A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion

Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic bu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomaterials Ročník 276; s. 120838
Hlavní autoři: Yuan, Yang, Shen, Shihong, Fan, Daidi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2021
Témata:
ISSN:0142-9612, 1878-5905, 1878-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G’), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing.
AbstractList Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe³⁺ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G’), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing.
Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G'), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing.Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G'), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing.
Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from slow healing. Dynamic burn wounds have special requirements for hydrogel dressing due to their high frequency movement. To focus on dynamic burn wounds, we designed a novel double cross-linked hydrogel prepared by Schiff base and catechol-Fe3+ chelation bond. The unique double cross-linked structure of the hydrogel resulted in better physicochemical properties and enhanced efficacy. The enhanced physicochemical properties, such as faster gelation time (52 ± 2 s), stronger mechanical property (535 kPa of G’), enhanced adhesive strength (19.3 kPa) and better self-healing property, made the hydrogel suitable for dynamic wounds. The excellent shape adaptability (97.1 ± 1.3% of recovery) made the hydrogel suitable for wounds with irregular shapes. The hydrogel exhibited not only biodegradability during the wound healing process but also superior inherent antibacterial activity (100% killing ratio) and hemostatic property. The results showed that the hydrogel shortened the healing time of burn wounds to 13 days, and accelerated the reconstruction of skin structure and function. This double cross-linked multifunctional hydrogel is a promising candidate as a dynamic burn wound dressing.
ArticleNumber 120838
Author Yuan, Yang
Fan, Daidi
Shen, Shihong
Author_xml – sequence: 1
  givenname: Yang
  surname: Yuan
  fullname: Yuan, Yang
  email: 1106826514@qq.com
  organization: Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
– sequence: 2
  givenname: Shihong
  orcidid: 0000-0003-1448-9823
  surname: Shen
  fullname: Shen, Shihong
  email: shenshihong@nwu.edu.cn
  organization: Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
– sequence: 3
  givenname: Daidi
  orcidid: 0000-0001-9798-1674
  surname: Fan
  fullname: Fan, Daidi
  email: fandaidi@nwu.edu.cn
  organization: Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China
BookMark eNqNks1u1DAUhS1UJKaFd7BYsSBT2_nvilIoIFViA2vr2rlpPHXsYCdFeSTeEofpAnU1K-tK55xrn8_n5Mx5h4S85WzPGa8uD3tl_AgzBgM27gUTfM8Fa_LmBdnxpm6ysmXlGdkxXoisrbh4Rc5jPLA0s0LsyJ9rOg1rNNrrAUejwdLOL8oi1cHHmFnjHrCj42Jn0y9Oz8a7pBnWLvh7tLT3gXarg2SlagmO_vaL6-iAkJz3VzQOMCGFDqYZlLFmXt9T4w6o05iWRLR99iSmU_AThnmlkBLQDeB0Wg3dgDFtfU1e9umN-ObpvCA_bz__uPma3X3_8u3m-i7TRdHOGZSIlRBKYVeDxoYr1eZ5yRRrkENVcF0rDiB4KVI10DR13rQqrwXrhaq6Mr8g74656Tq_FoyzHE3UaC049EuUoixzUbBK1KdIeVvUoiiS9Ooo_VdrwF5OwYwQVsmZ3FDKg_wfpdxQyiPKZP7wzKzNDBuKOYCxp0V8OkZgqu7RYJBRG9wKNiHBkJ03p8V8fBajE7rt2zzgemrIX_aO4Y0
CitedBy_id crossref_primary_10_1002_adhm_202101722
crossref_primary_10_1007_s10876_024_02638_5
crossref_primary_10_1016_j_eurpolymj_2024_113712
crossref_primary_10_1016_j_ijbiomac_2024_135519
crossref_primary_10_1002_advs_202206771
crossref_primary_10_1016_j_cej_2024_151787
crossref_primary_10_1002_mabi_202100308
crossref_primary_10_1016_j_colsurfa_2021_127657
crossref_primary_10_1016_j_carbpol_2024_122203
crossref_primary_10_1016_j_mtchem_2022_100968
crossref_primary_10_1002_adfm_202205315
crossref_primary_10_1016_j_ijbiomac_2023_128275
crossref_primary_10_1002_cjoc_202300167
crossref_primary_10_3389_fbioe_2022_876936
crossref_primary_10_1088_1748_605X_acef86
crossref_primary_10_1016_j_ijbiomac_2023_127868
crossref_primary_10_1016_j_ijbiomac_2024_130851
crossref_primary_10_1016_j_eurpolymj_2022_111548
crossref_primary_10_1016_j_biomaterials_2024_122959
crossref_primary_10_1002_adhm_202202309
crossref_primary_10_1093_rb_rbaf031
crossref_primary_10_1016_j_colsurfb_2023_113493
crossref_primary_10_1016_j_colsurfa_2024_133145
crossref_primary_10_1146_annurev_chembioeng_082323_093537
crossref_primary_10_1016_j_cej_2024_152513
crossref_primary_10_1016_j_ijbiomac_2023_128284
crossref_primary_10_1088_2515_7639_ad06cc
crossref_primary_10_1016_j_ijbiomac_2025_142572
crossref_primary_10_1016_j_mtbio_2025_101522
crossref_primary_10_1002_mabi_202400049
crossref_primary_10_1002_smll_202205489
crossref_primary_10_1016_j_apmt_2024_102340
crossref_primary_10_1039_D3BM00260H
crossref_primary_10_1016_j_matdes_2022_110669
crossref_primary_10_1016_j_desal_2023_116461
crossref_primary_10_1016_j_ijbiomac_2024_133558
crossref_primary_10_1016_j_biomaterials_2025_123642
crossref_primary_10_1016_j_carbpol_2024_121931
crossref_primary_10_1016_j_cej_2023_143987
crossref_primary_10_1016_j_carbpol_2024_121812
crossref_primary_10_3390_ijms24032447
crossref_primary_10_1002_adma_202208622
