Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review
There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aq...
Uloženo v:
| Vydáno v: | Nanotechnology Ročník 29; číslo 34; s. 342001 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
24.08.2018
|
| ISSN: | 1361-6528, 1361-6528 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it. |
|---|---|
| AbstractList | There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it. There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it. |
| Author | Haider, Waseem Ahmed, Syed Nabeel |
| Author_xml | – sequence: 1 givenname: Syed Nabeel surname: Ahmed fullname: Ahmed, Syed Nabeel organization: School of Engineering & Technology, Central Michigan University, Mt. Pleasant, MI 48859, United States of America – sequence: 2 givenname: Waseem surname: Haider fullname: Haider, Waseem |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29786601$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkElPwzAQhS1URBe4c0I-cgn1FsfhhiqgSJW4wDmaOpNilMQhdqn674nagrjM8vS9J81Myaj1LRJyzdkdZ8bMudQ80akwcwCrEc7I5E8a_ZvHZBrCJ2OcG8EvyFjkmdGa8QnZLDFi7zfYot8G2n346C1EqPfBBQptSV0cZB-xjQ5qCl1XuwFwvg3UtXQHg_3A7SBEPK6xR4jN4LinQHv8dri7JOcV1AGvTn1G3p8e3xbLZPX6_LJ4WCVWqTwmWgmbYVqZLFfKotFDkaY0ulIVSGkgLwWzlQVAZTmTayv1GiqhZVZWac7FjNwec7vef20xxKJxwWJdw-HAQjAlspQZqQb05oRu1w2WRde7Bvp98fsc8QNAVmuc |
| CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_183642 crossref_primary_10_1016_j_jece_2019_103168 crossref_primary_10_1007_s13204_021_02338_w crossref_primary_10_1016_j_jallcom_2022_167554 crossref_primary_10_1007_s11051_022_05559_4 crossref_primary_10_1016_j_matchemphys_2022_126588 crossref_primary_10_3390_ma15124177 crossref_primary_10_3390_nano12244438 crossref_primary_10_1016_j_vacuum_2023_112337 crossref_primary_10_1016_j_optmat_2020_110669 crossref_primary_10_1016_j_jwpe_2025_108109 crossref_primary_10_1016_j_chemosphere_2021_130636 crossref_primary_10_1016_j_jece_2020_104936 crossref_primary_10_1016_j_ijleo_2018_12_016 crossref_primary_10_1016_j_mseb_2021_115555 crossref_primary_10_1002_wer_1264 crossref_primary_10_1016_j_scitotenv_2024_174165 crossref_primary_10_1016_j_cej_2024_150580 crossref_primary_10_1016_j_jenvman_2022_115936 crossref_primary_10_1016_j_cis_2022_102657 crossref_primary_10_1007_s13762_025_06344_1 crossref_primary_10_1039_D2NR01911F crossref_primary_10_1007_s11814_021_0794_4 crossref_primary_10_1016_j_jwpe_2019_101093 crossref_primary_10_1016_j_molliq_2022_119632 crossref_primary_10_1016_j_envres_2023_115861 crossref_primary_10_1002_slct_202300738 crossref_primary_10_1038_s41598_025_98635_3 crossref_primary_10_1016_j_matchemphys_2019_03_013 crossref_primary_10_1111_wej_12631 crossref_primary_10_1155_2023_9780955 crossref_primary_10_1016_j_apsusc_2018_12_012 crossref_primary_10_3390_pr13061746 crossref_primary_10_1016_j_ceramint_2021_05_037 crossref_primary_10_1039_D4EN00260A crossref_primary_10_5004_dwt_2022_28454 crossref_primary_10_1016_j_optmat_2020_110523 crossref_primary_10_1007_s11356_021_12395_x crossref_primary_10_1016_j_cej_2020_125030 crossref_primary_10_1002_cctc_201901831 crossref_primary_10_3389_fchem_2021_752276 crossref_primary_10_3390_catal14070416 crossref_primary_10_1016_j_heliyon_2024_e24646 crossref_primary_10_1007_s11270_024_07161_x crossref_primary_10_1016_j_matdes_2020_108772 crossref_primary_10_1051_e3sconf_202458802013 crossref_primary_10_1039_D0EE03300F crossref_primary_10_3390_nano10061124 crossref_primary_10_1007_s13762_022_04305_6 crossref_primary_10_1007_s11082_025_08273_2 crossref_primary_10_1007_s43630_023_00390_9 crossref_primary_10_1016_j_colsurfa_2021_127455 crossref_primary_10_1016_j_jclepro_2020_124319 crossref_primary_10_1088_2053_1591_ad5a6a crossref_primary_10_1016_j_jhazmat_2019_121402 crossref_primary_10_1039_D1EW00513H crossref_primary_10_1016_j_ces_2025_122197 crossref_primary_10_1016_j_enmm_2024_101036 crossref_primary_10_1080_2374068X_2022_2108641 crossref_primary_10_1016_j_jece_2024_114954 crossref_primary_10_3390_app13020772 crossref_primary_10_1016_j_jwpe_2020_101876 crossref_primary_10_1007_s11356_023_29283_1 crossref_primary_10_3390_w17142129 crossref_primary_10_1016_j_surfin_2025_106271 crossref_primary_10_1007_s10661_022_10604_9 crossref_primary_10_1016_j_enconman_2024_118463 crossref_primary_10_1039_D4RE00055B crossref_primary_10_1557_s43578_021_00310_6 crossref_primary_10_1016_j_porgcoat_2021_106342 crossref_primary_10_1016_j_chemosphere_2019_125009 crossref_primary_10_1016_j_envres_2024_119477 crossref_primary_10_1016_j_molliq_2024_124412 crossref_primary_10_1088_1361_648X_ac2388 crossref_primary_10_1016_j_cej_2024_157166 crossref_primary_10_1016_j_nexres_2025_100686 crossref_primary_10_3390_en16041752 crossref_primary_10_1016_j_colcom_2020_100353 crossref_primary_10_1002_chem_202404687 crossref_primary_10_1016_j_cej_2019_123918 crossref_primary_10_1002_slct_202102020 crossref_primary_10_1007_s13204_021_01669_y crossref_primary_10_1007_s42250_025_01311_2 crossref_primary_10_1007_s11356_024_32680_9 crossref_primary_10_3390_catal13020232 crossref_primary_10_1080_23249676_2022_2116116 crossref_primary_10_1016_j_jphotochem_2020_112457 crossref_primary_10_1016_j_scitotenv_2018_11_257 crossref_primary_10_1007_s11082_019_2132_1 crossref_primary_10_1016_j_ceramint_2024_11_462 crossref_primary_10_1016_j_eti_2021_101404 crossref_primary_10_1016_j_jallcom_2021_160895 crossref_primary_10_1002_jctb_7058 crossref_primary_10_1016_j_watres_2023_120234 crossref_primary_10_1515_ijcre_2021_0039 crossref_primary_10_25259_AJC_9_2025 crossref_primary_10_3390_ma17040818 crossref_primary_10_1002_admi_202300615 crossref_primary_10_3390_nano12020189 crossref_primary_10_3390_molecules24224172 crossref_primary_10_1016_j_jece_2020_103798 crossref_primary_10_1007_s44169_024_00067_z crossref_primary_10_1007_s12274_019_2432_6 crossref_primary_10_1007_s10854_024_12336_7 crossref_primary_10_1007_s10854_018_0401_6 crossref_primary_10_1016_j_nxmate_2023_100077 crossref_primary_10_1016_j_scenv_2024_100155 crossref_primary_10_3390_w14223778 crossref_primary_10_1007_s10562_025_05058_w crossref_primary_10_3390_catal11020187 crossref_primary_10_1016_j_ecoenv_2023_115254 crossref_primary_10_3762_bjoc_16_125 crossref_primary_10_1016_j_chemosphere_2020_128559 crossref_primary_10_1016_j_envpol_2022_120982 crossref_primary_10_1016_j_molliq_2024_124732 crossref_primary_10_70322_prp_2025_10014 crossref_primary_10_1007_s13399_023_04922_2 crossref_primary_10_1016_j_jece_2024_113370 crossref_primary_10_1016_j_jphotochem_2023_114543 crossref_primary_10_1007_s10904_024_03171_8 crossref_primary_10_1016_j_psep_2020_02_039 crossref_primary_10_1007_s10854_020_03844_3 crossref_primary_10_1016_j_cherd_2023_01_014 crossref_primary_10_3390_catal9010052 crossref_primary_10_1016_j_matpr_2023_07_147 crossref_primary_10_1038_s41598_019_50457_w crossref_primary_10_1016_j_apsusc_2020_148398 crossref_primary_10_1016_j_jwpe_2020_101377 crossref_primary_10_1016_j_apmt_2025_102706 crossref_primary_10_1016_j_jece_2021_105147 crossref_primary_10_1098_rsos_221086 crossref_primary_10_1016_j_envres_2025_122598 crossref_primary_10_3389_fchem_2021_755836 crossref_primary_10_1007_s41204_020_0069_z crossref_primary_10_1016_j_surfin_2025_106604 crossref_primary_10_1016_j_colsurfa_2021_126176 crossref_primary_10_1007_s13762_021_03874_2 crossref_primary_10_3390_coatings14020203 crossref_primary_10_1016_j_jwpe_2022_102841 crossref_primary_10_1016_j_psep_2022_10_060 crossref_primary_10_1002_eem2_70012 crossref_primary_10_1007_s43207_023_00330_4 crossref_primary_10_1515_ijmr_2022_0403 crossref_primary_10_1016_j_materresbull_2023_112175 crossref_primary_10_1039_D1RA08185C crossref_primary_10_3390_ijms24119595 crossref_primary_10_1021_acsaenm_5c00375 crossref_primary_10_1016_j_mseb_2024_117944 crossref_primary_10_1080_00397911_2022_2048859 crossref_primary_10_1038_s41598_024_64486_7 crossref_primary_10_1016_j_watres_2022_118047 crossref_primary_10_1016_j_jcis_2022_01_067 crossref_primary_10_1016_j_inoche_2021_108821 crossref_primary_10_1016_j_scitotenv_2021_147536 crossref_primary_10_1016_j_wri_2023_100211 crossref_primary_10_1007_s10311_020_01001_0 crossref_primary_10_3390_catal11091107 crossref_primary_10_1088_1361_6528_ad4ee9 crossref_primary_10_1007_s11270_021_04985_9 crossref_primary_10_1007_s42247_025_00995_z crossref_primary_10_1016_j_jclepro_2022_132211 crossref_primary_10_1016_j_cattod_2021_10_006 crossref_primary_10_1002_wer_1623 crossref_primary_10_1007_s11356_022_22749_8 crossref_primary_10_3390_catal9120990 crossref_primary_10_1002_ceat_201900185 crossref_primary_10_1016_j_molstruc_2024_139417 crossref_primary_10_1016_j_nxmate_2025_100796 crossref_primary_10_3390_catal14030189 crossref_primary_10_1007_s00128_021_03158_y crossref_primary_10_1007_s10854_020_04784_8 crossref_primary_10_1007_s00339_021_04724_1 crossref_primary_10_1088_1361_6528_ab9af1 crossref_primary_10_1007_s44371_025_00159_2 crossref_primary_10_1080_01614940_2022_2082650 crossref_primary_10_1016_j_apt_2022_103801 crossref_primary_10_1039_D2NJ02428D crossref_primary_10_1016_j_solidstatesciences_2020_106305 crossref_primary_10_1016_j_chemosphere_2022_134265 crossref_primary_10_1016_j_powtec_2022_117478 crossref_primary_10_1088_1402_4896_ad7cd8 crossref_primary_10_1063_5_0176431 crossref_primary_10_3233_MGC_230070 crossref_primary_10_1016_j_nxmate_2024_100469 crossref_primary_10_1088_1742_6596_2172_1_012013 crossref_primary_10_1088_1757_899X_1050_1_012013 crossref_primary_10_3390_su17167414 crossref_primary_10_1016_j_inoche_2023_111584 crossref_primary_10_1016_j_jece_2021_105068 crossref_primary_10_1080_10426507_2021_2012677 crossref_primary_10_1016_j_vacuum_2020_109375 crossref_primary_10_1016_j_apsusc_2022_152921 crossref_primary_10_3390_catal13091306 crossref_primary_10_1016_j_chemosphere_2021_129965 crossref_primary_10_1002_admi_202001392 crossref_primary_10_3390_pr11092588 crossref_primary_10_1016_j_matchemphys_2020_122767 crossref_primary_10_1111_ijac_14294 crossref_primary_10_1007_s11164_024_05316_3 crossref_primary_10_1007_s41810_020_00080_4 crossref_primary_10_1002_slct_202203968 crossref_primary_10_1007_s42823_024_00780_8 crossref_primary_10_1039_D3EN00158J crossref_primary_10_1016_j_ceramint_2018_08_150 crossref_primary_10_1016_j_chemosphere_2021_129719 crossref_primary_10_1038_s41598_021_94066_y crossref_primary_10_1039_D2NR07065K crossref_primary_10_3390_nano15110848 crossref_primary_10_1007_s11356_021_17361_1 crossref_primary_10_1007_s43630_021_00141_8 crossref_primary_10_3390_catal11050567 crossref_primary_10_3390_molecules29204824 crossref_primary_10_1007_s00339_021_05161_w crossref_primary_10_1021_acsomega_4c11468 crossref_primary_10_3390_pr11123323 crossref_primary_10_3103_S1063455X22030055 crossref_primary_10_1016_j_mtchem_2018_10_007 crossref_primary_10_1016_j_apsusc_2022_155738 crossref_primary_10_3390_toxics10110655 crossref_primary_10_1007_s00289_019_02849_1 crossref_primary_10_1007_s10854_022_08727_3 crossref_primary_10_1016_j_matchemphys_2021_125669 crossref_primary_10_1080_17518253_2022_2117998 crossref_primary_10_1039_D4RA06857B crossref_primary_10_1016_j_cattod_2023_114371 crossref_primary_10_1016_j_apsusc_2020_146465 crossref_primary_10_1039_D4RA02014F crossref_primary_10_1007_s11144_023_02397_w crossref_primary_10_1016_j_fuel_2022_123678 crossref_primary_10_3390_catal12070709 crossref_primary_10_1016_j_mssp_2020_104919 crossref_primary_10_3390_catal14040258 crossref_primary_10_1039_D5MA00229J crossref_primary_10_1016_j_jclepro_2023_138181 crossref_primary_10_1016_j_jwpe_2021_102273 crossref_primary_10_1038_s41598_025_93188_x crossref_primary_10_1007_s13201_021_01430_4 crossref_primary_10_1016_j_envres_2023_117483 crossref_primary_10_3390_catal11121512 crossref_primary_10_1016_j_inoche_2024_112113 crossref_primary_10_1002_anie_202419169 crossref_primary_10_1007_s11051_019_4663_6 crossref_primary_10_1016_j_surfin_2024_105578 crossref_primary_10_1007_s11356_021_17241_8 crossref_primary_10_1088_1402_4896_add967 crossref_primary_10_1016_j_matchemphys_2021_125565 crossref_primary_10_1007_s11157_020_09548_8 crossref_primary_10_3390_w12020495 crossref_primary_10_3390_catal11040437 crossref_primary_10_1016_j_chemosphere_2021_131270 crossref_primary_10_1016_j_ijhydene_2025_03_361 crossref_primary_10_1016_j_scitotenv_2025_179567 crossref_primary_10_1016_j_ceramint_2022_09_204 crossref_primary_10_3390_su141710581 crossref_primary_10_1016_j_jcis_2024_05_120 crossref_primary_10_1016_j_eurpolymj_2024_112781 crossref_primary_10_1038_s41598_024_78719_2 crossref_primary_10_3390_molecules28030934 crossref_primary_10_1002_ep_13757 crossref_primary_10_1039_D4CY00092G crossref_primary_10_1063_5_0213838 crossref_primary_10_3390_catal12020122 crossref_primary_10_1016_j_matlet_2023_134405 crossref_primary_10_1007_s10876_024_02712_y crossref_primary_10_1016_j_cej_2019_123496 crossref_primary_10_1016_j_inoche_2020_108140 crossref_primary_10_1016_j_molstruc_2022_132860 crossref_primary_10_1111_ijac_13937 crossref_primary_10_1007_s11356_019_07061_2 crossref_primary_10_1007_s10876_023_02498_5 crossref_primary_10_1016_j_mtla_2025_102528 crossref_primary_10_1016_j_rser_2025_115464 crossref_primary_10_1016_j_ceramint_2024_12_349 crossref_primary_10_1007_s11243_024_00616_4 crossref_primary_10_1016_j_solidstatesciences_2020_106263 crossref_primary_10_1007_s10311_020_01092_9 crossref_primary_10_1002_smll_202409637 crossref_primary_10_1039_D4RA02430C crossref_primary_10_3390_catal10070725 crossref_primary_10_1002_cbic_201900229 crossref_primary_10_1016_j_apsusc_2020_147354 crossref_primary_10_3390_app11188674 crossref_primary_10_1080_01614940_2024_2338131 crossref_primary_10_1007_s12034_022_02880_5 crossref_primary_10_1002_ange_202419169 crossref_primary_10_1016_j_jphotochem_2022_114436 crossref_primary_10_1080_00958972_2021_1999430 crossref_primary_10_1016_j_chemosphere_2024_142731 crossref_primary_10_1007_s11244_020_01278_z crossref_primary_10_1007_s11270_019_4185_y crossref_primary_10_1016_j_chemosphere_2022_133538 crossref_primary_10_3390_fib9100061 crossref_primary_10_1007_s40145_019_0353_1 crossref_primary_10_2147_IJN_S480592 crossref_primary_10_1016_j_envpol_2019_02_052 crossref_primary_10_2166_wst_2023_272 crossref_primary_10_1016_j_ijleo_2024_171639 crossref_primary_10_1039_D1SE01322J crossref_primary_10_1007_s00339_020_03938_z crossref_primary_10_1016_j_ceramint_2024_07_161 crossref_primary_10_3390_catal14100719 crossref_primary_10_1016_j_memsci_2020_118015 crossref_primary_10_1039_D0CY00104J crossref_primary_10_1002_smsc_202200041 crossref_primary_10_1002_slct_202001198 crossref_primary_10_1016_j_apcata_2024_119879 crossref_primary_10_1007_s11164_024_05286_6 crossref_primary_10_1016_j_nxmate_2025_100810 crossref_primary_10_1016_j_jece_2025_115558 crossref_primary_10_1016_j_jece_2021_106684 crossref_primary_10_1016_j_vacuum_2021_110371 crossref_primary_10_1016_j_jece_2023_109999 crossref_primary_10_1016_j_susmat_2021_e00343 crossref_primary_10_1007_s10854_021_07459_0 crossref_primary_10_1016_j_jphotochem_2021_113320 crossref_primary_10_1002_chem_202101764 crossref_primary_10_1007_s40843_019_1286_1 crossref_primary_10_1016_j_jclepro_2023_139203 crossref_primary_10_3390_catal14060377 crossref_primary_10_1007_s10653_022_01326_5 crossref_primary_10_1007_s40034_023_00267_7 crossref_primary_10_1007_s42250_023_00609_3 crossref_primary_10_1016_j_cej_2024_157124 crossref_primary_10_1016_j_heliyon_2024_e27613 crossref_primary_10_1016_j_jece_2024_112725 crossref_primary_10_3390_nano12010005 crossref_primary_10_3390_catal10070804 crossref_primary_10_3390_jcs5070174 crossref_primary_10_3390_ma14133524 crossref_primary_10_1080_01932691_2024_2325388 crossref_primary_10_1007_s11082_023_05446_9 crossref_primary_10_1016_j_tgchem_2025_100084 crossref_primary_10_1016_j_heliyon_2020_e05614 crossref_primary_10_1016_j_matpr_2022_07_301 crossref_primary_10_1016_j_jallcom_2020_156963 crossref_primary_10_1134_S002315842460158X crossref_primary_10_1016_j_cattod_2021_08_016 crossref_primary_10_1016_j_nxener_2024_100228 crossref_primary_10_3103_S1063455X21030115 crossref_primary_10_1016_j_jhazmat_2021_127416 crossref_primary_10_1039_D3RA06598G crossref_primary_10_1016_j_colsurfa_2023_133106 crossref_primary_10_1016_j_optmat_2024_115390 crossref_primary_10_1016_j_cattod_2020_07_044 crossref_primary_10_1016_j_jclepro_2021_128563 crossref_primary_10_1016_j_jphotochemrev_2019_08_003 crossref_primary_10_1016_j_jics_2025_101821 crossref_primary_10_1038_s41598_024_61340_8 crossref_primary_10_1016_j_arabjc_2021_103180 crossref_primary_10_1016_j_jenvman_2022_115514 crossref_primary_10_1016_j_ijhydene_2019_03_149 crossref_primary_10_1016_j_eti_2023_103031 crossref_primary_10_3390_molecules29020442 crossref_primary_10_1016_j_jwpe_2020_101827 crossref_primary_10_1007_s10853_021_05965_4 crossref_primary_10_1016_j_jenvman_2024_123759 crossref_primary_10_1007_s11664_024_11574_z crossref_primary_10_3390_catal10080924 crossref_primary_10_1007_s41779_022_00811_5 crossref_primary_10_1007_s10971_025_06921_3 crossref_primary_10_1016_j_jssc_2021_122801 crossref_primary_10_1016_j_ceramint_2025_08_073 crossref_primary_10_1002_adma_202505504 crossref_primary_10_1007_s13738_022_02671_z crossref_primary_10_1016_j_molliq_2020_113588 crossref_primary_10_1016_j_arabjc_2020_02_012 crossref_primary_10_1007_s10098_020_01928_6 crossref_primary_10_1016_S1872_2067_19_63293_6 crossref_primary_10_1016_j_jece_2021_106814 crossref_primary_10_3389_fchem_2023_1252191 crossref_primary_10_3390_catal12121585 crossref_primary_10_1016_j_chemosphere_2021_131263 crossref_primary_10_3390_w16111481 crossref_primary_10_1007_s11356_023_29777_y crossref_primary_10_1038_s41598_024_66429_8 crossref_primary_10_1039_D4RA00859F crossref_primary_10_1177_11786221221117266 crossref_primary_10_1007_s10854_025_14529_0 crossref_primary_10_1016_j_apmt_2021_101345 crossref_primary_10_1016_j_ceramint_2023_02_034 crossref_primary_10_3390_ma17061354 crossref_primary_10_1016_j_jece_2021_106941 crossref_primary_10_3390_catal13071143 crossref_primary_10_1016_j_joule_2023_05_006 crossref_primary_10_1111_ijac_13765 crossref_primary_10_1007_s11144_020_01878_6 crossref_primary_10_1016_j_jphotochem_2019_112196 crossref_primary_10_1007_s11356_019_04680_7 crossref_primary_10_1680_jensu_23_00069 crossref_primary_10_1557_s43578_023_01077_8 crossref_primary_10_3390_catal10111245 crossref_primary_10_1007_s44274_025_00337_0 crossref_primary_10_1016_j_scitotenv_2023_161525 crossref_primary_10_1007_s41660_024_00479_3 crossref_primary_10_1016_j_materresbull_2020_110920 crossref_primary_10_1007_s11356_021_16507_5 crossref_primary_10_1016_j_matchemphys_2022_125948 crossref_primary_10_1016_j_scitotenv_2019_135404 crossref_primary_10_3390_ma15176022 crossref_primary_10_1016_j_cimid_2019_101403 crossref_primary_10_1039_D2NR06587H crossref_primary_10_1039_D1EN00563D crossref_primary_10_3390_catal11111351 crossref_primary_10_1002_slct_202500858 crossref_primary_10_1002_jctb_6247 crossref_primary_10_1039_D0EN00048E |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1088/1361-6528/aac6ea |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1361-6528 |
| ExternalDocumentID | 29786601 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NPM NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT 7X8 ADEQX AEINN |
| ID | FETCH-LOGICAL-c449t-642c7e5f87944ce864ce38d86f4fa338a9d20cfcaae4c103bc36baf2637df5912 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 469 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435207600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-6528 |
| IngestDate | Fri Sep 05 05:56:58 EDT 2025 Thu Jan 02 22:59:40 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 34 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c449t-642c7e5f87944ce864ce38d86f4fa338a9d20cfcaae4c103bc36baf2637df5912 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doi.org/10.1088/1361-6528/aac6ea |
| PMID | 29786601 |
| PQID | 2042750834 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2042750834 pubmed_primary_29786601 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-24 |
| PublicationDateYYYYMMDD | 2018-08-24 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Nanotechnology |
| PublicationTitleAlternate | Nanotechnology |
| PublicationYear | 2018 |
| SSID | ssj0011821 |
| Score | 2.6878712 |
| SecondaryResourceType | review_article |
| Snippet | There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 342001 |
| Title | Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29786601 https://www.proquest.com/docview/2042750834 |
| Volume | 29 |
| WOSCitedRecordID | wos000435207600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UKujBpW51YwSvQ5tkMpl4ERFLL5YeFHoLs2ovSW2i_fu-maTLRRC8DGRIQjJ5b_J9b0XojtqYMwO0RAG_IlTHmojABESaUMZSCZec6ZtNJMMhH4_TUWNwK5uwysWe6DdqXShnIweSTl0pch7Rh-kncV2jnHe1aaGxiVoRQBkX0pWMV14EwM5N3lVAWBzyxk0JitVdznWFUMyI3wGm_9H0D_77iIdov4GY-LGWiSO0YfI22lsrPNhGOz7wU5XH6H3g4mEKECNTfJV4-lFUhTfpuEolWOQaTyqYLioXVQR3XXd440mO54BVZ_68uSidIc4dLqPX77HAdXLMCXrrP78-DUjTfIEoStOKAC9RiYktB4WlynAGQ8Q1Z5ZaAbxWpDrsKauEMFQFvUiqiElhQxYl2sZpEJ6irbzIzTnCUgOMkIFMgA1RRY1gkoVUa2kDa1KlOuh2sZ4ZCLfzWAj_0tlqRTvorP4o2bSuwpGFwH8Z0MmLP1x9iXYB6LhS3CSkV6hlQbXNNdpW39WknN14qYFxOHr5AXrBz9U |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+photocatalysis+and+its+potential+applications+in+water+and+wastewater+treatment%3A+a+review&rft.jtitle=Nanotechnology&rft.au=Ahmed%2C+Syed+Nabeel&rft.au=Haider%2C+Waseem&rft.date=2018-08-24&rft.issn=1361-6528&rft.eissn=1361-6528&rft.volume=29&rft.issue=34&rft.spage=342001&rft_id=info:doi/10.1088%2F1361-6528%2Faac6ea&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6528&client=summon |