Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network

Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Schizophrenia bulletin Ročník 38; číslo 2; s. 285
Hlavní autoři: Liu, Haihong, Kaneko, Yoshio, Ouyang, Xuan, Li, Li, Hao, Yihui, Chen, Eric Y H, Jiang, Tianzi, Zhou, Yuan, Liu, Zhening
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.03.2012
Témata:
ISSN:1745-1701, 1745-1701
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls. Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups. Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls. Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.
AbstractList Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls. Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups. Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls. Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.
Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.BACKGROUNDAbnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.METHODSResting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.RESULTSSchizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.CONCLUSIONResting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.
Author Liu, Zhening
Li, Li
Jiang, Tianzi
Ouyang, Xuan
Liu, Haihong
Chen, Eric Y H
Zhou, Yuan
Kaneko, Yoshio
Hao, Yihui
Author_xml – sequence: 1
  givenname: Haihong
  surname: Liu
  fullname: Liu, Haihong
  organization: Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
– sequence: 2
  givenname: Yoshio
  surname: Kaneko
  fullname: Kaneko, Yoshio
– sequence: 3
  givenname: Xuan
  surname: Ouyang
  fullname: Ouyang, Xuan
– sequence: 4
  givenname: Li
  surname: Li
  fullname: Li, Li
– sequence: 5
  givenname: Yihui
  surname: Hao
  fullname: Hao, Yihui
– sequence: 6
  givenname: Eric Y H
  surname: Chen
  fullname: Chen, Eric Y H
– sequence: 7
  givenname: Tianzi
  surname: Jiang
  fullname: Jiang, Tianzi
– sequence: 8
  givenname: Yuan
  surname: Zhou
  fullname: Zhou, Yuan
– sequence: 9
  givenname: Zhening
  surname: Liu
  fullname: Liu, Zhening
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20595202$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB9w5Ip84xRqu05THxHiJVXiQO-VH5vGNLVT2wGV_8R_JC1F6mlXmm9mtDtEPecdIHRNyR0lYjKOulJtPY5qSwp-hga04HlGC0J7J3sfDWP8IIRyMWUXqM9ILnJG2AD9vOvKfvumCuCsxo1MFlyKWDqDUwU24NbJsgSdwOBoVW3dKuJYyQDYOh1Axk4IEFMnZDHJBFh75zqD_bRp10H7HJxkXGcOVl3-J2AH6cuHNVZtws4nbA-NyWofAtRy33UwND7aU8MlOi9lHeHqOEdo8fS4eHjJ5m_Prw_380xzLlKWq6nQJeOcGgGFgVIoMjWFFLneC6D5xJSCS6ZnhhZMTXmpcjDAjOKs5GyEbv9im-C3bXfbcmOjhrqWDnwbl4JN6Gw2y1lH3hzJVm3ALJtgNzLslv8PZr8ay4dE
CitedBy_id crossref_primary_10_1016_j_neubiorev_2025_106239
crossref_primary_10_3389_fnins_2021_621716
crossref_primary_10_1016_j_pscychresns_2020_111170
crossref_primary_10_1016_j_pscychresns_2014_08_014
crossref_primary_10_1016_j_schres_2019_12_010
crossref_primary_10_1007_s12264_024_01214_1
crossref_primary_10_1177_0269881117705071
crossref_primary_10_1016_j_pnpbp_2020_109959
crossref_primary_10_1007_s12264_016_0090_1
crossref_primary_10_1016_j_schres_2017_10_007
crossref_primary_10_1093_schbul_sby112
crossref_primary_10_1002_hbm_25020
crossref_primary_10_1016_j_nicl_2015_03_017
crossref_primary_10_1016_j_biopsych_2023_12_002
crossref_primary_10_3389_fphar_2022_833518
crossref_primary_10_1038_s41386_018_0026_8
crossref_primary_10_1016_j_neuroimage_2011_12_090
crossref_primary_10_1016_j_neubiorev_2012_08_002
crossref_primary_10_1016_j_pscychresns_2025_111985
crossref_primary_10_1371_journal_pone_0133766
crossref_primary_10_1016_j_neuroimage_2013_04_002
crossref_primary_10_1016_j_schres_2011_03_020
crossref_primary_10_1111_jcpp_12307
crossref_primary_10_1016_j_conb_2015_07_008
crossref_primary_10_3390_ijms24031913
crossref_primary_10_1016_j_nicl_2022_102970
crossref_primary_10_1093_schbul_sbt163
crossref_primary_10_1371_journal_pcbi_1003591
crossref_primary_10_1038_s41537_025_00658_2
crossref_primary_10_1016_j_schres_2012_11_020
crossref_primary_10_3389_fpsyt_2017_00298
crossref_primary_10_1016_j_biopsych_2013_04_024
crossref_primary_10_1016_j_psychres_2022_114934
crossref_primary_10_1016_j_neuroimage_2011_07_086
crossref_primary_10_1016_j_schres_2018_01_003
crossref_primary_10_1002_brb3_2535
crossref_primary_10_3389_fnins_2019_00731
crossref_primary_10_1097_WNR_0000000000000622
crossref_primary_10_1016_j_neubiorev_2019_07_001
crossref_primary_10_3389_fnbeh_2015_00045
crossref_primary_10_1016_j_pneurobio_2016_08_003
crossref_primary_10_1146_annurev_clinpsy_032511_143049
crossref_primary_10_3389_fpsyt_2018_00137
crossref_primary_10_3389_fneur_2021_766736
crossref_primary_10_1016_j_tips_2014_05_001
crossref_primary_10_1371_journal_pone_0120030
crossref_primary_10_1002_wps_20177
crossref_primary_10_1093_schizbullopen_sgab032
crossref_primary_10_1016_j_neubiorev_2013_10_004
crossref_primary_10_1016_j_neucom_2019_07_061
crossref_primary_10_1016_j_pscychresns_2016_07_002
crossref_primary_10_1016_j_schres_2016_03_014
crossref_primary_10_1016_j_schres_2012_09_017
crossref_primary_10_1016_j_heliyon_2022_e10818
crossref_primary_10_1016_j_schres_2017_07_014
crossref_primary_10_1007_s11571_010_9126_9
crossref_primary_10_3389_fnins_2022_921547
crossref_primary_10_3390_jcm12093176
crossref_primary_10_1017_S0033291715002755
crossref_primary_10_1016_j_biopsych_2022_09_029
crossref_primary_10_1016_j_pscychresns_2017_03_012
crossref_primary_10_1093_schbul_sbx194
crossref_primary_10_1017_S0033291720002391
crossref_primary_10_1016_j_neuroimage_2014_04_009
crossref_primary_10_1016_j_brainres_2014_03_024
crossref_primary_10_1523_JNEUROSCI_2987_11_2011
crossref_primary_10_1017_S003329172000416X
crossref_primary_10_1111_pcn_13745
crossref_primary_10_1016_j_jpsychires_2020_02_005
crossref_primary_10_1111_ejn_15970
crossref_primary_10_1002_ajmg_b_32170
crossref_primary_10_1093_schbul_sbz103
crossref_primary_10_1017_S0033291716002816
crossref_primary_10_1002_hbm_23501
crossref_primary_10_1016_j_jad_2023_05_057
crossref_primary_10_1016_j_nicl_2018_09_016
crossref_primary_10_1016_j_ajp_2024_104106
crossref_primary_10_1038_srep11218
crossref_primary_10_1186_1475_925X_12_10
crossref_primary_10_3389_fncel_2022_1006797
crossref_primary_10_1007_s11065_012_9199_9
crossref_primary_10_1093_cercor_bhad131
crossref_primary_10_1016_j_ajp_2024_104077
crossref_primary_10_1038_s41398_017_0055_9
crossref_primary_10_1016_j_jagp_2013_03_005
crossref_primary_10_1016_j_schres_2014_03_031
crossref_primary_10_1016_j_nicl_2015_01_004
crossref_primary_10_1017_S0033291714002426
crossref_primary_10_1016_j_bcp_2013_06_011
crossref_primary_10_1016_j_psychres_2019_112603
crossref_primary_10_1038_srep17275
crossref_primary_10_1007_s12264_013_1300_8
crossref_primary_10_1002_hbm_22924
crossref_primary_10_3389_fnhum_2022_956831
crossref_primary_10_1093_schbul_sbac052
crossref_primary_10_1016_j_schres_2015_07_031
crossref_primary_10_1038_s41537_022_00288_y
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/schbul/sbq074
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1745-1701
ExternalDocumentID 20595202
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.GJ
.I3
.XZ
.ZR
0R~
123
186
18M
1KJ
1TH
2WC
4.4
48X
53G
5RE
5VS
5WA
5WD
70D
7RZ
85S
AABZA
AACZT
AAILS
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABNCP
ABNHQ
ABNKS
ABOCM
ABPPZ
ABPQP
ABPTD
ABQLI
ABQNK
ABQTQ
ABSMQ
ABVGC
ABVOZ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACHQT
ACNCT
ACPQG
ACUFI
ACUTJ
ACUTO
ACVCV
ACYHN
ADBBV
ADCFL
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEHFB
AEHKS
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFXAL
AGINJ
AGKEF
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APJGH
APWMN
AQKUS
ATGXG
AWKKM
AXUDD
AZXWR
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C45
CAG
CDBKE
CGNQK
CGR
COF
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
ECM
EE~
EIF
EJD
EMOBN
ENERS
EPA
F5P
F9B
FA8
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FTD
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HYE
HZ~
H~9
IOX
ISO
J21
JXSIZ
KBUDW
KOP
KSI
KSN
M-Z
M49
MBLQV
MHKGH
N4W
N9A
NGC
NOMLY
NOYVH
NPM
NTWIH
NU-
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPA
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PEELM
PHGZT
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
RZF
SPA
SV3
TEORI
TJX
TN5
TR2
TWZ
ULE
W8F
WH7
WOQ
X7H
XJT
XOL
YAYTL
YKOAZ
YNT
YR5
YROCO
YXANX
YYQ
YZZ
ZGI
ZKX
ZPI
~91
7X8
AAFWJ
AJBYB
NAPCQ
ID FETCH-LOGICAL-c449t-5b69cf2441d9e7def9b06d7a95c69cfec43df94a2c8d172b64fb5ede2db42f42
IEDL.DBID 7X8
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300731100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-1701
IngestDate Sun Sep 28 16:19:23 EDT 2025
Thu Apr 03 07:09:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-5b69cf2441d9e7def9b06d7a95c69cfec43df94a2c8d172b64fb5ede2db42f42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/schizophreniabulletin/article-pdf/38/2/285/16703962/sbq074.pdf
PMID 20595202
PQID 923188852
PQPubID 23479
ParticipantIDs proquest_miscellaneous_923188852
pubmed_primary_20595202
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Schizophrenia bulletin
PublicationTitleAlternate Schizophr Bull
PublicationYear 2012
References 16407773 - Neuroreport. 2006 Feb 6;17(2):209-13
16166612 - Schizophr Bull. 2006 Jan;32(1):179-94
15993895 - J Psychiatr Res. 2007 Jan-Feb;41(1-2):49-56
18488025 - Nat Neurosci. 2008 Jun;11(6):637-9
18299296 - Brain. 2008 Apr;131(Pt 4):945-61
10893535 - Magn Reson Med. 2000 Jul;44(1):162-7
16330585 - Am J Psychiatry. 2005 Dec;162(12):2233-45
18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37
18556667 - Schizophr Bull. 2009 Nov;35(6):1142-62
18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96
17079659 - J Neurosci. 2006 Nov 1;26(44):11313-23
17151161 - Am J Psychiatry. 2006 Dec;163(12):2103-10
7651009 - Lancet. 1995 Sep 2;346(8975):615-20
7476241 - Mem Cognit. 1995 Sep;23(5):551-9
11341714 - IEEE Trans Med Imaging. 2001 Mar;20(3):243-8
18854323 - Brain. 2008 Dec;131(Pt 12):3169-77
10719152 - Brain Res Brain Res Rev. 2000 Mar;31(2-3):251-69
19164577 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84
12880804 - Neuroimage. 2003 Jul;19(3):751-63
12880848 - Neuroimage. 2003 Jul;19(3):1233-9
8790444 - Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9985-90
17606811 - Arch Gen Psychiatry. 2007 Jul;64(7):772-80
19541369 - J Affect Disord. 2010 Mar;121(3):220-30
9137127 - Am J Psychiatry. 1997 May;154(5):682-4
17399900 - Neurosci Lett. 2007 May 7;417(3):297-302
19042912 - Schizophr Bull. 2009 Jan;35(1):19-31
12957705 - Schizophr Res. 2003 Oct 1;63(3):261-71
10769304 - J Cogn Neurosci. 2000 Jan;12(1):1-47
15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45
15474899 - Schizophr Res. 2004 Dec 1;71(2-3):285-95
18082428 - Neuroimage. 2008 Feb 15;39(4):1666-81
9613621 - Schizophr Bull. 1998;24(2):203-18
17560126 - Neuroimage. 2007 Aug 1;37(1):90-101
11074868 - Arch Gen Psychiatry. 2000 Nov;57(11):1033-8
14638592 - Am J Psychiatry. 2003 Dec;160(12):2209-15
10813800 - Am J Med Genet. 2000 Spring;97(1):12-7
20065955 - Mol Psychiatry. 2010 Aug;15(8):823-30
15927520 - Trends Cogn Sci. 2005 Jul;9(7):314-6
11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94
16246526 - Schizophr Res. 2006 Jan 31;81(2-3):217-26
18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74
18507885 - Psychol Med. 2008 Aug;38(8):1185-93
11513374 - Psychol Med. 2001 Aug;31(6):1065-78
9558644 - Neuroimage. 1998 Feb;7(2):119-32
18227083 - Schizophr Bull. 2008 Mar;34(2):330-40
17329470 - Am J Psychiatry. 2007 Mar;164(3):450-7
19666074 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73
12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
9549774 - Schizophr Res. 1998 Mar 10;30(2):115-25
11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
18598773 - Neuroimage. 2008 Sep 1;42(3):1178-84
3947207 - Arch Gen Psychiatry. 1986 Feb;43(2):114-24
17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003
8930966 - Neuroreport. 1996 Sep 2;7(13):2095-9
17628434 - Schizophr Res. 2007 Dec;97(1-3):194-205
15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29
17234951 - Science. 2007 Jan 19;315(5810):393-5
15846824 - Hum Brain Mapp. 2005 May;25(1):22-34
17525980 - Hum Brain Mapp. 2008 May;29(5):533-43
17716091 - Annu Rev Clin Psychol. 2005;1:321-53
19155345 - Schizophr Bull. 2009 May;35(3):509-27
17966093 - Am J Hum Genet. 2007 Dec;81(6):1158-68
17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12
7477346 - Nature. 1995 Nov 16;378(6554):279-81
18939983 - Source Code Biol Med. 2008 Oct 21;3:15
16343785 - Neuroscience. 2006 Apr 28;139(1):277-89
15337650 - Am J Psychiatry. 2004 Sep;161(9):1603-11
11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15
8941962 - Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1505-12
16361943 - Neuroreport. 2006 Jan 23;17(1):19-22
18486104 - Biol Psychiatry. 2008 Nov 1;64(9):774-81
12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60
19777578 - Hum Brain Mapp. 2010 Mar;31(3):424-37
7477318 - Nature. 1995 Nov 9;378(6553):176-9
11164733 - Trends Cogn Sci. 2001 Jan 1;5(1):26-36
References_xml – reference: 18486104 - Biol Psychiatry. 2008 Nov 1;64(9):774-81
– reference: 11341714 - IEEE Trans Med Imaging. 2001 Mar;20(3):243-8
– reference: 18507885 - Psychol Med. 2008 Aug;38(8):1185-93
– reference: 17399900 - Neurosci Lett. 2007 May 7;417(3):297-302
– reference: 17079659 - J Neurosci. 2006 Nov 1;26(44):11313-23
– reference: 11994752 - Nat Rev Neurosci. 2002 Mar;3(3):201-15
– reference: 17560126 - Neuroimage. 2007 Aug 1;37(1):90-101
– reference: 15852468 - Hum Brain Mapp. 2005 Sep;26(1):15-29
– reference: 15976020 - Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
– reference: 18598773 - Neuroimage. 2008 Sep 1;42(3):1178-84
– reference: 18939983 - Source Code Biol Med. 2008 Oct 21;3:15
– reference: 15474899 - Schizophr Res. 2004 Dec 1;71(2-3):285-95
– reference: 9549774 - Schizophr Res. 1998 Mar 10;30(2):115-25
– reference: 12880848 - Neuroimage. 2003 Jul;19(3):1233-9
– reference: 16407773 - Neuroreport. 2006 Feb 6;17(2):209-13
– reference: 19164577 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84
– reference: 11584306 - Nat Rev Neurosci. 2001 Oct;2(10):685-94
– reference: 17556752 - Schizophr Bull. 2007 Jul;33(4):1004-12
– reference: 18299296 - Brain. 2008 Apr;131(Pt 4):945-61
– reference: 11164733 - Trends Cogn Sci. 2001 Jan 1;5(1):26-36
– reference: 7477318 - Nature. 1995 Nov 9;378(6553):176-9
– reference: 11513374 - Psychol Med. 2001 Aug;31(6):1065-78
– reference: 11074868 - Arch Gen Psychiatry. 2000 Nov;57(11):1033-8
– reference: 18400922 - Ann N Y Acad Sci. 2008 Mar;1124:1-38
– reference: 8930966 - Neuroreport. 1996 Sep 2;7(13):2095-9
– reference: 17966093 - Am J Hum Genet. 2007 Dec;81(6):1158-68
– reference: 16246526 - Schizophr Res. 2006 Jan 31;81(2-3):217-26
– reference: 12957705 - Schizophr Res. 2003 Oct 1;63(3):261-71
– reference: 20065955 - Mol Psychiatry. 2010 Aug;15(8):823-30
– reference: 17606811 - Arch Gen Psychiatry. 2007 Jul;64(7):772-80
– reference: 8790444 - Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9985-90
– reference: 12506194 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):253-8
– reference: 18723676 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74
– reference: 18227083 - Schizophr Bull. 2008 Mar;34(2):330-40
– reference: 19155345 - Schizophr Bull. 2009 May;35(3):509-27
– reference: 15927520 - Trends Cogn Sci. 2005 Jul;9(7):314-6
– reference: 18082428 - Neuroimage. 2008 Feb 15;39(4):1666-81
– reference: 8941962 - Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1505-12
– reference: 7651009 - Lancet. 1995 Sep 2;346(8975):615-20
– reference: 7477346 - Nature. 1995 Nov 16;378(6554):279-81
– reference: 17329470 - Am J Psychiatry. 2007 Mar;164(3):450-7
– reference: 17234951 - Science. 2007 Jan 19;315(5810):393-5
– reference: 17525980 - Hum Brain Mapp. 2008 May;29(5):533-43
– reference: 12814576 - Neuroimage. 2003 Jun;19(2 Pt 1):253-60
– reference: 16361943 - Neuroreport. 2006 Jan 23;17(1):19-22
– reference: 16166612 - Schizophr Bull. 2006 Jan;32(1):179-94
– reference: 15846824 - Hum Brain Mapp. 2005 May;25(1):22-34
– reference: 15337650 - Am J Psychiatry. 2004 Sep;161(9):1603-11
– reference: 15993895 - J Psychiatr Res. 2007 Jan-Feb;41(1-2):49-56
– reference: 18556667 - Schizophr Bull. 2009 Nov;35(6):1142-62
– reference: 19666074 - Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1464-73
– reference: 19541369 - J Affect Disord. 2010 Mar;121(3):220-30
– reference: 18219617 - Hum Brain Mapp. 2009 Feb;30(2):625-37
– reference: 18854323 - Brain. 2008 Dec;131(Pt 12):3169-77
– reference: 18488025 - Nat Neurosci. 2008 Jun;11(6):637-9
– reference: 16330585 - Am J Psychiatry. 2005 Dec;162(12):2233-45
– reference: 10813800 - Am J Med Genet. 2000 Spring;97(1):12-7
– reference: 19777578 - Hum Brain Mapp. 2010 Mar;31(3):424-37
– reference: 19042912 - Schizophr Bull. 2009 Jan;35(1):19-31
– reference: 17151161 - Am J Psychiatry. 2006 Dec;163(12):2103-10
– reference: 7476241 - Mem Cognit. 1995 Sep;23(5):551-9
– reference: 10893535 - Magn Reson Med. 2000 Jul;44(1):162-7
– reference: 17716091 - Annu Rev Clin Psychol. 2005;1:321-53
– reference: 18824195 - Neurosci Biobehav Rev. 2009 Mar;33(3):279-96
– reference: 12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45
– reference: 12880804 - Neuroimage. 2003 Jul;19(3):751-63
– reference: 9558644 - Neuroimage. 1998 Feb;7(2):119-32
– reference: 9613621 - Schizophr Bull. 1998;24(2):203-18
– reference: 10769304 - J Cogn Neurosci. 2000 Jan;12(1):1-47
– reference: 3947207 - Arch Gen Psychiatry. 1986 Feb;43(2):114-24
– reference: 11209064 - Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
– reference: 17493957 - Schizophr Bull. 2007 Jul;33(4):994-1003
– reference: 10719152 - Brain Res Brain Res Rev. 2000 Mar;31(2-3):251-69
– reference: 14638592 - Am J Psychiatry. 2003 Dec;160(12):2209-15
– reference: 16343785 - Neuroscience. 2006 Apr 28;139(1):277-89
– reference: 17628434 - Schizophr Res. 2007 Dec;97(1-3):194-205
– reference: 9137127 - Am J Psychiatry. 1997 May;154(5):682-4
SSID ssj0014962
Score 2.399456
Snippet Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 285
SubjectTerms Adult
Case-Control Studies
Female
Frontal Lobe - pathology
Frontal Lobe - physiopathology
Functional Neuroimaging
Gyrus Cinguli - pathology
Gyrus Cinguli - physiopathology
Humans
Magnetic Resonance Imaging
Male
Neural Pathways - pathology
Neural Pathways - physiopathology
Parietal Lobe - pathology
Parietal Lobe - physiopathology
Prefrontal Cortex - pathology
Prefrontal Cortex - physiopathology
Schizophrenia - pathology
Schizophrenia - physiopathology
Siblings
Task Performance and Analysis
Temporal Lobe - pathology
Temporal Lobe - physiopathology
Title Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network
URI https://www.ncbi.nlm.nih.gov/pubmed/20595202
https://www.proquest.com/docview/923188852
Volume 38
WOSCitedRecordID wos000300731100016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwEK_ykgdWq6lrt_WEEAKxUFWiQ7fKjzNUIJfWKf-K_8jZCZQFMbBkcS62HPvyXe7zfYRc9rk1iHQ149xqJhxvMyMdZx7RfQG646yuxCZ6g0F_PFbDmpsTa1rll0_MjtrNbPpH3kpABKM1ya_e5iyJRqXkaq2gsU4aHUQyaVH3xqskglBZTxQxt2Sp7HhdYhNj-BZGjmb52opmXiSq32_gMn9k7nb-Obxdsl2jS3pdLYc9sgZhn3w8_iDWWVpXUo1UB0dznoAug860DnAUd0g6oB5pfNYLoNOQUGXEhqThgQ0sn0CiNvFjbKU8gTel59BSxxcW4CmXEqeh4pdTsyxpmJV0mnvEcSU5kFed-soGFWtsZXBARne3o5t7Vqs0MCuEKpk0XWU9ooS2U9Bz4JUpuq6nlbSpAazoOK-E5rbvEC2ZrvBGggPujOBe8EOyEWYBjgltK22NBgBj0H8XSntnvXDStyWAVq5J6NfcT3ATpMyGDjBbxsn37DfJUfX-Jm9VsY4JR_woecFP_jY-JVsIh3jFMDsjDY8OAM7Jpn0vp3FxkRcXXgfDh0-NB-Rm
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Schizophrenic+patients+and+their+unaffected+siblings+share+increased+resting-state+connectivity+in+the+task-negative+network+but+not+its+anticorrelated+task-positive+network&rft.jtitle=Schizophrenia+bulletin&rft.au=Liu%2C+Haihong&rft.au=Kaneko%2C+Yoshio&rft.au=Ouyang%2C+Xuan&rft.au=Li%2C+Li&rft.date=2012-03-01&rft.eissn=1745-1701&rft.volume=38&rft.issue=2&rft.spage=285&rft_id=info:doi/10.1093%2Fschbul%2Fsbq074&rft_id=info%3Apmid%2F20595202&rft_id=info%3Apmid%2F20595202&rft.externalDocID=20595202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-1701&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-1701&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-1701&client=summon