crossref_primary_10_1016_j_ijbiomac_2024_138688
crossref_primary_10_1016_j_ijbiomac_2025_143519
crossref_primary_10_1016_j_cej_2025_159537
crossref_primary_10_1002_bmm2_12089
crossref_primary_10_1016_j_cej_2022_140553
crossref_primary_10_1016_j_cej_2023_142092
crossref_primary_10_1016_j_bioactmat_2022_01_004
crossref_primary_10_1016_j_mtbio_2025_101973
crossref_primary_10_1039_D2BM00602B
crossref_primary_10_1007_s00289_025_05876_3
crossref_primary_10_1016_j_actbio_2022_09_077
crossref_primary_10_1002_advs_202405924
crossref_primary_10_1016_j_ijbiomac_2022_10_255
crossref_primary_10_1007_s12274_023_5751_6
crossref_primary_10_2147_IJN_S508036
crossref_primary_10_1002_advs_202206306
crossref_primary_10_1016_j_mattod_2024_08_010
crossref_primary_10_1002_anie_202318035
crossref_primary_10_1002_adfm_202314402
crossref_primary_10_1016_j_indcrop_2024_118811
crossref_primary_10_1016_j_jcis_2025_02_005
crossref_primary_10_1016_j_jconrel_2023_09_010
crossref_primary_10_1016_j_jep_2023_117638
crossref_primary_10_1016_j_cej_2021_133859
crossref_primary_10_1021_acssuschemeng_4c07993
crossref_primary_10_1016_j_carbpol_2022_120180
crossref_primary_10_1016_j_jmbbm_2023_106081
crossref_primary_10_3389_fbioe_2023_1283771
crossref_primary_10_1002_adhm_202303042
crossref_primary_10_1016_j_ijbiomac_2024_131235
crossref_primary_10_1016_j_cej_2024_156087
crossref_primary_10_1039_D2BM00575A
crossref_primary_10_1002_adhm_202303157
crossref_primary_10_1016_j_compositesb_2023_110672
crossref_primary_10_1007_s11431_023_2509_4
crossref_primary_10_1208_s12249_024_03013_3
crossref_primary_10_1002_adhm_202203387
crossref_primary_10_1080_15583724_2022_2041032
crossref_primary_10_3390_ma15031225
crossref_primary_10_1016_j_ijbiomac_2023_125001
crossref_primary_10_1021_cbe_4c00173
crossref_primary_10_1002_adtp_202300125
crossref_primary_10_2147_JIR_S492465
crossref_primary_10_1016_j_apmt_2022_101362
crossref_primary_10_34133_bmr_0031
crossref_primary_10_1016_j_carbpol_2025_123626
crossref_primary_10_1016_j_ijbiomac_2024_136486
crossref_primary_10_1007_s10934_023_01535_y
crossref_primary_10_1016_j_ijbiomac_2022_11_069
crossref_primary_10_1186_s12951_024_02547_9
crossref_primary_10_1016_j_ijbiomac_2024_136239
crossref_primary_10_1016_j_ijbiomac_2024_137209
crossref_primary_10_1016_j_bioactmat_2022_01_038
crossref_primary_10_1002_adhm_202500600
crossref_primary_10_1016_j_mtbio_2025_101686
crossref_primary_10_3390_ma16052024
crossref_primary_10_1039_D5BM00781J
crossref_primary_10_3390_ma16031215
crossref_primary_10_1016_j_carbpol_2025_123639
crossref_primary_10_1016_j_carbpol_2025_123636
crossref_primary_10_1002_advs_202408783
crossref_primary_10_1016_j_actbio_2024_10_046
crossref_primary_10_1080_25740881_2024_2360170
crossref_primary_10_1016_j_apmt_2025_102906
crossref_primary_10_3390_gels8020122
crossref_primary_10_1002_btm2_10373
crossref_primary_10_1016_j_ijbiomac_2024_135381
crossref_primary_10_1039_D4BM01097C
crossref_primary_10_1016_j_desal_2024_117640
crossref_primary_10_3389_fbioe_2023_1190171
crossref_primary_10_1016_j_ijbiomac_2023_125029
crossref_primary_10_1016_j_jconrel_2024_10_053
crossref_primary_10_1002_adhm_202304117
crossref_primary_10_1016_j_ijbiomac_2022_03_147
crossref_primary_10_1002_adhm_202300431
crossref_primary_10_1016_j_cej_2024_158478
crossref_primary_10_1039_D3NR01624B
crossref_primary_10_1186_s40824_022_00268_4
crossref_primary_10_1007_s13233_023_00156_3
crossref_primary_10_1002_adfm_202515705
crossref_primary_10_1016_j_carbpol_2024_122045
crossref_primary_10_1016_j_ijbiomac_2024_130225
crossref_primary_10_1186_s12951_022_01634_z
crossref_primary_10_1021_acsami_5c03857
crossref_primary_10_1016_j_bioactmat_2022_04_032
crossref_primary_10_1021_acsnano_5c06003
crossref_primary_10_3390_nano14241992
crossref_primary_10_1208_s12249_021_02102_x
crossref_primary_10_1002_ange_202318035
crossref_primary_10_1002_anbr_202200115
crossref_primary_10_1016_j_cej_2024_153335
crossref_primary_10_34133_bmr_0233
crossref_primary_10_1016_j_foodres_2025_116456
crossref_primary_10_1016_j_ijbiomac_2025_143254
crossref_primary_10_1016_j_ijbiomac_2023_126014
crossref_primary_10_1016_j_mtbio_2025_101809
crossref_primary_10_1002_tcr_202200155
crossref_primary_10_1186_s40580_024_00447_0
crossref_primary_10_1016_j_matdes_2022_110598
crossref_primary_10_1016_j_colsurfb_2022_112825
crossref_primary_10_1016_j_biomaterials_2022_121908
crossref_primary_10_1016_j_carbpol_2025_123780
crossref_primary_10_1016_j_compositesb_2021_109402
crossref_primary_10_1016_j_carbpol_2023_120831
crossref_primary_10_1016_j_bioadv_2024_213851
crossref_primary_10_1016_j_carbpol_2021_118961
crossref_primary_10_1016_j_ijbiomac_2024_135471
crossref_primary_10_1039_D3MH00326D
crossref_primary_10_1016_j_apmt_2022_101442
crossref_primary_10_1002_smll_202506587
crossref_primary_10_1016_j_carbpol_2022_119558
crossref_primary_10_1016_j_ijbiomac_2025_142273
crossref_primary_10_1016_j_ijbiomac_2023_127116
crossref_primary_10_1016_j_mtphys_2023_101316
crossref_primary_10_1021_acs_langmuir_5c01674
crossref_primary_10_1016_j_actbio_2023_01_045
crossref_primary_10_1016_j_mtcomm_2025_113552
crossref_primary_10_1002_smtd_202200949
crossref_primary_10_1016_j_carbpol_2024_122865
crossref_primary_10_1016_j_cej_2023_141966
crossref_primary_10_1016_j_ijbiomac_2024_135577
crossref_primary_10_1016_j_cej_2022_138076
crossref_primary_10_1016_j_cej_2022_138077
crossref_primary_10_1016_j_ijpharm_2024_124767
crossref_primary_10_1016_j_apmt_2022_101576
crossref_primary_10_1016_j_jddst_2024_105903
crossref_primary_10_1016_j_reactfunctpolym_2022_105378
crossref_primary_10_1007_s12274_022_4236_3
crossref_primary_10_1002_macp_202300211
crossref_primary_10_1080_14686996_2022_2076568
crossref_primary_10_1016_j_eurpolymj_2025_113723
crossref_primary_10_1016_j_carbpol_2023_121340
crossref_primary_10_1002_admt_202101382
crossref_primary_10_1007_s10570_024_06166_3
crossref_primary_10_1016_j_ijbiomac_2024_132615
crossref_primary_10_1002_adma_202504829
crossref_primary_10_1002_advs_202207352
crossref_primary_10_1002_smll_202309485
crossref_primary_10_1186_s12951_023_01879_2
crossref_primary_10_1002_advs_202407148
crossref_primary_10_1016_j_carbpol_2023_121589
crossref_primary_10_1016_j_fmre_2025_01_008
crossref_primary_10_1016_j_actbio_2022_04_041
crossref_primary_10_1002_adfm_202503948
crossref_primary_10_1016_j_ijbiomac_2024_138956
crossref_primary_10_1016_j_mtcomm_2024_109218
crossref_primary_10_1016_j_apmt_2022_101586
crossref_primary_10_1016_j_ijbiomac_2025_142832
crossref_primary_10_1016_j_colsurfb_2023_113639
crossref_primary_10_3390_polym15122744
crossref_primary_10_1002_adhm_202301206
crossref_primary_10_1002_adfm_202207466
crossref_primary_10_1039_D2BM00338D
crossref_primary_10_1021_acs_biomac_5c01183
crossref_primary_10_3389_fphys_2023_1206211
crossref_primary_10_1016_j_cej_2025_167777
crossref_primary_10_1016_j_ijbiomac_2023_123294
crossref_primary_10_1039_D2BM00397J
crossref_primary_10_1002_cbdv_202500817
crossref_primary_10_1016_j_biomaterials_2024_122891
crossref_primary_10_1002_mabi_202300520
crossref_primary_10_1016_j_eurpolymj_2024_113232
crossref_primary_10_1002_adma_202300840
crossref_primary_10_1002_admt_202400547
crossref_primary_10_1016_j_ijbiomac_2024_135553
crossref_primary_10_1002_adhm_202302470
crossref_primary_10_1016_j_carbpol_2024_122643
crossref_primary_10_1016_j_ijbiomac_2024_139125
crossref_primary_10_3390_gels10040241
crossref_primary_10_1186_s12951_022_01390_0
crossref_primary_10_1016_j_bioactmat_2021_11_036
crossref_primary_10_3390_ijms232112716
crossref_primary_10_1016_j_carbpol_2022_119585
crossref_primary_10_3390_polym16081031
crossref_primary_10_1016_j_apmt_2024_102206
crossref_primary_10_1016_j_progpolymsci_2024_101857
crossref_primary_10_1088_1748_605X_acd318
crossref_primary_10_1016_j_cis_2023_102982
crossref_primary_10_1016_j_ijbiomac_2022_12_024
crossref_primary_10_1049_bsb2_12064
crossref_primary_10_1016_j_colsurfb_2024_114250
crossref_primary_10_1016_j_carbpol_2022_120450
crossref_primary_10_1002_adhm_202403734
crossref_primary_10_1016_j_ijbiomac_2024_133363
crossref_primary_10_1002_adfm_202305992
crossref_primary_10_1016_j_indcrop_2022_115567
crossref_primary_10_1093_rb_rbae024
crossref_primary_10_1016_j_matdes_2022_111086
crossref_primary_10_1016_j_cej_2025_162653
crossref_primary_10_1016_j_ijbiomac_2025_140751
crossref_primary_10_1016_j_cej_2023_141362
crossref_primary_10_1016_j_mtchem_2022_101272
crossref_primary_10_1016_j_ijbiomac_2023_123271
crossref_primary_10_3390_foods12061304
crossref_primary_10_1016_j_jconrel_2023_03_005
crossref_primary_10_1016_j_bioadv_2025_214462
crossref_primary_10_1016_j_cej_2024_154161
crossref_primary_10_3390_molecules28104034
crossref_primary_10_1007_s10311_023_01629_8
crossref_primary_10_1016_j_ijbiomac_2024_137279
crossref_primary_10_3390_polym17070959
crossref_primary_10_1002_adhm_202403198
crossref_primary_10_1016_j_ijbiomac_2025_140965
crossref_primary_10_1016_j_fpsl_2025_101519
crossref_primary_10_1002_cjoc_202300264
crossref_primary_10_1007_s10570_025_06551_6
crossref_primary_10_1016_j_colsurfb_2023_113424
crossref_primary_10_1016_j_biomaterials_2025_123318
crossref_primary_10_1016_j_bioadv_2025_214219
crossref_primary_10_1016_j_ijbiomac_2024_129300
crossref_primary_10_1002_pol_20230859
crossref_primary_10_1002_advs_202206585
crossref_primary_10_1177_09592989251326661
crossref_primary_10_1016_j_foodhyd_2025_111219
crossref_primary_10_1016_j_actbio_2023_04_021
crossref_primary_10_1016_j_ijbiomac_2022_12_169
crossref_primary_10_1016_j_carbpol_2023_120854
crossref_primary_10_1016_j_nantod_2024_102559
crossref_primary_10_1016_j_bioadv_2022_213034
crossref_primary_10_1016_j_ijbiomac_2025_141826
crossref_primary_10_1039_D3BM02068A
crossref_primary_10_1002_adfm_202314202
crossref_primary_10_1016_j_ijbiomac_2025_140851
crossref_primary_10_1016_j_carbpol_2022_119336
crossref_primary_10_1016_j_jddst_2024_105951
crossref_primary_10_1016_j_matdes_2023_111960
Cites_doi 10.1016/j.colsurfb.2016.10.021
10.1002/smll.201303568
10.1002/advs.201900867
10.1016/j.actbio.2019.03.057
10.1016/j.msec.2019.03.093
10.1021/acs.macromol.6b01198
10.1016/j.biomaterials.2018.08.044
10.1007/s13233-019-7026-3
10.1021/acsami.8b01740
10.1002/pen.25037
10.1177/1759720X13514669
10.1002/jbm.a.34364
10.1016/j.biomaterials.2018.09.003
10.1002/adfm.201901314
10.1039/C8TB03181A
10.1016/j.actbio.2020.02.039
10.1021/bm4014827
10.1038/s41467-019-10004-7
10.1016/j.actbio.2021.01.038
10.1002/adfm.201505372
10.1039/C5RA16912G
10.1002/adma.201700533
10.1002/adfm.201904156
10.1021/acsmacrolett.7b00172
10.1002/smll.201900046
10.1039/C5TB00990A
10.1016/j.biomaterials.2017.04.040
10.1002/adv.20264
10.1039/C3TB20696C
10.1002/adfm.202001196
10.1021/acsapm.9b00143
10.1002/bio.2475
10.3109/21691401.2015.1129622
10.1039/C8TB01776J
10.1016/j.biomaterials.2019.01.020
10.1016/j.biomaterials.2017.01.011
10.1016/j.actbio.2020.03.040
10.1021/acs.chemrev.0c00345
10.1073/pnas.1115973108
10.1021/acsami.8b14526
10.1021/acs.chemmater.9b01301
10.1038/s41467-019-10243-8
10.1016/j.jbiomech.2008.06.008
10.1016/j.cej.2019.01.028
10.1021/acsami.7b10260
10.1039/C4TB01221F
10.1016/j.biomaterials.2018.06.037
10.1002/adma.201601613
10.1016/j.biomaterials.2014.01.050
10.1016/j.compositesa.2016.06.002
10.1021/acsami.6b10491
10.1021/jp206347u
10.1002/adfm.202000130
10.1016/j.jare.2010.05.004
10.1016/j.biomaterials.2020.120477
10.1002/adfm.201801386
10.1038/srep19077
10.1002/adfm.201606619
10.1016/j.cej.2020.125994
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7S9
L.6
7X8
DOI 10.1016/j.biomaterials.2021.120838
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
ExternalDocumentID 10_1016_j_biomaterials_2021_120838
S0142961221001940
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
7S9
L.6
7X8
ID FETCH-LOGICAL-c449t-a5ee622bbed7ace81bb93350b08e1a641c7b1aa2152590a887389b3720f2b6d53
ISICitedReferencesCount 344
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690384900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Sun Sep 28 08:08:13 EDT 2025
Sun Sep 28 09:05:30 EDT 2025
Sat Nov 29 07:24:26 EST 2025
Tue Nov 18 22:25:14 EST 2025
Fri Feb 23 02:43:39 EST 2024
Tue Oct 14 19:30:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Double cross-linked
Shape adaptability
Injectable self-healing
Dynamic wounds
Tissue adhesion
Burn wound dressing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-a5ee622bbed7ace81bb93350b08e1a641c7b1aa2152590a887389b3720f2b6d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1448-9823
0000-0001-9798-1674
PQID 2551947244
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2553240627
proquest_miscellaneous_2551947244
crossref_primary_10_1016_j_biomaterials_2021_120838
crossref_citationtrail_10_1016_j_biomaterials_2021_120838
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2021_120838
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2021_120838
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Biomaterials
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Mi, Sun (bib32) 2018; 6
Ninan, Forget, Shastri, Voelcker, Blencowe (bib43) 2016; 8
Kładna, Berczyński, Kruk, Michalska, Aboul-Enein (bib48) 2013; 28
Eldin, Soliman, Hashem, Tamer (bib51) 2012; 31
Ha, Chae, Lee, Kim, Yoon, Sen, Lee, Kim, Cho, Cho (bib21) 2021; 266
Sun, Zhang, Shen, Sebastian, Dickinson, Fox-Talbot, Reinblatt, Steenbergen, Harmon, Gerecht (bib57) 2011; 108
Qin, Zhang, Li, Cong, Yu (bib17) 2019; 10
Liang, Zhao, Hu, Chen, Yin, Ma, Guo (bib59) 2019; 15
Wei, Gerecht (bib25) 2018; 185
Dong, A, Rodrigues, Li, Kwon, Kosaric, Khong, Gao, Wang, Gurtner (bib26) 2017; 27
Munoz-Pinto, Guiza-Arguello, Becerra-Bayona, Erndt-Marino, Samavedi, Malmut, Russell, Hook, Hahn (bib44) 2015; 3
Cheng, Cai, Ye, Yu, Chen, Yan, Qi, Wang, Liu, Cui, Deng (bib58) 2020; 30
Li, Chen, Li, Li, Xie, Ma, Zhao, Hou, Yuan (bib13) 2020; 30
Wang, Lv, Feng, Li, Zhang (bib54) 2018; 59
Li, Yuan, Dong, Duan, Tian, He, Chen (bib18) 2015; 5
Iuga, Alvarez-Idaboy, Vivier-Bunge (bib49) 2011; 115
Fan, Deng, Li, Chery, Su, Zhu, Kambayashi, Blankenhorn, Han, Cheng (bib5) 2019; 197
Choi, Choi, Jung, Cho (bib20) 2014; 2
Lee, Chang, Kim, Gite, Chung, Sohn (bib22) 2016; 49
Li, Wang, Jin, Deng, Nie, Sun, Wu, Wei, Gong (bib27) 2014; 35
Ying, Zhou, Wang, Su, Ma, Lv, Chen (bib36) 2019; 101
Wang, Jiang, Hua, Darabi, Song, Song, Zhong, Xing, Qiu (bib47) 2016; 26
Narkhede, Crenshaw, Crossman, Shevde, Rao (bib46) 2020; 107
Yuan, Wu, Fang, Wei, Gu, El-Hamshary, Al-Deyab, Morsi, Mo (bib30) 2017; 45
Missirlis, Spatz (bib45) 2014; 15
Dong, Cui, Qu, Wang, Kwon, Barrera, Elvassore, Gurtner (bib2) 2020; 108
Lei, Li, Wang, Yuan, Ge, Li, Mu (bib39) 2019; 1
Taylor M (bib9) 2016; 28
Chen, Wang, Deng, Hu, Dong (bib11) 2013; 101
Holt, Tripathi, Morgan (bib40) 2008; 41
Pan, Yuan, Guo, Geng, Fei, Fan, Li, Yuan, Yan, Mo (bib29) 2014; 2
Chen, Yu, Wu, Wang, Ren, Zhao (bib34) 2018; 28
Tu, Chen, Li, Liu, Zhu, Chen, Xiao, Liu, Ramakrishna, He (bib8) 2019; 90
Qu, Zhao, Liang, Zhang, Ma, Guo (bib7) 2018; 183
Song, Kim, Lee, Davaa, Baskaran, Yang (bib14) 2019; 27
Tanpichai, Oksman (bib31) 2016; 88
Hong, Zhou, Hua, Zhang, Ni, Pan, Zhang, Jiang, Yang, Lin, Zou, Yu, Arnot, Zou, Zhu, Zhang, Ouyang (bib35) 2019; 10
Zhang, He, Shi, Liang, Guo (bib4) 2020; 400
Zhao, Wu, Guo, Dong, Qiu, Ma (bib15) 2017; 122
Guo, Bae, Fang, Li, Zhao, Yu (bib38) 2020; 120
Wang, Zhang, Yang, Fu, Xu, Li, Zhang, Wang, Lee (bib19) 2020; 30
Wang, Yang, Li, Zhang, Zhang, Wang, Lee (bib10) 2021; 124
Qu, Zhao, Liang, Xu, Ma, Guo (bib56) 2019; 362
Neto, Cibrão, Correia, Carvalho, Luz, Ferrer, Botelho, Picart, Alves, Mano (bib28) 2014; 10
Tian, Qiu, Yuan, Lei, Wang, Bai, Liu, Chen (bib53) 2018; 10
Foster, Lensmeyer, Zhang, Chakma, Flum, Via, Sparks, Konkolewicz (bib41) 2017; 6
Henrotin, Pesesse, Lambert (bib24) 2014; 6
Liu, Yao, Tian, Wei, Song, Qiao (bib55) 2018; 179
Gao, Xu, Liang, Li, Peng, Wu, Zhao, Cui, Ruan, Liu (bib6) 2019; 6
Yergoz, Hastar, Cimenci, Ozkan, Tekinay, Guler, Tekinay (bib1) 2017; 134
da Silva, da Silva, Modolo, Alves, de Resende, Martins, de Fátima (bib52) 2011; 2
Li, Yang, Zeng, Wu, Wei, Tao (bib42) 2019; 31
Huang, Wang, Huang, Wang, Chen, Zhang, Zhang (bib3) 2018; 10
Darabi, Khosrozadeh, Mbeleck, Liu, Chang, Jiang, Cai, Wang, Luo, Xing (bib12) 2017; 29
Jiang, Su, Ding, Zhang, Li, Chen, Ding, Zhang, Dong (bib16) 2019; 29
Shi, Wang, Qu, Liao, Chu, Zhang, Luo, Qian (bib37) 2016; 6
Xue, Li, Li, Sun, Zhang, Xu, Kang (bib23) 2017; 9
Zhao, Zhao, Hu, Ma, Chao, Sun, Fu, Zhang (bib33) 2019; 7
Li, Zhang, Shi, Tao, Wei, Wang (bib50) 2017; 149
Dong (10.1016/j.biomaterials.2021.120838_bib2) 2020; 108
Li (10.1016/j.biomaterials.2021.120838_bib27) 2014; 35
Iuga (10.1016/j.biomaterials.2021.120838_bib49) 2011; 115
Qin (10.1016/j.biomaterials.2021.120838_bib17) 2019; 10
Huang (10.1016/j.biomaterials.2021.120838_bib3) 2018; 10
Wang (10.1016/j.biomaterials.2021.120838_bib19) 2020; 30
Narkhede (10.1016/j.biomaterials.2021.120838_bib46) 2020; 107
Wang (10.1016/j.biomaterials.2021.120838_bib54) 2018; 59
Liu (10.1016/j.biomaterials.2021.120838_bib55) 2018; 179
Guo (10.1016/j.biomaterials.2021.120838_bib38) 2020; 120
Chen (10.1016/j.biomaterials.2021.120838_bib11) 2013; 101
Ha (10.1016/j.biomaterials.2021.120838_bib21) 2021; 266
Tu (10.1016/j.biomaterials.2021.120838_bib8) 2019; 90
Li (10.1016/j.biomaterials.2021.120838_bib13) 2020; 30
Liang (10.1016/j.biomaterials.2021.120838_bib59) 2019; 15
Missirlis (10.1016/j.biomaterials.2021.120838_bib45) 2014; 15
Kładna (10.1016/j.biomaterials.2021.120838_bib48) 2013; 28
Jiang (10.1016/j.biomaterials.2021.120838_bib16) 2019; 29
Hong (10.1016/j.biomaterials.2021.120838_bib35) 2019; 10
Zhang (10.1016/j.biomaterials.2021.120838_bib4) 2020; 400
Holt (10.1016/j.biomaterials.2021.120838_bib40) 2008; 41
Foster (10.1016/j.biomaterials.2021.120838_bib41) 2017; 6
Neto (10.1016/j.biomaterials.2021.120838_bib28) 2014; 10
Ninan (10.1016/j.biomaterials.2021.120838_bib43) 2016; 8
da Silva (10.1016/j.biomaterials.2021.120838_bib52) 2011; 2
Gao (10.1016/j.biomaterials.2021.120838_bib6) 2019; 6
Xue (10.1016/j.biomaterials.2021.120838_bib23) 2017; 9
Munoz-Pinto (10.1016/j.biomaterials.2021.120838_bib44) 2015; 3
Wang (10.1016/j.biomaterials.2021.120838_bib47) 2016; 26
Fan (10.1016/j.biomaterials.2021.120838_bib5) 2019; 197
Cheng (10.1016/j.biomaterials.2021.120838_bib58) 2020; 30
Tian (10.1016/j.biomaterials.2021.120838_bib53) 2018; 10
Zhao (10.1016/j.biomaterials.2021.120838_bib15) 2017; 122
Lee (10.1016/j.biomaterials.2021.120838_bib22) 2016; 49
Zhao (10.1016/j.biomaterials.2021.120838_bib33) 2019; 7
Dong (10.1016/j.biomaterials.2021.120838_bib26) 2017; 27
Li (10.1016/j.biomaterials.2021.120838_bib50) 2017; 149
Eldin (10.1016/j.biomaterials.2021.120838_bib51) 2012; 31
Chen (10.1016/j.biomaterials.2021.120838_bib34) 2018; 28
Shi (10.1016/j.biomaterials.2021.120838_bib37) 2016; 6
Qu (10.1016/j.biomaterials.2021.120838_bib7) 2018; 183
Tanpichai (10.1016/j.biomaterials.2021.120838_bib31) 2016; 88
Yergoz (10.1016/j.biomaterials.2021.120838_bib1) 2017; 134
Li (10.1016/j.biomaterials.2021.120838_bib42) 2019; 31
Henrotin (10.1016/j.biomaterials.2021.120838_bib24) 2014; 6
Guo (10.1016/j.biomaterials.2021.120838_bib32) 2018; 6
Taylor M (10.1016/j.biomaterials.2021.120838_bib9) 2016; 28
Song (10.1016/j.biomaterials.2021.120838_bib14) 2019; 27
Yuan (10.1016/j.biomaterials.2021.120838_bib30) 2017; 45
Li (10.1016/j.biomaterials.2021.120838_bib18) 2015; 5
Sun (10.1016/j.biomaterials.2021.120838_bib57) 2011; 108
Lei (10.1016/j.biomaterials.2021.120838_bib39) 2019; 1
Choi (10.1016/j.biomaterials.2021.120838_bib20) 2014; 2
Wei (10.1016/j.biomaterials.2021.120838_bib25) 2018; 185
Wang (10.1016/j.biomaterials.2021.120838_bib10) 2021; 124
Darabi (10.1016/j.biomaterials.2021.120838_bib12) 2017; 29
Pan (10.1016/j.biomaterials.2021.120838_bib29) 2014; 2
Ying (10.1016/j.biomaterials.2021.120838_bib36) 2019; 101
Qu (10.1016/j.biomaterials.2021.120838_bib56) 2019; 362
References_xml – volume: 108
  start-page: 56
  year: 2020
  end-page: 66
  ident: bib2
  article-title: Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury
  publication-title: Acta Biomater.
– volume: 27
  start-page: 119
  year: 2019
  end-page: 125
  ident: bib14
  article-title: Dopa-empowered Schiff base forming alginate hydrogel glue for rapid hemostatic control
  publication-title: Macromol. Res.
– volume: 28
  start-page: 1801386
  year: 2018
  ident: bib34
  article-title: Bioinspired multifunctional hybrid hydrogel promotes wound healing
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 201
  year: 2014
  end-page: 209
  ident: bib20
  article-title: Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe
  publication-title: J. Mater. Chem. B
– volume: 10
  start-page: 2202
  year: 2019
  ident: bib17
  article-title: Anisotropic and self-healing hydrogels with multi-responsive actuating capability
  publication-title: Nat. Commun.
– volume: 41
  start-page: 2689
  year: 2008
  end-page: 2695
  ident: bib40
  article-title: Viscoelastic response of human skin to low magnitude physiologically relevant shear
  publication-title: J. Biomech.
– volume: 31
  start-page: 414
  year: 2012
  end-page: 428
  ident: bib51
  article-title: Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications
  publication-title: Adv. Polym. Technol.
– volume: 1
  start-page: 1350
  year: 2019
  end-page: 1358
  ident: bib39
  article-title: Facile fabrication of biocompatible gelatin-based self-healing hydrogels
  publication-title: ACS Appl. Polym. Mater.
– volume: 9
  start-page: 33632
  year: 2017
  end-page: 33644
  ident: bib23
  article-title: Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 20
  year: 2014
  end-page: 34
  ident: bib24
  article-title: Targeting the synovial angiogenesis as a novel treatment approach to osteoarthritis
  publication-title: Ther. Adv. Musculoskeletal Dis.
– volume: 10
  start-page: 2459
  year: 2014
  end-page: 2469
  ident: bib28
  article-title: Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications
  publication-title: Small
– volume: 27
  start-page: 1606619
  year: 2017
  ident: bib26
  article-title: Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib52
  article-title: Schiff bases: a short review of their antimicrobial activities
  publication-title: J. Adv. Res.
– volume: 400
  start-page: 125994
  year: 2020
  ident: bib4
  article-title: Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration
  publication-title: Chem. Eng. J.
– volume: 197
  start-page: 244
  year: 2019
  end-page: 254
  ident: bib5
  article-title: A new class of biological materials: cell membrane-derived hydrogel scaffolds
  publication-title: Biomaterials
– volume: 28
  start-page: 450
  year: 2013
  end-page: 455
  ident: bib48
  article-title: Superoxide anion radical scavenging property of catecholamines
  publication-title: Luminescence
– volume: 6
  start-page: 6234
  year: 2018
  end-page: 6244
  ident: bib32
  article-title: The multifaceted nature of catechol chemistry: bioinspired pH-initiated hyaluronic acid hydrogels with tunable cohesive and adhesive properties
  publication-title: J. Mater. Chem. B
– volume: 107
  start-page: 65
  year: 2020
  end-page: 77
  ident: bib46
  article-title: An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells
  publication-title: Acta Biomater.
– volume: 15
  start-page: 1900046
  year: 2019
  ident: bib59
  article-title: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing
  publication-title: Small
– volume: 185
  start-page: 86
  year: 2018
  end-page: 96
  ident: bib25
  article-title: A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis
  publication-title: Biomaterials
– volume: 2
  start-page: 8346
  year: 2014
  end-page: 8360
  ident: bib29
  article-title: Fabrication of modified dextran-gelatin in situ forming hydrogel and application in cartilage tissue engineering
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 7912
  year: 2015
  end-page: 7919
  ident: bib44
  article-title: Collagen-mimetic hydrogels promote human endothelial cell adhesion, migration and phenotypic maturation
  publication-title: J. Mater. Chem. B
– volume: 30
  start-page: 2000130
  year: 2020
  ident: bib13
  article-title: Bioinspired double‐dynamic‐bond crosslinked bioadhesive enables post‐wound closure care
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 2001196
  year: 2020
  ident: bib58
  article-title: Injectable polypeptide‐protein hydrogels for promoting infected wound healing
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 28511
  year: 2016
  end-page: 28521
  ident: bib43
  article-title: Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 94248
  year: 2015
  end-page: 94256
  ident: bib18
  article-title: Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing
  publication-title: RSC Adv.
– volume: 101
  start-page: 684
  year: 2013
  end-page: 693
  ident: bib11
  article-title: Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure
  publication-title: J. Biomed. Mater. Res.
– volume: 30
  start-page: 1904156
  year: 2020
  ident: bib19
  article-title: A novel double‐crosslinking‐double‐network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1855
  year: 2019
  end-page: 1866
  ident: bib33
  article-title: Synthetic poly(vinyl alcohol)-chitosan as a new type of highly efficient hemostatic sponge with blood-triggered swelling and high biocompatibility
  publication-title: J. Mater. Chem. B
– volume: 88
  start-page: 226
  year: 2016
  end-page: 233
  ident: bib31
  article-title: Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery
  publication-title: Compos. Part A-Appl. S.
– volume: 115
  start-page: 12234
  year: 2011
  end-page: 12246
  ident: bib49
  article-title: ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments
  publication-title: J. Phys. Chem. B
– volume: 108
  start-page: 20976
  year: 2011
  end-page: 20981
  ident: bib57
  article-title: Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 6
  start-page: 1900867
  year: 2019
  ident: bib6
  article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds
  publication-title: Adv. Sci.
– volume: 149
  start-page: 168
  year: 2017
  end-page: 173
  ident: bib50
  article-title: Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel
  publication-title: Colloids Surf., B
– volume: 124
  start-page: 139
  year: 2021
  end-page: 152
  ident: bib10
  article-title: A double-crosslinked self-healing antibacterial hydrogel with enhanced mechanical performance for wound treatment
  publication-title: Acta Biomater.
– volume: 29
  start-page: 1700533
  year: 2017
  ident: bib12
  article-title: Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability
  publication-title: Adv. Mater.
– volume: 6
  start-page: 19077
  year: 2016
  ident: bib37
  article-title: Synthesis, characterization and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo
  publication-title: Sci. Rep.
– volume: 10
  start-page: 2060
  year: 2019
  ident: bib35
  article-title: A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds
  publication-title: Nat. Commun.
– volume: 6
  start-page: 495
  year: 2017
  end-page: 499
  ident: bib41
  article-title: Effect of polymer network architecture, enhancing soft materials using orthogonal dynamic bonds in an interpenetrating network
  publication-title: ACS Macro Lett.
– volume: 49
  start-page: 7450
  year: 2016
  end-page: 7459
  ident: bib22
  article-title: Phase controllable hyaluronic acid hydrogel with iron(III) ion–catechol induced dual cross-linking by utilizing the gap of gelation kinetics
  publication-title: Macromolecules
– volume: 90
  start-page: 1
  year: 2019
  end-page: 20
  ident: bib8
  article-title: Advances in injectable self-healing biomedical hydrogels
  publication-title: Acta Biomater.
– volume: 183
  start-page: 185
  year: 2018
  end-page: 199
  ident: bib7
  article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing
  publication-title: Biomaterials
– volume: 59
  start-page: 919
  year: 2018
  end-page: 927
  ident: bib54
  article-title: Bimetallic ions synergistic cross‐linking high‐strength rapid self‐healing antibacterial hydrogel
  publication-title: Polym. Eng. Sci.
– volume: 179
  start-page: 83
  year: 2018
  end-page: 95
  ident: bib55
  article-title: Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis
  publication-title: Biomaterials
– volume: 122
  start-page: 34
  year: 2017
  end-page: 47
  ident: bib15
  article-title: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing
  publication-title: Biomaterials
– volume: 31
  start-page: 5576
  year: 2019
  end-page: 5583
  ident: bib42
  article-title: Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages
  publication-title: Chem. Mater.
– volume: 35
  start-page: 3903
  year: 2014
  end-page: 3917
  ident: bib27
  article-title: Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention
  publication-title: Biomaterials
– volume: 10
  start-page: 17018
  year: 2018
  end-page: 17027
  ident: bib53
  article-title: Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 76
  year: 2017
  end-page: 83
  ident: bib30
  article-title: Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive
  publication-title: Artif. Cells, Nanomed., Biotechnol.
– volume: 26
  start-page: 4293
  year: 2016
  end-page: 4305
  ident: bib47
  article-title: Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 41076
  year: 2018
  end-page: 41088
  ident: bib3
  article-title: On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1901314
  year: 2019
  ident: bib16
  article-title: Salt‐assisted toughening of protein hydrogel with controlled degradation for bone regeneration
  publication-title: Adv. Funct. Mater.
– volume: 134
  start-page: 117
  year: 2017
  end-page: 127
  ident: bib1
  article-title: Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury
  publication-title: Biomaterials
– volume: 28
  start-page: 9060
  year: 2016
  end-page: 9093
  ident: bib9
  article-title: In het panhuis, self-healing hydrogels
  publication-title: Adv. Mater.
– volume: 120
  start-page: 7642
  year: 2020
  end-page: 7707
  ident: bib38
  article-title: Hydrogels and hydrogel-derived materials for energy and water sustainability
  publication-title: Chem. Rev.
– volume: 15
  start-page: 195
  year: 2014
  end-page: 205
  ident: bib45
  article-title: Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration
  publication-title: Biomacromolecules
– volume: 101
  start-page: 487
  year: 2019
  end-page: 498
  ident: bib36
  article-title: In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing
  publication-title: Mat. Sci. Eng. C-Mater.
– volume: 362
  start-page: 548
  year: 2019
  end-page: 560
  ident: bib56
  article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing
  publication-title: Chem. Eng. J.
– volume: 266
  start-page: 120477
  year: 2021
  ident: bib21
  article-title: Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent
  publication-title: Biomaterials
– volume: 149
  start-page: 168
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120838_bib50
  article-title: Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2016.10.021
– volume: 10
  start-page: 2459
  issue: 12
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120838_bib28
  article-title: Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications
  publication-title: Small
  doi: 10.1002/smll.201303568
– volume: 6
  start-page: 1900867
  issue: 15
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib6
  article-title: Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900867
– volume: 90
  start-page: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib8
  article-title: Advances in injectable self-healing biomedical hydrogels
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.03.057
– volume: 101
  start-page: 487
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib36
  article-title: In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing
  publication-title: Mat. Sci. Eng. C-Mater.
  doi: 10.1016/j.msec.2019.03.093
– volume: 49
  start-page: 7450
  issue: 19
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120838_bib22
  article-title: Phase controllable hyaluronic acid hydrogel with iron(III) ion–catechol induced dual cross-linking by utilizing the gap of gelation kinetics
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b01198
– volume: 183
  start-page: 185
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120838_bib7
  article-title: Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.08.044
– volume: 27
  start-page: 119
  issue: 2
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib14
  article-title: Dopa-empowered Schiff base forming alginate hydrogel glue for rapid hemostatic control
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-019-7026-3
– volume: 10
  start-page: 17018
  issue: 20
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120838_bib53
  article-title: Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01740
– volume: 59
  start-page: 919
  issue: 5
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120838_bib54
  article-title: Bimetallic ions synergistic cross‐linking high‐strength rapid self‐healing antibacterial hydrogel
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.25037
– volume: 6
  start-page: 20
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120838_bib24
  article-title: Targeting the synovial angiogenesis as a novel treatment approach to osteoarthritis
  publication-title: Ther. Adv. Musculoskeletal Dis.
  doi: 10.1177/1759720X13514669
– volume: 101
  start-page: 684
  issue: 3
  year: 2013
  ident: 10.1016/j.biomaterials.2021.120838_bib11
  article-title: Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.34364
– volume: 185
  start-page: 86
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120838_bib25
  article-title: A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.09.003
– volume: 29
  start-page: 1901314
  issue: 26
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib16
  article-title: Salt‐assisted toughening of protein hydrogel with controlled degradation for bone regeneration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901314
– volume: 7
  start-page: 1855
  issue: 11
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib33
  article-title: Synthetic poly(vinyl alcohol)-chitosan as a new type of highly efficient hemostatic sponge with blood-triggered swelling and high biocompatibility
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB03181A
– volume: 107
  start-page: 65
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120838_bib46
  article-title: An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.02.039
– volume: 15
  start-page: 195
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120838_bib45
  article-title: Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration
  publication-title: Biomacromolecules
  doi: 10.1021/bm4014827
– volume: 10
  start-page: 2060
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib35
  article-title: A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10004-7
– volume: 124
  start-page: 139
  year: 2021
  ident: 10.1016/j.biomaterials.2021.120838_bib10
  article-title: A double-crosslinked self-healing antibacterial hydrogel with enhanced mechanical performance for wound treatment
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.01.038
– volume: 26
  start-page: 4293
  issue: 24
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120838_bib47
  article-title: Mussel-inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505372
– volume: 5
  start-page: 94248
  issue: 114
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120838_bib18
  article-title: Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing
  publication-title: RSC Adv.
  doi: 10.1039/C5RA16912G
– volume: 29
  start-page: 1700533
  issue: 31
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120838_bib12
  article-title: Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700533
– volume: 30
  start-page: 1904156
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120838_bib19
  article-title: A novel double‐crosslinking‐double‐network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904156
– volume: 6
  start-page: 495
  issue: 5
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120838_bib41
  article-title: Effect of polymer network architecture, enhancing soft materials using orthogonal dynamic bonds in an interpenetrating network
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.7b00172
– volume: 15
  start-page: 1900046
  issue: 12
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib59
  article-title: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing
  publication-title: Small
  doi: 10.1002/smll.201900046
– volume: 3
  start-page: 7912
  issue: 40
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120838_bib44
  article-title: Collagen-mimetic hydrogels promote human endothelial cell adhesion, migration and phenotypic maturation
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00990A
– volume: 134
  start-page: 117
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120838_bib1
  article-title: Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.04.040
– volume: 31
  start-page: 414
  issue: 4
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120838_bib51
  article-title: Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.20264
– volume: 2
  start-page: 201
  issue: 2
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120838_bib20
  article-title: Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C3TB20696C
– volume: 30
  start-page: 2001196
  issue: 25
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120838_bib58
  article-title: Injectable polypeptide‐protein hydrogels for promoting infected wound healing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001196
– volume: 1
  start-page: 1350
  issue: 6
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib39
  article-title: Facile fabrication of biocompatible gelatin-based self-healing hydrogels
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00143
– volume: 28
  start-page: 450
  issue: 4
  year: 2013
  ident: 10.1016/j.biomaterials.2021.120838_bib48
  article-title: Superoxide anion radical scavenging property of catecholamines
  publication-title: Luminescence
  doi: 10.1002/bio.2475
– volume: 45
  start-page: 76
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120838_bib30
  article-title: Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive
  publication-title: Artif. Cells, Nanomed., Biotechnol.
  doi: 10.3109/21691401.2015.1129622
– volume: 6
  start-page: 6234
  issue: 39
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120838_bib32
  article-title: The multifaceted nature of catechol chemistry: bioinspired pH-initiated hyaluronic acid hydrogels with tunable cohesive and adhesive properties
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB01776J
– volume: 197
  start-page: 244
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib5
  article-title: A new class of biological materials: cell membrane-derived hydrogel scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.01.020
– volume: 122
  start-page: 34
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120838_bib15
  article-title: Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.01.011
– volume: 108
  start-page: 56
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120838_bib2
  article-title: Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.03.040
– volume: 120
  start-page: 7642
  issue: 15
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120838_bib38
  article-title: Hydrogels and hydrogel-derived materials for energy and water sustainability
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00345
– volume: 108
  start-page: 20976
  issue: 52
  year: 2011
  ident: 10.1016/j.biomaterials.2021.120838_bib57
  article-title: Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1115973108
– volume: 10
  start-page: 41076
  issue: 48
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120838_bib3
  article-title: On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14526
– volume: 31
  start-page: 5576
  issue: 15
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib42
  article-title: Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01301
– volume: 10
  start-page: 2202
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib17
  article-title: Anisotropic and self-healing hydrogels with multi-responsive actuating capability
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10243-8
– volume: 41
  start-page: 2689
  issue: 12
  year: 2008
  ident: 10.1016/j.biomaterials.2021.120838_bib40
  article-title: Viscoelastic response of human skin to low magnitude physiologically relevant shear
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.06.008
– volume: 362
  start-page: 548
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120838_bib56
  article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.028
– volume: 9
  start-page: 33632
  issue: 39
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120838_bib23
  article-title: Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10260
– volume: 2
  start-page: 8346
  issue: 47
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120838_bib29
  article-title: Fabrication of modified dextran-gelatin in situ forming hydrogel and application in cartilage tissue engineering
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB01221F
– volume: 179
  start-page: 83
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120838_bib55
  article-title: Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.06.037
– volume: 28
  start-page: 9060
  issue: 41
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120838_bib9
  article-title: In het panhuis, self-healing hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601613
– volume: 35
  start-page: 3903
  issue: 12
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120838_bib27
  article-title: Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.01.050
– volume: 88
  start-page: 226
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120838_bib31
  article-title: Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery
  publication-title: Compos. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2016.06.002
– volume: 8
  start-page: 28511
  issue: 42
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120838_bib43
  article-title: Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10491
– volume: 115
  start-page: 12234
  issue: 42
  year: 2011
  ident: 10.1016/j.biomaterials.2021.120838_bib49
  article-title: ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp206347u
– volume: 30
  start-page: 2000130
  issue: 17
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120838_bib13
  article-title: Bioinspired double‐dynamic‐bond crosslinked bioadhesive enables post‐wound closure care
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000130
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2021.120838_bib52
  article-title: Schiff bases: a short review of their antimicrobial activities
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2010.05.004
– volume: 266
  start-page: 120477
  year: 2021
  ident: 10.1016/j.biomaterials.2021.120838_bib21
  article-title: Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120477
– volume: 28
  start-page: 1801386
  issue: 33
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120838_bib34
  article-title: Bioinspired multifunctional hybrid hydrogel promotes wound healing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801386
– volume: 6
  start-page: 19077
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120838_bib37
  article-title: Synthesis, characterization and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo
  publication-title: Sci. Rep.
  doi: 10.1038/srep19077
– volume: 27
  start-page: 1606619
  issue: 24
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120838_bib26
  article-title: Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606619
– volume: 400
  start-page: 125994
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120838_bib4
  article-title: Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125994
SSID ssj0014042
Score 2.7150018
Snippet Burn wounds are one of the most destructive skin traumas that cause more than 180000 deaths each year. Patients with large, irregular burn wounds suffer from...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120838
SubjectTerms adhesion
antibacterial properties
biocompatible materials
biodegradability
Burn wound dressing
chelation
crosslinking
Double cross-linked
Dynamic wounds
gelation
hydrogels
Injectable self-healing
mechanical properties
schiff bases
Shape adaptability
Tissue adhesion
Title A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961221001940
https://dx.doi.org/10.1016/j.biomaterials.2021.120838
https://www.proquest.com/docview/2551947244
https://www.proquest.com/docview/2553240627
Volume 276
WOSCitedRecordID wos000690384900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LUJwQFBAlEdlJG5Lqs3LjkEcVtAKEFQcirScIjv2NqlWyWofpfwkbvxExq9suqKwIHGJIsvjTTLfzozH80DoGROKx4QUQUipPmYkJGBZLHQWSJHQSClq68x-oMfH2WjEPvV6P3wuzPmE1nV2ccGm_5XVMAbM1qmzf8HudlEYgHtgOlyB7XDdiPFD563QrbBsLQDZLHV-lFGIgT6xBSPTBBJqpeZ8geU3OWtOlclm7Evbpr4PH7zuf9WNl4xB6XKj5yWfqj6XfLqwRb4Nn6pae3RMItZcTcaBI9ABYFNdv9ecUqi6tBEHXJZq7iHhz5SrBsxn-4laYbS0Dtov3GlYW03SOm3LqmxWw0d25hteyarry4jCNlhr5d6MAkbCS_I5ol0JG0ZgNGa_FP7WD3F2IDqPe6B_5mBFdLni9pombOMTfejbWd5dK9dr5XatLbQT0ZSBHN0ZvjscvW9PrpKBadjUvokvdGtiCq96squMojXzwNg8J7fRLbdZwUMLsjuop-pddLNTwnIXXf_ogjPuou9DvIY8bJGHu8jDa8jDHnkYkIcd8rBGHjbIww5IL7DBHe7i7jleoQ53UYc96jCgDnvUYY-6e-jz0eHJ67eB6wQSFEnCFgFPlSJRJISSlBcKtlqCxXE6EINMhZwkYUFFyLnu0ZyyAQfFCXa40A2YxpEgMo3vo-26qdUDhHVwpVRCjFM2TgrYLRMwcCWRYJhng1jSPcQ8K_LClcnX3Vom-Z9BsYfilnZqi8VsRPXSczz36dCgwHOA9UbUr1pqZzRbY3hj-qceZDloFn1cyGvVLGESbKYYyOsk-e0cXdGTRPThP737I3RjJQceo-3FbKmeoGvF-aKaz_bRFh1l--4f9hM4eQ07
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+physicochemical+double+cross-linked+multifunctional+hydrogel+for+dynamic+burn+wound+healing%3A+shape+adaptability%2C+injectable+self-healing+property+and+enhanced+adhesion&rft.jtitle=Biomaterials&rft.au=Yuan%2C+Yang&rft.au=Shen%2C+Shihong&rft.au=Fan%2C+Daidi&rft.date=2021-09-01&rft.issn=0142-9612&rft.volume=276&rft.spage=120838&rft_id=info:doi/10.1016%2Fj.biomaterials.2021.120838&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2021_120838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon