volume: 27 start-page: 119 year: 2019 end-page: 125 ident: bib14 article-title: Dopa-empowered Schiff base forming alginate hydrogel glue for rapid hemostatic control publication-title: Macromol. Res. – volume: 28 start-page: 1801386 year: 2018 ident: bib34 article-title: Bioinspired multifunctional hybrid hydrogel promotes wound healing publication-title: Adv. Funct. Mater. – volume: 2 start-page: 201 year: 2014 end-page: 209 ident: bib20 article-title: Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe publication-title: J. Mater. Chem. B – volume: 10 start-page: 2202 year: 2019 ident: bib17 article-title: Anisotropic and self-healing hydrogels with multi-responsive actuating capability publication-title: Nat. Commun. – volume: 41 start-page: 2689 year: 2008 end-page: 2695 ident: bib40 article-title: Viscoelastic response of human skin to low magnitude physiologically relevant shear publication-title: J. Biomech. – volume: 31 start-page: 414 year: 2012 end-page: 428 ident: bib51 article-title: Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications publication-title: Adv. Polym. Technol. – volume: 1 start-page: 1350 year: 2019 end-page: 1358 ident: bib39 article-title: Facile fabrication of biocompatible gelatin-based self-healing hydrogels publication-title: ACS Appl. Polym. Mater. – volume: 9 start-page: 33632 year: 2017 end-page: 33644 ident: bib23 article-title: Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 20 year: 2014 end-page: 34 ident: bib24 article-title: Targeting the synovial angiogenesis as a novel treatment approach to osteoarthritis publication-title: Ther. Adv. Musculoskeletal Dis. – volume: 10 start-page: 2459 year: 2014 end-page: 2469 ident: bib28 article-title: Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications publication-title: Small – volume: 27 start-page: 1606619 year: 2017 ident: bib26 article-title: Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1 year: 2011 end-page: 8 ident: bib52 article-title: Schiff bases: a short review of their antimicrobial activities publication-title: J. Adv. Res. – volume: 400 start-page: 125994 year: 2020 ident: bib4 article-title: Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration publication-title: Chem. Eng. J. – volume: 197 start-page: 244 year: 2019 end-page: 254 ident: bib5 article-title: A new class of biological materials: cell membrane-derived hydrogel scaffolds publication-title: Biomaterials – volume: 28 start-page: 450 year: 2013 end-page: 455 ident: bib48 article-title: Superoxide anion radical scavenging property of catecholamines publication-title: Luminescence – volume: 6 start-page: 6234 year: 2018 end-page: 6244 ident: bib32 article-title: The multifaceted nature of catechol chemistry: bioinspired pH-initiated hyaluronic acid hydrogels with tunable cohesive and adhesive properties publication-title: J. Mater. Chem. B – volume: 107 start-page: 65 year: 2020 end-page: 77 ident: bib46 article-title: An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells publication-title: Acta Biomater. – volume: 15 start-page: 1900046 year: 2019 ident: bib59 article-title: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing publication-title: Small – volume: 185 start-page: 86 year: 2018 end-page: 96 ident: bib25 article-title: A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis publication-title: Biomaterials – volume: 2 start-page: 8346 year: 2014 end-page: 8360 ident: bib29 article-title: Fabrication of modified dextran-gelatin in situ forming hydrogel and application in cartilage tissue engineering publication-title: J. Mater. Chem. B – volume: 3 start-page: 7912 year: 2015 end-page: 7919 ident: bib44 article-title: Collagen-mimetic hydrogels promote human endothelial cell adhesion, migration and phenotypic maturation publication-title: J. Mater. Chem. B – volume: 30 start-page: 2000130 year: 2020 ident: bib13 article-title: Bioinspired double‐dynamic‐bond crosslinked bioadhesive enables post‐wound closure care publication-title: Adv. Funct. Mater. – volume: 30 start-page: 2001196 year: 2020 ident: bib58 article-title: Injectable polypeptide‐protein hydrogels for promoting infected wound healing publication-title: Adv. Funct. Mater. – volume: 8 start-page: 28511 year: 2016 end-page: 28521 ident: bib43 article-title: Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 94248 year: 2015 end-page: 94256 ident: bib18 article-title: Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing publication-title: RSC Adv. – volume: 101 start-page: 684 year: 2013 end-page: 693 ident: bib11 article-title: Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure publication-title: J. Biomed. Mater. Res. – volume: 30 start-page: 1904156 year: 2020 ident: bib19 article-title: A novel double‐crosslinking‐double‐network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1855 year: 2019 end-page: 1866 ident: bib33 article-title: Synthetic poly(vinyl alcohol)-chitosan as a new type of highly efficient hemostatic sponge with blood-triggered swelling and high biocompatibility publication-title: J. Mater. Chem. B – volume: 88 start-page: 226 year: 2016 end-page: 233 ident: bib31 article-title: Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery publication-title: Compos. Part A-Appl. S. – volume: 115 start-page: 12234 year: 2011 end-page: 12246 ident: bib49 article-title: ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments publication-title: J. Phys. Chem. B – volume: 108 start-page: 20976 year: 2011 end-page: 20981 ident: bib57 article-title: Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 6 start-page: 1900867 year: 2019 ident: bib6 article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds publication-title: Adv. Sci. – volume: 149 start-page: 168 year: 2017 end-page: 173 ident: bib50 article-title: Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel publication-title: Colloids Surf., B – volume: 124 start-page: 139 year: 2021 end-page: 152 ident: bib10 article-title: A double-crosslinked self-healing antibacterial hydrogel with enhanced mechanical performance for wound treatment publication-title: Acta Biomater. – volume: 29 start-page: 1700533 year: 2017 ident: bib12 article-title: Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability publication-title: Adv. Mater. – volume: 6 start-page: 19077 year: 2016 ident: bib37 article-title: Synthesis, characterization and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo publication-title: Sci. Rep. – volume: 10 start-page: 2060 year: 2019 ident: bib35 article-title: A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds publication-title: Nat. Commun. – volume: 6 start-page: 495 year: 2017 end-page: 499 ident: bib41 article-title: Effect of polymer network architecture, enhancing soft materials using orthogonal dynamic bonds in an interpenetrating network publication-title: ACS Macro Lett. – volume: 49 start-page: 7450 year: 2016 end-page: 7459 ident: bib22 article-title: Phase controllable hyaluronic acid hydrogel with iron(III) ion–catechol induced dual cross-linking by utilizing the gap of gelation kinetics publication-title: Macromolecules – volume: 90 start-page: 1 year: 2019 end-page: 20 ident: bib8 article-title: Advances in injectable self-healing biomedical hydrogels publication-title: Acta Biomater. – volume: 183 start-page: 185 year: 2018 end-page: 199 ident: bib7 article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing publication-title: Biomaterials – volume: 59 start-page: 919 year: 2018 end-page: 927 ident: bib54 article-title: Bimetallic ions synergistic cross‐linking high‐strength rapid self‐healing antibacterial hydrogel publication-title: Polym. Eng. Sci. – volume: 179 start-page: 83 year: 2018 end-page: 95 ident: bib55 article-title: Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis publication-title: Biomaterials – volume: 122 start-page: 34 year: 2017 end-page: 47 ident: bib15 article-title: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing publication-title: Biomaterials – volume: 31 start-page: 5576 year: 2019 end-page: 5583 ident: bib42 article-title: Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages publication-title: Chem. Mater. – volume: 35 start-page: 3903 year: 2014 end-page: 3917 ident: bib27 article-title: Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention publication-title: Biomaterials – volume: 10 start-page: 17018 year: 2018 end-page: 17027 ident: bib53 article-title: Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 76 year: 2017 end-page: 83 ident: bib30 article-title: Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive publication-title: Artif. Cells, Nanomed., Biotechnol. – volume: 26 start-page: 4293 year: 2016 end-page: 4305 ident: bib47 article-title: Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles publication-title: Adv. Funct. Mater. – volume: 10 start-page: 41076 year: 2018 end-page: 41088 ident: bib3 article-title: On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1901314 year: 2019 ident: bib16 article-title: Salt‐assisted toughening of protein hydrogel with controlled degradation for bone regeneration publication-title: Adv. Funct. Mater. – volume: 134 start-page: 117 year: 2017 end-page: 127 ident: bib1 article-title: Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury publication-title: Biomaterials – volume: 28 start-page: 9060 year: 2016 end-page: 9093 ident: bib9 article-title: In het panhuis, self-healing hydrogels publication-title: Adv. Mater. – volume: 120 start-page: 7642 year: 2020 end-page: 7707 ident: bib38 article-title: Hydrogels and hydrogel-derived materials for energy and water sustainability publication-title: Chem. Rev. – volume: 15 start-page: 195 year: 2014 end-page: 205 ident: bib45 article-title: Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration publication-title: Biomacromolecules – volume: 101 start-page: 487 year: 2019 end-page: 498 ident: bib36 article-title: In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing publication-title: Mat. Sci. Eng. C-Mater. – volume: 362 start-page: 548 year: 2019 end-page: 560 ident: bib56 article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing publication-title: Chem. Eng. J. – volume: 266 start-page: 120477 year: 2021 ident: bib21 article-title: Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent publication-title: Biomaterials – volume: 149 start-page: 168 year: 2017 ident: 10.1016/j.biomaterials.2021.120838_bib50 article-title: Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2016.10.021 – volume: 10 start-page: 2459 issue: 12 year: 2014 ident: 10.1016/j.biomaterials.2021.120838_bib28 article-title: Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications publication-title: Small doi: 10.1002/smll.201303568 – volume: 6 start-page: 1900867 issue: 15 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib6 article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds publication-title: Adv. Sci. doi: 10.1002/advs.201900867 – volume: 90 start-page: 1 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib8 article-title: Advances in injectable self-healing biomedical hydrogels publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.03.057 – volume: 101 start-page: 487 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib36 article-title: In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing publication-title: Mat. Sci. Eng. C-Mater. doi: 10.1016/j.msec.2019.03.093 – volume: 49 start-page: 7450 issue: 19 year: 2016 ident: 10.1016/j.biomaterials.2021.120838_bib22 article-title: Phase controllable hyaluronic acid hydrogel with iron(III) ion–catechol induced dual cross-linking by utilizing the gap of gelation kinetics publication-title: Macromolecules doi: 10.1021/acs.macromol.6b01198 – volume: 183 start-page: 185 year: 2018 ident: 10.1016/j.biomaterials.2021.120838_bib7 article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.08.044 – volume: 27 start-page: 119 issue: 2 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib14 article-title: Dopa-empowered Schiff base forming alginate hydrogel glue for rapid hemostatic control publication-title: Macromol. Res. doi: 10.1007/s13233-019-7026-3 – volume: 10 start-page: 17018 issue: 20 year: 2018 ident: 10.1016/j.biomaterials.2021.120838_bib53 article-title: Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01740 – volume: 59 start-page: 919 issue: 5 year: 2018 ident: 10.1016/j.biomaterials.2021.120838_bib54 article-title: Bimetallic ions synergistic cross‐linking high‐strength rapid self‐healing antibacterial hydrogel publication-title: Polym. Eng. Sci. doi: 10.1002/pen.25037 – volume: 6 start-page: 20 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2021.120838_bib24 article-title: Targeting the synovial angiogenesis as a novel treatment approach to osteoarthritis publication-title: Ther. Adv. Musculoskeletal Dis. doi: 10.1177/1759720X13514669 – volume: 101 start-page: 684 issue: 3 year: 2013 ident: 10.1016/j.biomaterials.2021.120838_bib11 article-title: Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.34364 – volume: 185 start-page: 86 year: 2018 ident: 10.1016/j.biomaterials.2021.120838_bib25 article-title: A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.09.003 – volume: 29 start-page: 1901314 issue: 26 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib16 article-title: Salt‐assisted toughening of protein hydrogel with controlled degradation for bone regeneration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901314 – volume: 7 start-page: 1855 issue: 11 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib33 article-title: Synthetic poly(vinyl alcohol)-chitosan as a new type of highly efficient hemostatic sponge with blood-triggered swelling and high biocompatibility publication-title: J. Mater. Chem. B doi: 10.1039/C8TB03181A – volume: 107 start-page: 65 year: 2020 ident: 10.1016/j.biomaterials.2021.120838_bib46 article-title: An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.02.039 – volume: 15 start-page: 195 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2021.120838_bib45 article-title: Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration publication-title: Biomacromolecules doi: 10.1021/bm4014827 – volume: 10 start-page: 2060 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib35 article-title: A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds publication-title: Nat. Commun. doi: 10.1038/s41467-019-10004-7 – volume: 124 start-page: 139 year: 2021 ident: 10.1016/j.biomaterials.2021.120838_bib10 article-title: A double-crosslinked self-healing antibacterial hydrogel with enhanced mechanical performance for wound treatment publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.01.038 – volume: 26 start-page: 4293 issue: 24 year: 2016 ident: 10.1016/j.biomaterials.2021.120838_bib47 article-title: Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505372 – volume: 5 start-page: 94248 issue: 114 year: 2015 ident: 10.1016/j.biomaterials.2021.120838_bib18 article-title: Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing publication-title: RSC Adv. doi: 10.1039/C5RA16912G – volume: 29 start-page: 1700533 issue: 31 year: 2017 ident: 10.1016/j.biomaterials.2021.120838_bib12 article-title: Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability publication-title: Adv. Mater. doi: 10.1002/adma.201700533 – volume: 30 start-page: 1904156 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.120838_bib19 article-title: A novel double‐crosslinking‐double‐network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904156 – volume: 6 start-page: 495 issue: 5 year: 2017 ident: 10.1016/j.biomaterials.2021.120838_bib41 article-title: Effect of polymer network architecture, enhancing soft materials using orthogonal dynamic bonds in an interpenetrating network publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.7b00172 – volume: 15 start-page: 1900046 issue: 12 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib59 article-title: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing publication-title: Small doi: 10.1002/smll.201900046 – volume: 3 start-page: 7912 issue: 40 year: 2015 ident: 10.1016/j.biomaterials.2021.120838_bib44 article-title: Collagen-mimetic hydrogels promote human endothelial cell adhesion, migration and phenotypic maturation publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00990A – volume: 134 start-page: 117 year: 2017 ident: 10.1016/j.biomaterials.2021.120838_bib1 article-title: Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.04.040 – volume: 31 start-page: 414 issue: 4 year: 2012 ident: 10.1016/j.biomaterials.2021.120838_bib51 article-title: Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications publication-title: Adv. Polym. Technol. doi: 10.1002/adv.20264 – volume: 2 start-page: 201 issue: 2 year: 2014 ident: 10.1016/j.biomaterials.2021.120838_bib20 article-title: Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking publication-title: J. Mater. Chem. B doi: 10.1039/C3TB20696C – volume: 30 start-page: 2001196 issue: 25 year: 2020 ident: 10.1016/j.biomaterials.2021.120838_bib58 article-title: Injectable polypeptide‐protein hydrogels for promoting infected wound healing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001196 – volume: 1 start-page: 1350 issue: 6 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib39 article-title: Facile fabrication of biocompatible gelatin-based self-healing hydrogels publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00143 – volume: 28 start-page: 450 issue: 4 year: 2013 ident: 10.1016/j.biomaterials.2021.120838_bib48 article-title: Superoxide anion radical scavenging property of catecholamines publication-title: Luminescence doi: 10.1002/bio.2475 – volume: 45 start-page: 76 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2021.120838_bib30 article-title: Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive publication-title: Artif. Cells, Nanomed., Biotechnol. doi: 10.3109/21691401.2015.1129622 – volume: 6 start-page: 6234 issue: 39 year: 2018 ident: 10.1016/j.biomaterials.2021.120838_bib32 article-title: The multifaceted nature of catechol chemistry: bioinspired pH-initiated hyaluronic acid hydrogels with tunable cohesive and adhesive properties publication-title: J. Mater. Chem. B doi: 10.1039/C8TB01776J – volume: 197 start-page: 244 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib5 article-title: A new class of biological materials: cell membrane-derived hydrogel scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.01.020 – volume: 122 start-page: 34 year: 2017 ident: 10.1016/j.biomaterials.2021.120838_bib15 article-title: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.01.011 – volume: 108 start-page: 56 year: 2020 ident: 10.1016/j.biomaterials.2021.120838_bib2 article-title: Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.03.040 – volume: 120 start-page: 7642 issue: 15 year: 2020 ident: 10.1016/j.biomaterials.2021.120838_bib38 article-title: Hydrogels and hydrogel-derived materials for energy and water sustainability publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00345 – volume: 108 start-page: 20976 issue: 52 year: 2011 ident: 10.1016/j.biomaterials.2021.120838_bib57 article-title: Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1115973108 – volume: 10 start-page: 41076 issue: 48 year: 2018 ident: 10.1016/j.biomaterials.2021.120838_bib3 article-title: On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14526 – volume: 31 start-page: 5576 issue: 15 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib42 article-title: Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01301 – volume: 10 start-page: 2202 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib17 article-title: Anisotropic and self-healing hydrogels with multi-responsive actuating capability publication-title: Nat. Commun. doi: 10.1038/s41467-019-10243-8 – volume: 41 start-page: 2689 issue: 12 year: 2008 ident: 10.1016/j.biomaterials.2021.120838_bib40 article-title: Viscoelastic response of human skin to low magnitude physiologically relevant shear publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.06.008 – volume: 362 start-page: 548 year: 2019 ident: 10.1016/j.biomaterials.2021.120838_bib56 article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.028 – volume: 9 start-page: 33632 issue: 39 year: 2017 ident: 10.1016/j.biomaterials.2021.120838_bib23 article-title: Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10260 – volume: 2 start-page: 8346 issue: 47 year: 2014 ident: 10.1016/j.biomaterials.2021.120838_bib29 article-title: Fabrication of modified dextran-gelatin in situ forming hydrogel and application in cartilage tissue engineering publication-title: J. Mater. Chem. B doi: 10.1039/C4TB01221F – volume: 179 start-page: 83 year: 2018 ident: 10.1016/j.biomaterials.2021.120838_bib55 article-title: Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.06.037 – volume: 28 start-page: 9060 issue: 41 year: 2016 ident: 10.1016/j.biomaterials.2021.120838_bib9 article-title: In het panhuis, self-healing hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201601613 – volume: 35 start-page: 3903 issue: 12 year: 2014 ident: 10.1016/j.biomaterials.2021.120838_bib27 article-title: Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.050 – volume: 88 start-page: 226 year: 2016 ident: 10.1016/j.biomaterials.2021.120838_bib31 article-title: Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery publication-title: Compos. Part A-Appl. S. doi: 10.1016/j.compositesa.2016.06.002 – volume: 8 start-page: 28511 issue: 42 year: 2016 ident: 10.1016/j.biomaterials.2021.120838_bib43 article-title: Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10491 – volume: 115 start-page: 12234 issue: 42 year: 2011 ident: 10.1016/j.biomaterials.2021.120838_bib49 article-title: ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments publication-title: J. Phys. Chem. B doi: 10.1021/jp206347u – volume: 30 start-page: 2000130 issue: 17 year: 2020 ident: 10.1016/j.biomaterials.2021.120838_bib13 article-title: Bioinspired double‐dynamic‐bond crosslinked bioadhesive enables post‐wound closure care publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000130 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.biomaterials.2021.120838_bib52 article-title: Schiff bases: a short review of their antimicrobial activities publication-title: J. Adv. Res. doi: 10.1016/j.jare.2010.05.004 – volume: 266 start-page: 120477 year: 2021 ident: 10.1016/j.biomaterials.2021.120838_bib21 article-title: Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120477 – volume: 28 start-page: 1801386 issue: 33 year: 2018 ident: 10.1016/j.biomaterials.2021.120838_bib34 article-title: Bioinspired multifunctional hybrid hydrogel promotes wound healing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801386 – volume: 6 start-page: 19077 year: 2016 ident: 10.1016/j.biomaterials.2021.120838_bib37 article-title: Synthesis, characterization and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo publication-title: Sci. Rep. doi: 10.1038/srep19077 – volume: 27 start-page: 1606619 issue: 24 year: 2017 ident: 10.1016/j.biomaterials.2021.120838_bib26 article-title: Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606619 – volume: 400 start-page: 125994 year: 2020 ident: 10.1016/j.biomaterials.2021.120838_bib4 article-title: Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125994 |
| SSID | ssj0014042 |
| Score | 2.7150018 |
| Snippet | Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120838 |
| SubjectTerms | adhesion antibacterial properties biocompatible materials biodegradability Burn wound dressing chelation crosslinking Double cross-linked Dynamic wounds gelation hydrogels Injectable self-healing mechanical properties schiff bases Shape adaptability Tissue adhesion |
| Title | A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961221001940 https://dx.doi.org/10.1016/j.biomaterials.2021.120838 https://www.proquest.com/docview/2551947244 https://www.proquest.com/docview/2553240627 |
| Volume | 276 |
| WOSCitedRecordID | wos000690384900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSH2gGCA2IDJSLyVVImbxDGIhwo2ARITD0MqT5Edu0umKql6GePf8Mq_5PiWRkVDRYiXqLLsOsn54vP5-FwQekEk4wWn8H3zpAjigocB9BRBKjJONMWgZGKKTdCzs2w8Zp97vR8-FuZqSus6u75ms_8qamgDYevQ2b8Qd_un0AC_QehwBbHDdSvBj5y1QpfCsrkAZLPS8VFGIQb6xBZIpnEk1ErN2QLL73LeXCgTzdiXtkx9H1543f-mCy8ZQulioxcln6k-l3y2tEm-jZyqWlt0TCDWQk0ngRugHcBmOn-vOaVQdWk9Drgs1cJDwp8pVw3QZ_uK2sVoZQ20X7nTsDabpDXallXZrJtPbc93vJJV15ZBotZZyxnYfJDN2qPJ2jxJwFLnba3sOp3B5jdhYdJdyImtJPObUrD2icuB6DzGQE8_iAgw0GytClsHRe3zRvScROeoYnG4g_YITRism3ujDyfjj-1JVRyaAk3tTfrEtsaH8KYZbyJBG3TAcJzze-iu25zgkQXVfdRT9QHa76SsPEC3PzlnjAfo5whvIA1bpOEu0vAG0rBHGgakYYc0rJGGDdKwA84rbHCGuzh7idcow12UYY8yDCjDHmXYo-wh-nJ6cv72feAqfwRFHLNlwBOlUkKEUJLyQsHWSrDhMAlFmKmIp3FUUBFxrmsyAwg4KErg3UIXXJoQkcpk-Ajt1k2tHiPMZJTSIk0IJTIGusqBvzI5BFqmRMITdoiYF0VeuLT4ujrLNPf-j5d5V4y5FmNuxXiIhu3YmU0Os9Wo117iuQ9_BoWdA1y3Gv2mHe1IsiW_W49_7kGWgybRx4O8Vs0KOsHmicUU-P4f--gMnimhR_94H0_QnfUK8BTtLucr9QzdKq6W1WJ-jHboODt239ovWAkLGg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physicochemical+double+cross-linked+multifunctional+hydrogel+for+dynamic+burn+wound+healing%3A+shape+adaptability%2C+injectable+self-healing+property+and+enhanced+adhesion&rft.jtitle=Biomaterials&rft.au=Yuan%2C+Yang&rft.au=Shen%2C+Shihong&rft.au=Fan%2C+Daidi&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0142-9612&rft.eissn=1878-5905&rft.volume=276&rft_id=info:doi/10.1016%2Fj.biomaterials.2021.120838&rft.externalDocID=S0142961221001940 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |