Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review

There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aq...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nanotechnology Ročník 29; číslo 34; s. 342001
Hlavní autori: Ahmed, Syed Nabeel, Haider, Waseem
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 24.08.2018
ISSN:1361-6528, 1361-6528
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.
AbstractList There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.
There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.
Author Haider, Waseem
Ahmed, Syed Nabeel
Author_xml – sequence: 1
  givenname: Syed Nabeel
  surname: Ahmed
  fullname: Ahmed, Syed Nabeel
  organization: School of Engineering & Technology, Central Michigan University, Mt. Pleasant, MI 48859, United States of America
– sequence: 2
  givenname: Waseem
  surname: Haider
  fullname: Haider, Waseem
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29786601$$D View this record in MEDLINE/PubMed
BookMark eNpNkElPwzAQhS1URBe4c0I-cgn1FsfhhiqgSJW4wDmaOpNilMQhdqn674nagrjM8vS9J81Myaj1LRJyzdkdZ8bMudQ80akwcwCrEc7I5E8a_ZvHZBrCJ2OcG8EvyFjkmdGa8QnZLDFi7zfYot8G2n346C1EqPfBBQptSV0cZB-xjQ5qCl1XuwFwvg3UtXQHg_3A7SBEPK6xR4jN4LinQHv8dri7JOcV1AGvTn1G3p8e3xbLZPX6_LJ4WCVWqTwmWgmbYVqZLFfKotFDkaY0ulIVSGkgLwWzlQVAZTmTayv1GiqhZVZWac7FjNwec7vef20xxKJxwWJdw-HAQjAlspQZqQb05oRu1w2WRde7Bvp98fsc8QNAVmuc
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_183642
crossref_primary_10_1016_j_jece_2019_103168
crossref_primary_10_1007_s13204_021_02338_w
crossref_primary_10_1016_j_jallcom_2022_167554
crossref_primary_10_1007_s11051_022_05559_4
crossref_primary_10_1016_j_matchemphys_2022_126588
crossref_primary_10_3390_ma15124177
crossref_primary_10_3390_nano12244438
crossref_primary_10_1016_j_vacuum_2023_112337
crossref_primary_10_1016_j_optmat_2020_110669
crossref_primary_10_1016_j_jwpe_2025_108109
crossref_primary_10_1016_j_chemosphere_2021_130636
crossref_primary_10_1016_j_jece_2020_104936
crossref_primary_10_1016_j_ijleo_2018_12_016
crossref_primary_10_1016_j_mseb_2021_115555
crossref_primary_10_1002_wer_1264
crossref_primary_10_1016_j_scitotenv_2024_174165
crossref_primary_10_1016_j_cej_2024_150580
crossref_primary_10_1016_j_jenvman_2022_115936
crossref_primary_10_1016_j_cis_2022_102657
crossref_primary_10_1007_s13762_025_06344_1
crossref_primary_10_1039_D2NR01911F
crossref_primary_10_1007_s11814_021_0794_4
crossref_primary_10_1016_j_jwpe_2019_101093
crossref_primary_10_1016_j_molliq_2022_119632
crossref_primary_10_1016_j_envres_2023_115861
crossref_primary_10_1002_slct_202300738
crossref_primary_10_1038_s41598_025_98635_3
crossref_primary_10_1016_j_matchemphys_2019_03_013
crossref_primary_10_1111_wej_12631
crossref_primary_10_1155_2023_9780955
crossref_primary_10_1016_j_apsusc_2018_12_012
crossref_primary_10_3390_pr13061746
crossref_primary_10_1016_j_ceramint_2021_05_037
crossref_primary_10_1039_D4EN00260A
crossref_primary_10_5004_dwt_2022_28454
crossref_primary_10_1016_j_optmat_2020_110523
crossref_primary_10_1007_s11356_021_12395_x
crossref_primary_10_1016_j_cej_2020_125030
crossref_primary_10_1002_cctc_201901831
crossref_primary_10_3389_fchem_2021_752276
crossref_primary_10_3390_catal14070416
crossref_primary_10_1016_j_heliyon_2024_e24646
crossref_primary_10_1007_s11270_024_07161_x
crossref_primary_10_1016_j_matdes_2020_108772
crossref_primary_10_1051_e3sconf_202458802013
crossref_primary_10_1039_D0EE03300F
crossref_primary_10_3390_nano10061124
crossref_primary_10_1007_s13762_022_04305_6
crossref_primary_10_1007_s11082_025_08273_2
crossref_primary_10_1007_s43630_023_00390_9
crossref_primary_10_1016_j_colsurfa_2021_127455
crossref_primary_10_1016_j_jclepro_2020_124319
crossref_primary_10_1088_2053_1591_ad5a6a
crossref_primary_10_1016_j_jhazmat_2019_121402
crossref_primary_10_1039_D1EW00513H
crossref_primary_10_1016_j_ces_2025_122197
crossref_primary_10_1016_j_enmm_2024_101036
crossref_primary_10_1080_2374068X_2022_2108641
crossref_primary_10_1016_j_jece_2024_114954
crossref_primary_10_3390_app13020772
crossref_primary_10_1016_j_jwpe_2020_101876
crossref_primary_10_1007_s11356_023_29283_1
crossref_primary_10_3390_w17142129
crossref_primary_10_1016_j_surfin_2025_106271
crossref_primary_10_1007_s10661_022_10604_9
crossref_primary_10_1016_j_enconman_2024_118463
crossref_primary_10_1039_D4RE00055B
crossref_primary_10_1557_s43578_021_00310_6
crossref_primary_10_1016_j_porgcoat_2021_106342
crossref_primary_10_1016_j_chemosphere_2019_125009
crossref_primary_10_1016_j_envres_2024_119477
crossref_primary_10_1016_j_molliq_2024_124412
crossref_primary_10_1088_1361_648X_ac2388
crossref_primary_10_1016_j_cej_2024_157166
crossref_primary_10_1016_j_nexres_2025_100686
crossref_primary_10_3390_en16041752
crossref_primary_10_1016_j_colcom_2020_100353
crossref_primary_10_1002_chem_202404687
crossref_primary_10_1016_j_cej_2019_123918
crossref_primary_10_1002_slct_202102020
crossref_primary_10_1007_s13204_021_01669_y
crossref_primary_10_1007_s42250_025_01311_2
crossref_primary_10_1007_s11356_024_32680_9
crossref_primary_10_3390_catal13020232
crossref_primary_10_1080_23249676_2022_2116116
crossref_primary_10_1016_j_jphotochem_2020_112457
crossref_primary_10_1016_j_scitotenv_2018_11_257
crossref_primary_10_1007_s11082_019_2132_1
crossref_primary_10_1016_j_ceramint_2024_11_462
crossref_primary_10_1016_j_eti_2021_101404
crossref_primary_10_1016_j_jallcom_2021_160895
crossref_primary_10_1002_jctb_7058
crossref_primary_10_1016_j_watres_2023_120234
crossref_primary_10_1515_ijcre_2021_0039
crossref_primary_10_25259_AJC_9_2025
crossref_primary_10_3390_ma17040818
crossref_primary_10_1002_admi_202300615
crossref_primary_10_3390_nano12020189
crossref_primary_10_3390_molecules24224172
crossref_primary_10_1016_j_jece_2020_103798
crossref_primary_10_1007_s44169_024_00067_z
crossref_primary_10_1007_s12274_019_2432_6
crossref_primary_10_1007_s10854_024_12336_7
crossref_primary_10_1007_s10854_018_0401_6
crossref_primary_10_1016_j_nxmate_2023_100077
crossref_primary_10_1016_j_scenv_2024_100155
crossref_primary_10_3390_w14223778
crossref_primary_10_1007_s10562_025_05058_w
crossref_primary_10_3390_catal11020187
crossref_primary_10_1016_j_ecoenv_2023_115254
crossref_primary_10_3762_bjoc_16_125
crossref_primary_10_1016_j_chemosphere_2020_128559
crossref_primary_10_1016_j_envpol_2022_120982
crossref_primary_10_1016_j_molliq_2024_124732
crossref_primary_10_70322_prp_2025_10014
crossref_primary_10_1007_s13399_023_04922_2
crossref_primary_10_1016_j_jece_2024_113370
crossref_primary_10_1016_j_jphotochem_2023_114543
crossref_primary_10_1007_s10904_024_03171_8
crossref_primary_10_1016_j_psep_2020_02_039
crossref_primary_10_1007_s10854_020_03844_3
crossref_primary_10_1016_j_cherd_2023_01_014
crossref_primary_10_3390_catal9010052
crossref_primary_10_1016_j_matpr_2023_07_147
crossref_primary_10_1038_s41598_019_50457_w
crossref_primary_10_1016_j_apsusc_2020_148398
crossref_primary_10_1016_j_jwpe_2020_101377
crossref_primary_10_1016_j_apmt_2025_102706
crossref_primary_10_1016_j_jece_2021_105147
crossref_primary_10_1098_rsos_221086
crossref_primary_10_1016_j_envres_2025_122598
crossref_primary_10_3389_fchem_2021_755836
crossref_primary_10_1007_s41204_020_0069_z
crossref_primary_10_1016_j_surfin_2025_106604
crossref_primary_10_1016_j_colsurfa_2021_126176
crossref_primary_10_1007_s13762_021_03874_2
crossref_primary_10_3390_coatings14020203
crossref_primary_10_1016_j_jwpe_2022_102841
crossref_primary_10_1016_j_psep_2022_10_060
crossref_primary_10_1002_eem2_70012
crossref_primary_10_1007_s43207_023_00330_4
crossref_primary_10_1515_ijmr_2022_0403
crossref_primary_10_1016_j_materresbull_2023_112175
crossref_primary_10_1039_D1RA08185C
crossref_primary_10_3390_ijms24119595
crossref_primary_10_1021_acsaenm_5c00375
crossref_primary_10_1016_j_mseb_2024_117944
crossref_primary_10_1080_00397911_2022_2048859
crossref_primary_10_1038_s41598_024_64486_7
crossref_primary_10_1016_j_watres_2022_118047
crossref_primary_10_1016_j_jcis_2022_01_067
crossref_primary_10_1016_j_inoche_2021_108821
crossref_primary_10_1016_j_scitotenv_2021_147536
crossref_primary_10_1016_j_wri_2023_100211
crossref_primary_10_1007_s10311_020_01001_0
crossref_primary_10_3390_catal11091107
crossref_primary_10_1088_1361_6528_ad4ee9
crossref_primary_10_1007_s11270_021_04985_9
crossref_primary_10_1007_s42247_025_00995_z
crossref_primary_10_1016_j_jclepro_2022_132211
crossref_primary_10_1016_j_cattod_2021_10_006
crossref_primary_10_1002_wer_1623
crossref_primary_10_1007_s11356_022_22749_8
crossref_primary_10_3390_catal9120990
crossref_primary_10_1002_ceat_201900185
crossref_primary_10_1016_j_molstruc_2024_139417
crossref_primary_10_1016_j_nxmate_2025_100796
crossref_primary_10_3390_catal14030189
crossref_primary_10_1007_s00128_021_03158_y
crossref_primary_10_1007_s10854_020_04784_8
crossref_primary_10_1007_s00339_021_04724_1
crossref_primary_10_1088_1361_6528_ab9af1
crossref_primary_10_1007_s44371_025_00159_2
crossref_primary_10_1080_01614940_2022_2082650
crossref_primary_10_1016_j_apt_2022_103801
crossref_primary_10_1039_D2NJ02428D
crossref_primary_10_1016_j_solidstatesciences_2020_106305
crossref_primary_10_1016_j_chemosphere_2022_134265
crossref_primary_10_1016_j_powtec_2022_117478
crossref_primary_10_1088_1402_4896_ad7cd8
crossref_primary_10_1063_5_0176431
crossref_primary_10_3233_MGC_230070
crossref_primary_10_1016_j_nxmate_2024_100469
crossref_primary_10_1088_1742_6596_2172_1_012013
crossref_primary_10_1088_1757_899X_1050_1_012013
crossref_primary_10_3390_su17167414
crossref_primary_10_1016_j_inoche_2023_111584
crossref_primary_10_1016_j_jece_2021_105068
crossref_primary_10_1080_10426507_2021_2012677
crossref_primary_10_1016_j_vacuum_2020_109375
crossref_primary_10_1016_j_apsusc_2022_152921
crossref_primary_10_3390_catal13091306
crossref_primary_10_1016_j_chemosphere_2021_129965
crossref_primary_10_1002_admi_202001392
crossref_primary_10_3390_pr11092588
crossref_primary_10_1016_j_matchemphys_2020_122767
crossref_primary_10_1111_ijac_14294
crossref_primary_10_1007_s11164_024_05316_3
crossref_primary_10_1007_s41810_020_00080_4
crossref_primary_10_1002_slct_202203968
crossref_primary_10_1007_s42823_024_00780_8
crossref_primary_10_1039_D3EN00158J
crossref_primary_10_1016_j_ceramint_2018_08_150
crossref_primary_10_1016_j_chemosphere_2021_129719
crossref_primary_10_1038_s41598_021_94066_y
crossref_primary_10_1039_D2NR07065K
crossref_primary_10_3390_nano15110848
crossref_primary_10_1007_s11356_021_17361_1
crossref_primary_10_1007_s43630_021_00141_8
crossref_primary_10_3390_catal11050567
crossref_primary_10_3390_molecules29204824
crossref_primary_10_1007_s00339_021_05161_w
crossref_primary_10_1021_acsomega_4c11468
crossref_primary_10_3390_pr11123323
crossref_primary_10_3103_S1063455X22030055
crossref_primary_10_1016_j_mtchem_2018_10_007
crossref_primary_10_1016_j_apsusc_2022_155738
crossref_primary_10_3390_toxics10110655
crossref_primary_10_1007_s00289_019_02849_1
crossref_primary_10_1007_s10854_022_08727_3
crossref_primary_10_1016_j_matchemphys_2021_125669
crossref_primary_10_1080_17518253_2022_2117998
crossref_primary_10_1039_D4RA06857B
crossref_primary_10_1016_j_cattod_2023_114371
crossref_primary_10_1016_j_apsusc_2020_146465
crossref_primary_10_1039_D4RA02014F
crossref_primary_10_1007_s11144_023_02397_w
crossref_primary_10_1016_j_fuel_2022_123678
crossref_primary_10_3390_catal12070709
crossref_primary_10_1016_j_mssp_2020_104919
crossref_primary_10_3390_catal14040258
crossref_primary_10_1039_D5MA00229J
crossref_primary_10_1016_j_jclepro_2023_138181
crossref_primary_10_1016_j_jwpe_2021_102273
crossref_primary_10_1038_s41598_025_93188_x
crossref_primary_10_1007_s13201_021_01430_4
crossref_primary_10_1016_j_envres_2023_117483
crossref_primary_10_3390_catal11121512
crossref_primary_10_1016_j_inoche_2024_112113
crossref_primary_10_1002_anie_202419169
crossref_primary_10_1007_s11051_019_4663_6
crossref_primary_10_1016_j_surfin_2024_105578
crossref_primary_10_1007_s11356_021_17241_8
crossref_primary_10_1088_1402_4896_add967
crossref_primary_10_1016_j_matchemphys_2021_125565
crossref_primary_10_1007_s11157_020_09548_8
crossref_primary_10_3390_w12020495
crossref_primary_10_3390_catal11040437
crossref_primary_10_1016_j_chemosphere_2021_131270
crossref_primary_10_1016_j_ijhydene_2025_03_361
crossref_primary_10_1016_j_scitotenv_2025_179567
crossref_primary_10_1016_j_ceramint_2022_09_204
crossref_primary_10_3390_su141710581
crossref_primary_10_1016_j_jcis_2024_05_120
crossref_primary_10_1016_j_eurpolymj_2024_112781
crossref_primary_10_1038_s41598_024_78719_2
crossref_primary_10_3390_molecules28030934
crossref_primary_10_1002_ep_13757
crossref_primary_10_1039_D4CY00092G
crossref_primary_10_1063_5_0213838
crossref_primary_10_3390_catal12020122
crossref_primary_10_1016_j_matlet_2023_134405
crossref_primary_10_1007_s10876_024_02712_y
crossref_primary_10_1016_j_cej_2019_123496
crossref_primary_10_1016_j_inoche_2020_108140
crossref_primary_10_1016_j_molstruc_2022_132860
crossref_primary_10_1111_ijac_13937
crossref_primary_10_1007_s11356_019_07061_2
crossref_primary_10_1007_s10876_023_02498_5
crossref_primary_10_1016_j_mtla_2025_102528
crossref_primary_10_1016_j_rser_2025_115464
crossref_primary_10_1016_j_ceramint_2024_12_349
crossref_primary_10_1007_s11243_024_00616_4
crossref_primary_10_1016_j_solidstatesciences_2020_106263
crossref_primary_10_1007_s10311_020_01092_9
crossref_primary_10_1002_smll_202409637
crossref_primary_10_1039_D4RA02430C
crossref_primary_10_3390_catal10070725
crossref_primary_10_1002_cbic_201900229
crossref_primary_10_1016_j_apsusc_2020_147354
crossref_primary_10_3390_app11188674
crossref_primary_10_1080_01614940_2024_2338131
crossref_primary_10_1007_s12034_022_02880_5
crossref_primary_10_1002_ange_202419169
crossref_primary_10_1016_j_jphotochem_2022_114436
crossref_primary_10_1080_00958972_2021_1999430
crossref_primary_10_1016_j_chemosphere_2024_142731
crossref_primary_10_1007_s11244_020_01278_z
crossref_primary_10_1007_s11270_019_4185_y
crossref_primary_10_1016_j_chemosphere_2022_133538
crossref_primary_10_3390_fib9100061
crossref_primary_10_1007_s40145_019_0353_1
crossref_primary_10_2147_IJN_S480592
crossref_primary_10_1016_j_envpol_2019_02_052
crossref_primary_10_2166_wst_2023_272
crossref_primary_10_1016_j_ijleo_2024_171639
crossref_primary_10_1039_D1SE01322J
crossref_primary_10_1007_s00339_020_03938_z
crossref_primary_10_1016_j_ceramint_2024_07_161
crossref_primary_10_3390_catal14100719
crossref_primary_10_1016_j_memsci_2020_118015
crossref_primary_10_1039_D0CY00104J
crossref_primary_10_1002_smsc_202200041
crossref_primary_10_1002_slct_202001198
crossref_primary_10_1016_j_apcata_2024_119879
crossref_primary_10_1007_s11164_024_05286_6
crossref_primary_10_1016_j_nxmate_2025_100810
crossref_primary_10_1016_j_jece_2025_115558
crossref_primary_10_1016_j_jece_2021_106684
crossref_primary_10_1016_j_vacuum_2021_110371
crossref_primary_10_1016_j_jece_2023_109999
crossref_primary_10_1016_j_susmat_2021_e00343
crossref_primary_10_1007_s10854_021_07459_0
crossref_primary_10_1016_j_jphotochem_2021_113320
crossref_primary_10_1002_chem_202101764
crossref_primary_10_1007_s40843_019_1286_1
crossref_primary_10_1016_j_jclepro_2023_139203
crossref_primary_10_3390_catal14060377
crossref_primary_10_1007_s10653_022_01326_5
crossref_primary_10_1007_s40034_023_00267_7
crossref_primary_10_1007_s42250_023_00609_3
crossref_primary_10_1016_j_cej_2024_157124
crossref_primary_10_1016_j_heliyon_2024_e27613
crossref_primary_10_1016_j_jece_2024_112725
crossref_primary_10_3390_nano12010005
crossref_primary_10_3390_catal10070804
crossref_primary_10_3390_jcs5070174
crossref_primary_10_3390_ma14133524
crossref_primary_10_1080_01932691_2024_2325388
crossref_primary_10_1007_s11082_023_05446_9
crossref_primary_10_1016_j_tgchem_2025_100084
crossref_primary_10_1016_j_heliyon_2020_e05614
crossref_primary_10_1016_j_matpr_2022_07_301
crossref_primary_10_1016_j_jallcom_2020_156963
crossref_primary_10_1134_S002315842460158X
crossref_primary_10_1016_j_cattod_2021_08_016
crossref_primary_10_1016_j_nxener_2024_100228
crossref_primary_10_3103_S1063455X21030115
crossref_primary_10_1016_j_jhazmat_2021_127416
crossref_primary_10_1039_D3RA06598G
crossref_primary_10_1016_j_colsurfa_2023_133106
crossref_primary_10_1016_j_optmat_2024_115390
crossref_primary_10_1016_j_cattod_2020_07_044
crossref_primary_10_1016_j_jclepro_2021_128563
crossref_primary_10_1016_j_jphotochemrev_2019_08_003
crossref_primary_10_1016_j_jics_2025_101821
crossref_primary_10_1038_s41598_024_61340_8
crossref_primary_10_1016_j_arabjc_2021_103180
crossref_primary_10_1016_j_jenvman_2022_115514
crossref_primary_10_1016_j_ijhydene_2019_03_149
crossref_primary_10_1016_j_eti_2023_103031
crossref_primary_10_3390_molecules29020442
crossref_primary_10_1016_j_jwpe_2020_101827
crossref_primary_10_1007_s10853_021_05965_4
crossref_primary_10_1016_j_jenvman_2024_123759
crossref_primary_10_1007_s11664_024_11574_z
crossref_primary_10_3390_catal10080924
crossref_primary_10_1007_s41779_022_00811_5
crossref_primary_10_1007_s10971_025_06921_3
crossref_primary_10_1016_j_jssc_2021_122801
crossref_primary_10_1016_j_ceramint_2025_08_073
crossref_primary_10_1002_adma_202505504
crossref_primary_10_1007_s13738_022_02671_z
crossref_primary_10_1016_j_molliq_2020_113588
crossref_primary_10_1016_j_arabjc_2020_02_012
crossref_primary_10_1007_s10098_020_01928_6
crossref_primary_10_1016_S1872_2067_19_63293_6
crossref_primary_10_1016_j_jece_2021_106814
crossref_primary_10_3389_fchem_2023_1252191
crossref_primary_10_3390_catal12121585
crossref_primary_10_1016_j_chemosphere_2021_131263
crossref_primary_10_3390_w16111481
crossref_primary_10_1007_s11356_023_29777_y
crossref_primary_10_1038_s41598_024_66429_8
crossref_primary_10_1039_D4RA00859F
crossref_primary_10_1177_11786221221117266
crossref_primary_10_1007_s10854_025_14529_0
crossref_primary_10_1016_j_apmt_2021_101345
crossref_primary_10_1016_j_ceramint_2023_02_034
crossref_primary_10_3390_ma17061354
crossref_primary_10_1016_j_jece_2021_106941
crossref_primary_10_3390_catal13071143
crossref_primary_10_1016_j_joule_2023_05_006
crossref_primary_10_1111_ijac_13765
crossref_primary_10_1007_s11144_020_01878_6
crossref_primary_10_1016_j_jphotochem_2019_112196
crossref_primary_10_1007_s11356_019_04680_7
crossref_primary_10_1680_jensu_23_00069
crossref_primary_10_1557_s43578_023_01077_8
crossref_primary_10_3390_catal10111245
crossref_primary_10_1007_s44274_025_00337_0
crossref_primary_10_1016_j_scitotenv_2023_161525
crossref_primary_10_1007_s41660_024_00479_3
crossref_primary_10_1016_j_materresbull_2020_110920
crossref_primary_10_1007_s11356_021_16507_5
crossref_primary_10_1016_j_matchemphys_2022_125948
crossref_primary_10_1016_j_scitotenv_2019_135404
crossref_primary_10_3390_ma15176022
crossref_primary_10_1016_j_cimid_2019_101403
crossref_primary_10_1039_D2NR06587H
crossref_primary_10_1039_D1EN00563D
crossref_primary_10_3390_catal11111351
crossref_primary_10_1002_slct_202500858
crossref_primary_10_1002_jctb_6247
crossref_primary_10_1039_D0EN00048E
ContentType Journal Article
DBID NPM
7X8
DOI 10.1088/1361-6528/aac6ea
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6528
ExternalDocumentID 29786601
Genre Journal Article
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
7X8
ADEQX
AEINN
ID FETCH-LOGICAL-c449t-642c7e5f87944ce864ce38d86f4fa338a9d20cfcaae4c103bc36baf2637df5912
IEDL.DBID 7X8
ISICitedReferencesCount 469
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435207600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-6528
IngestDate Fri Sep 05 05:56:58 EDT 2025
Thu Jan 02 22:59:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-642c7e5f87944ce864ce38d86f4fa338a9d20cfcaae4c103bc36baf2637df5912
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1088/1361-6528/aac6ea
PMID 29786601
PQID 2042750834
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2042750834
pubmed_primary_29786601
PublicationCentury 2000
PublicationDate 2018-08-24
PublicationDateYYYYMMDD 2018-08-24
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-24
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAlternate Nanotechnology
PublicationYear 2018
SSID ssj0011821
Score 2.687912
SecondaryResourceType review_article
Snippet There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 342001
Title Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review
URI https://www.ncbi.nlm.nih.gov/pubmed/29786601
https://www.proquest.com/docview/2042750834
Volume 29
WOSCitedRecordID wos000435207600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAggQDj_IqLxmJ1WqcOI7DghCi6gBVB5C6VRfHhi5JaQL9-5yTtGVBQmKxFCuJEufu8t3D3xFyo9Dp4UmoGGgtmLCex8BwztLANwFAigi3osx_igYDNRrFwybgVjRllQubWBnqNNcuRo5OunBU5CoQd9MP5rpGuexq00JjnbQChDKupCsarbIIiJ2bfVecydBXTZoSFau7nOsCaGngd4BZ_Wh6e_99xH2y20BMel_LxAFZM1mb7PwgHmyTrarwUxeH5K3v6mFyFCOTfxZ0-p6XeRXScUwlFLKUTkqczktXVYR3_ZnwppOMzhGrzqrz5lC4QJw7XFav31Kg9eaYI_Lae3x56LOm-QLTQsQlQ79ERya0ChVWaKMkDoFKlbTCAvq1EKe-p60GMEJzL0h0IBOwvgyi1IYx94_JRpZn5pTQJOUiFOBxFBdhZaKiyEi0q1ZKkSguO-R6sZ5jFG6XsYDqpcerFe2Qk_qjjKc1C8fYR_9Xojt59oerz8k2Ah1Hxc18cUFaFlXbXJJN_VVOitlVJTU4DobP37qQz0o
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+photocatalysis+and+its+potential+applications+in+water+and+wastewater+treatment%3A+a+review&rft.jtitle=Nanotechnology&rft.au=Ahmed%2C+Syed+Nabeel&rft.au=Haider%2C+Waseem&rft.date=2018-08-24&rft.issn=1361-6528&rft.eissn=1361-6528&rft.volume=29&rft.issue=34&rft.spage=342001&rft_id=info:doi/10.1088%2F1361-6528%2Faac6ea&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-6528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-6528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-6528&client=summon