Photoelectrocatalytic H2 evolution from integrated photocatalysts adsorbed on NiO
A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H 2 evolution from water, using integrated photocatalysts, furnished with ester groups on the peripheral ligands, [Ru(decb) 2 (bpt)PdCl(H 2 O)](PF 6 ) 2 ( 1 ) and [Ru(decb) 2 (2,5-bpp)PtI(CH 3 CN)](PF 6 ) 2 ( 2...
Saved in:
| Published in: | Chemical science (Cambridge) Vol. 10; no. 1; pp. 99 - 112 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cambridge
Royal Society of Chemistry
2019
|
| Subjects: | |
| ISSN: | 2041-6520, 2041-6539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H
2
evolution from water, using integrated photocatalysts, furnished with ester groups on the peripheral ligands, [Ru(decb)
2
(bpt)PdCl(H
2
O)](PF
6
)
2
(
1
) and [Ru(decb)
2
(2,5-bpp)PtI(CH
3
CN)](PF
6
)
2
(
2
), (decb = 4,4′-diethylcarboxy-2,2′-bipyridine, bpp = 2,2':5′,2′′-terpyridine, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazole) is described. Overall,
1
|NiO is superior to previously reported photocathodes, producing photocurrent densities of 30–35 μA cm
−2
at an applied bias of −0.2 V
vs.
Ag/AgCl over 1 hour of continuous white light irradiation, resulting in the generation of 0.41 μmol h
−1
cm
−2
of H
2
with faradaic efficiencies of up to 90%. Furthermore, surface analysis of the photocathodes before and after photoelectrocatalysis revealed that the ruthenium bipyridyl chromophore and Pd catalytic centre (
1
) were photochemically stable, highlighting the benefits of the approach towards robust, hybrid solar-to-fuel devices. |
|---|---|
| AbstractList | A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H
2
evolution from water, using integrated photocatalysts, furnished with ester groups on the peripheral ligands, [Ru(decb)
2
(bpt)PdCl(H
2
O)](PF
6
)
2
(
1
) and [Ru(decb)
2
(2,5-bpp)PtI(CH
3
CN)](PF
6
)
2
(
2
), (decb = 4,4′-diethylcarboxy-2,2′-bipyridine, bpp = 2,2':5′,2′′-terpyridine, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazole) is described. Overall,
1
|NiO is superior to previously reported photocathodes, producing photocurrent densities of 30–35 μA cm
−2
at an applied bias of −0.2 V
vs.
Ag/AgCl over 1 hour of continuous white light irradiation, resulting in the generation of 0.41 μmol h
−1
cm
−2
of H
2
with faradaic efficiencies of up to 90%. Furthermore, surface analysis of the photocathodes before and after photoelectrocatalysis revealed that the ruthenium bipyridyl chromophore and Pd catalytic centre (
1
) were photochemically stable, highlighting the benefits of the approach towards robust, hybrid solar-to-fuel devices. A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H2 evolution from water is described, using integrated photocatalysts based on a ruthenium 4,4′-diethoxycarboxy-2,2′-bipyridine chromophore linked via terpyridine or triazole to a Pd or Pt-based H+ reduction catalyst. A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H2 evolution from water, using integrated photocatalysts, furnished with ester groups on the peripheral ligands, [Ru(decb)2(bpt)PdCl(H2O)](PF6)2 (1) and [Ru(decb)2(2,5-bpp)PtI(CH3CN)](PF6)2 (2), (decb = 4,4′-diethylcarboxy-2,2′-bipyridine, bpp = 2,2':5′,2′′-terpyridine, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazole) is described. Overall, 1|NiO is superior to previously reported photocathodes, producing photocurrent densities of 30–35 μA cm–2 at an applied bias of –0.2 V vs. Ag/AgCl over 1 hour of continuous white light irradiation, resulting in the generation of 0.41 μmol h–1 cm–2 of H2 with faradaic efficiencies of up to 90%. Furthermore, surface analysis of the photocathodes before and after photoelectrocatalysis revealed that the ruthenium bipyridyl chromophore and Pd catalytic centre (1) were photochemically stable, highlighting the benefits of the approach towards robust, hybrid solar-to-fuel devices. A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H2 evolution from water, using integrated photocatalysts, furnished with ester groups on the peripheral ligands, [Ru(decb)2(bpt)PdCl(H2O)](PF6)2 (1) and [Ru(decb)2(2,5-bpp)PtI(CH3CN)](PF6)2 (2), (decb = 4,4′-diethylcarboxy-2,2′-bipyridine, bpp = 2,2':5′,2′′-terpyridine, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazole) is described. Overall, 1|NiO is superior to previously reported photocathodes, producing photocurrent densities of 30–35 μA cm−2 at an applied bias of −0.2 V vs. Ag/AgCl over 1 hour of continuous white light irradiation, resulting in the generation of 0.41 μmol h−1 cm−2 of H2 with faradaic efficiencies of up to 90%. Furthermore, surface analysis of the photocathodes before and after photoelectrocatalysis revealed that the ruthenium bipyridyl chromophore and Pd catalytic centre (1) were photochemically stable, highlighting the benefits of the approach towards robust, hybrid solar-to-fuel devices. A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H2 evolution from water, using integrated photocatalysts, furnished with ester groups on the peripheral ligands, [Ru(decb)2(bpt)PdCl(H2O)](PF6)2 (1) and [Ru(decb)2(2,5-bpp)PtI(CH3CN)](PF6)2 (2), (decb = 4,4'-diethylcarboxy-2,2'-bipyridine, bpp = 2,2':5',2''-terpyridine, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazole) is described. Overall, 1|NiO is superior to previously reported photocathodes, producing photocurrent densities of 30-35 μA cm-2 at an applied bias of -0.2 V vs. Ag/AgCl over 1 hour of continuous white light irradiation, resulting in the generation of 0.41 μmol h-1 cm-2 of H2 with faradaic efficiencies of up to 90%. Furthermore, surface analysis of the photocathodes before and after photoelectrocatalysis revealed that the ruthenium bipyridyl chromophore and Pd catalytic centre (1) were photochemically stable, highlighting the benefits of the approach towards robust, hybrid solar-to-fuel devices.A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H2 evolution from water, using integrated photocatalysts, furnished with ester groups on the peripheral ligands, [Ru(decb)2(bpt)PdCl(H2O)](PF6)2 (1) and [Ru(decb)2(2,5-bpp)PtI(CH3CN)](PF6)2 (2), (decb = 4,4'-diethylcarboxy-2,2'-bipyridine, bpp = 2,2':5',2''-terpyridine, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazole) is described. Overall, 1|NiO is superior to previously reported photocathodes, producing photocurrent densities of 30-35 μA cm-2 at an applied bias of -0.2 V vs. Ag/AgCl over 1 hour of continuous white light irradiation, resulting in the generation of 0.41 μmol h-1 cm-2 of H2 with faradaic efficiencies of up to 90%. Furthermore, surface analysis of the photocathodes before and after photoelectrocatalysis revealed that the ruthenium bipyridyl chromophore and Pd catalytic centre (1) were photochemically stable, highlighting the benefits of the approach towards robust, hybrid solar-to-fuel devices. |
| Author | Pryce, Mary T. Vos, Johannes G. Portoles, Jose Põldme, Nils Fletcher, Ian Long, Conor Towrie, Michael O'Reilly, Laura Sazanovich, Igor V. Gibson, Elizabeth A. |
| AuthorAffiliation | a School of Natural and Environmental Science , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK . Email: Elizabeth.gibson@ncl.ac.uk b School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland . Email: Mary.pryce@dcu.ie c NEXUS XPS Laboratory , Newcastle University , Stephenson Building , Newcastle upon Tyne , NE1 7RU , UK . Email: nexus@ncl.ac.uk d Central Laser Facility , Research Complex at Harwell , STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxfordshire OX11 0QX , UK . Email: Igor.Sazanovich@stfc.ac.uk |
| AuthorAffiliation_xml | – name: b School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland . Email: Mary.pryce@dcu.ie – name: a School of Natural and Environmental Science , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK . Email: Elizabeth.gibson@ncl.ac.uk – name: c NEXUS XPS Laboratory , Newcastle University , Stephenson Building , Newcastle upon Tyne , NE1 7RU , UK . Email: nexus@ncl.ac.uk – name: d Central Laser Facility , Research Complex at Harwell , STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxfordshire OX11 0QX , UK . Email: Igor.Sazanovich@stfc.ac.uk |
| Author_xml | – sequence: 1 givenname: Nils surname: Põldme fullname: Põldme, Nils organization: School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, UK – sequence: 2 givenname: Laura surname: O'Reilly fullname: O'Reilly, Laura organization: School of Chemical Sciences, Dublin City University, Dublin 9, Ireland – sequence: 3 givenname: Ian surname: Fletcher fullname: Fletcher, Ian organization: NEXUS XPS Laboratory, Newcastle University, Newcastle upon Tyne, UK – sequence: 4 givenname: Jose surname: Portoles fullname: Portoles, Jose organization: NEXUS XPS Laboratory, Newcastle University, Newcastle upon Tyne, UK – sequence: 5 givenname: Igor V. surname: Sazanovich fullname: Sazanovich, Igor V. organization: Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, UK – sequence: 6 givenname: Michael surname: Towrie fullname: Towrie, Michael organization: Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot, UK – sequence: 7 givenname: Conor surname: Long fullname: Long, Conor organization: School of Chemical Sciences, Dublin City University, Dublin 9, Ireland – sequence: 8 givenname: Johannes G. surname: Vos fullname: Vos, Johannes G. organization: School of Chemical Sciences, Dublin City University, Dublin 9, Ireland – sequence: 9 givenname: Mary T. surname: Pryce fullname: Pryce, Mary T. organization: School of Chemical Sciences, Dublin City University, Dublin 9, Ireland – sequence: 10 givenname: Elizabeth A. orcidid: 0000-0002-6032-343X surname: Gibson fullname: Gibson, Elizabeth A. organization: School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, UK |
| BookMark | eNptkV1LwzAUhoNM3Jy78RcUvBFhmo-maW4EqZ8gfqBehzRNt4yumUk62L83ZTJRzE3COc95efOeQzBobasBOEbwHEHCL4r8rYCYMnq9B0YYpmiaUcIHuzeGQzDxfgHjIQRRzA7AkECGSIbxCLy-zG2wutEqOKtkkM0mGJXc40SvbdMFY9ukdnaZmDbomZNBV8mqH9myPvhEVt66MtYj-mSej8B-LRuvJ9_3GHzc3rwX99PH57uH4upxqtKUh2nKNNQyGlEcZlipqiaSSpJqXhHCCc1ypBgqaxZbNJOqJFmJZY4rzkgZZ8gYXG51V1251JXSbXCyEStnltJthJVG_O60Zi5mdi0yEnNgvcDpt4Czn532QSyNV7ppZKtt5wVGjNNoBPGInvxBF7ZzbfxepGie5nkf6BicbSnlrPdO1zszCIp-WeJnWRGGf2BlguzzjmZN89_IF5EOl-k |
| CitedBy_id | crossref_primary_10_1016_j_jpowsour_2025_237330 crossref_primary_10_1038_s41467_024_47517_9 crossref_primary_10_1002_anie_202013678 crossref_primary_10_1002_ange_202013678 crossref_primary_10_1595_205651324X17092043851525 crossref_primary_10_1016_j_ccr_2022_214624 crossref_primary_10_1595_205651322X16269403109779 crossref_primary_10_1016_j_ces_2019_115266 crossref_primary_10_1039_D3SE00442B crossref_primary_10_1016_j_apcatb_2020_119249 crossref_primary_10_1063_5_0170022 crossref_primary_10_1016_j_jtice_2020_01_003 crossref_primary_10_1039_D1CS01164B crossref_primary_10_1016_j_colsurfa_2020_125743 crossref_primary_10_1016_j_jece_2022_108199 crossref_primary_10_1016_j_ccr_2020_213516 crossref_primary_10_1088_1361_6528_abae9a crossref_primary_10_1116_1_5140747 crossref_primary_10_1002_cptc_202000309 crossref_primary_10_3390_catal10111340 crossref_primary_10_1007_s10800_019_01340_z |
| Cites_doi | 10.1063/1.448800 10.1021/ic500089b 10.1063/1.448799 10.1063/1.2173258 10.1039/c2ee22866a 10.1039/C1CC16144J 10.1016/0368-2048(95)02392-5 10.1016/S0010-8545(00)00245-9 10.1021/jacs.6b03889 10.1016/j.cplett.2004.06.011 10.1002/cphc.201100245 10.1021/ic00285a034 10.1039/C6SC00715E 10.1039/C2CC16101J 10.1021/jp511469f 10.1016/0009-2614(96)00349-1 10.1103/PhysRevA.42.193 10.1021/jacs.5b04856 10.1080/00397919508011487 10.1016/j.jphotochem.2008.04.007 10.1039/c29710000602 10.1039/C6SC02477G 10.1021/acs.inorgchem.5b01752 10.1021/acs.jpcc.7b01911 10.1021/ic50190a006 10.1039/C4CP05663A 10.1021/jacs.5b03737 10.1002/sia.3026 10.1016/j.susc.2006.01.041 10.1021/jacs.5b07723 10.1021/jp991681r 10.1039/C7CS00322F 10.1002/cssc.201700285 10.1103/PhysRevB.37.785 10.1021/ja711090w 10.1021/ic50202a027 10.1016/S0022-328X(01)01079-8 10.1021/nn503869n 10.1021/cr9904009 10.1039/b912468c 10.1021/jp984414e 10.1016/S0927-0248(99)00168-3 10.1039/C5FD00068H 10.1021/j100412a082 10.1021/jo01012a522 10.1021/acsami.7b05856 10.1002/anie.200600543 10.1039/C6EE02903E 10.1002/anie.201511822 10.1021/jacs.6b05865 10.1002/chem.201504015 10.1021/jp003499s 10.1021/ic0400991 10.1039/C5SC01752A 10.1116/1.577145 10.1039/C2CS35246J 10.1021/acsami.7b01532 10.1039/C8SC00899J 10.1039/c2dt30829k 10.1016/j.ccr.2012.04.017 10.1063/1.448975 10.1063/1.464913 10.1039/C4CP04489D 10.1021/ja404525e 10.1039/C6CC05222C |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 2019 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 2019 |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1039/C8SC02575D |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 112 |
| ExternalDocumentID | PMC6333170 10_1039_C8SC02575D |
| GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFBY AAFWJ AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ACRPL ADBBV ADMRA ADNMO AEFDR AENEX AESAV AETIL AFLYV AFPKN AFRZK AFVBQ AGEGJ AGMRB AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI AOIJS APEMP ASPBG AUDPV AVWKF AZFZN BCNDV BLAPV BSQNT C6K CAG CITATION COF D0L ECGLT EE0 EF- F5P FEDTE GROUPED_DOAJ H13 HVGLF HYE HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS ROL RPM RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c449t-47e0ea307c9062ccdf3a5a34e9d33935681c71bf7ccd56acb36b2a82d973bc903 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454835000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Tue Nov 04 01:59:14 EST 2025 Sun Nov 09 04:56:54 EST 2025 Fri Jul 25 07:06:56 EDT 2025 Tue Nov 18 21:27:54 EST 2025 Sat Nov 29 05:54:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c449t-47e0ea307c9062ccdf3a5a34e9d33935681c71bf7ccd56acb36b2a82d973bc903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 LO'R and NP contributed equally to this work. |
| ORCID | 0000-0002-6032-343X |
| OpenAccessLink | http://dx.doi.org/10.1039/c8sc02575d |
| PMID | 30713622 |
| PQID | 2158488071 |
| PQPubID | 2047492 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6333170 proquest_miscellaneous_2179535619 proquest_journals_2158488071 crossref_primary_10_1039_C8SC02575D crossref_citationtrail_10_1039_C8SC02575D |
| PublicationCentury | 2000 |
| PublicationDate | 2019-00-00 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationYear | 2019 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Karnahl (C8SC02575D-(cit45)/*[position()=1]) 2011; 12 Click (C8SC02575D-(cit40)/*[position()=1]) 2016; 138 Pati (C8SC02575D-(cit15)/*[position()=1]) 2017; 10 Brown (C8SC02575D-(cit19)/*[position()=1]) 2016; 138 Fairley (C8SC02575D-(cit53)/*[position()=1]) 2005 He (C8SC02575D-(cit7)/*[position()=1]) 2000; 62 Sleigh (C8SC02575D-(cit70)/*[position()=1]) 1996; 77 Clark (C8SC02575D-(cit38)/*[position()=1]) 1971; 603 Fleisch (C8SC02575D-(cit71)/*[position()=1]) 1986; 90 Tong (C8SC02575D-(cit13)/*[position()=1]) 2012; 5 Sumikura (C8SC02575D-(cit51)/*[position()=1]) 2008; 199 Swierk (C8SC02575D-(cit3)/*[position()=1]) 2013; 42 Tomasi (C8SC02575D-(cit64)/*[position()=1]) 2005; 105 Du (C8SC02575D-(cit46)/*[position()=1]) 2008; 130 Yanai (C8SC02575D-(cit58)/*[position()=1]) 2004; 393 Click (C8SC02575D-(cit31)/*[position()=1]) 2017; 121 Gallagher (C8SC02575D-(cit74)/*[position()=1]) 2005; 40 Kamire (C8SC02575D-(cit17)/*[position()=1]) 2017; 8 Brant (C8SC02575D-(cit72)/*[position()=1]) 1979; 18 Francàs (C8SC02575D-(cit4)/*[position()=1]) 2016; 22 Mersch (C8SC02575D-(cit9)/*[position()=1]) 2015; 137 Li (C8SC02575D-(cit12)/*[position()=1]) 2012; 48 Bräutigam (C8SC02575D-(cit29)/*[position()=1]) 2015; 17 Cossi (C8SC02575D-(cit65)/*[position()=1]) 1996; 255 Kaeffer (C8SC02575D-(cit26)/*[position()=1]) 2018; 9 Fanni (C8SC02575D-(cit30)/*[position()=1]) 2000; 208 Hay (C8SC02575D-(cit61)/*[position()=1]) 1985; 82 Thiele (C8SC02575D-(cit73)/*[position()=1]) 1994; 6 Dunning Jr (C8SC02575D-(cit59)/*[position()=1]) 1997 Lee (C8SC02575D-(cit56)/*[position()=1]) 1988; 37 Odobel (C8SC02575D-(cit1)/*[position()=1]) 2012; 4 Lee (C8SC02575D-(cit8)/*[position()=1]) 2016; 55 Li (C8SC02575D-(cit43)/*[position()=1]) 2015; 137 Kowacs (C8SC02575D-(cit25)/*[position()=1]) 2015; 185 Sullivan (C8SC02575D-(cit49)/*[position()=1]) 1978; 17 Shan (C8SC02575D-(cit10)/*[position()=1]) 2016; 9 Boschloo (C8SC02575D-(cit18)/*[position()=1]) 2001; 105 Agnès (C8SC02575D-(cit37)/*[position()=1]) 2009; 11 Wadt (C8SC02575D-(cit62)/*[position()=1]) 1985; 82 Castillo (C8SC02575D-(cit20)/*[position()=1]) 2015; 119 Lapides (C8SC02575D-(cit21)/*[position()=1]) 2015; 6 Dillon (C8SC02575D-(cit24)/*[position()=1]) 2017; 9 Oki (C8SC02575D-(cit48)/*[position()=1]) 1995; 25 Kaeffer (C8SC02575D-(cit34)/*[position()=1]) 2016; 138 Leung (C8SC02575D-(cit11)/*[position()=1]) 2017; 56 Biesinger (C8SC02575D-(cit35)/*[position()=1]) 2009; 41 Gross (C8SC02575D-(cit16)/*[position()=1]) 2016; 7 Moulder (C8SC02575D-(cit39)/*[position()=1]) 1992 Smeigh (C8SC02575D-(cit23)/*[position()=1]) 2012; 48 Grosvenor (C8SC02575D-(cit36)/*[position()=1]) 2006; 600 Lee (C8SC02575D-(cit57)/*[position()=1]) 1990; 42 Hay (C8SC02575D-(cit60)/*[position()=1]) 1985; 82 Scalmani (C8SC02575D-(cit63)/*[position()=1]) 2006; 124 Hage (C8SC02575D-(cit50)/*[position()=1]) 1988; 27 Geldard (C8SC02575D-(cit47)/*[position()=1]) 1965; 30 Summers (C8SC02575D-(cit52)/*[position()=1]) 2014; 53 Rau (C8SC02575D-(cit44)/*[position()=1]) 2006; 45 Pan (C8SC02575D-(cit28)/*[position()=1]) 2016; 52 Odobel (C8SC02575D-(cit42)/*[position()=1]) 2012; 256 Kim (C8SC02575D-(cit22)/*[position()=1]) 2014; 8 He (C8SC02575D-(cit6)/*[position()=1]) 1999; 103 Fan (C8SC02575D-(cit5)/*[position()=1]) 2014; 16 Freys (C8SC02575D-(cit41)/*[position()=1]) 2012; 41 Ji (C8SC02575D-(cit14)/*[position()=1]) 2013; 135 Gibson (C8SC02575D-(cit2)/*[position()=1]) 2017; 46 Becke (C8SC02575D-(cit55)/*[position()=1]) 1993; 98 Schwieters (C8SC02575D-(cit54)/*[position()=1]) 1991; 9 Boschloo (C8SC02575D-(cit32)/*[position()=1]) 1999; 103 D'Amario (C8SC02575D-(cit33)/*[position()=1]) 2017; 9 Kowacs (C8SC02575D-(cit27)/*[position()=1]) 2016; 55 Gorelsky (C8SC02575D-(cit69)/*[position()=1]) 2001; 635 |
| References_xml | – volume: 82 start-page: 284 year: 1985 ident: C8SC02575D-(cit62)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448800 – volume: 53 start-page: 4430 year: 2014 ident: C8SC02575D-(cit52)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic500089b – volume: 56 start-page: 510 year: 2017 ident: C8SC02575D-(cit11)/*[position()=1] publication-title: Chem. Sci. – volume: 82 start-page: 270 year: 1985 ident: C8SC02575D-(cit60)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – volume-title: Modern Theoretical Chemistry year: 1997 ident: C8SC02575D-(cit59)/*[position()=1] – volume: 124 start-page: 94107 year: 2006 ident: C8SC02575D-(cit63)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2173258 – volume: 5 start-page: 9472 year: 2012 ident: C8SC02575D-(cit13)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22866a – volume: 48 start-page: 678 year: 2012 ident: C8SC02575D-(cit23)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C1CC16144J – volume: 77 start-page: 41 year: 1996 ident: C8SC02575D-(cit70)/*[position()=1] publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/0368-2048(95)02392-5 – volume: 208 start-page: 77 year: 2000 ident: C8SC02575D-(cit30)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(00)00245-9 – volume: 138 start-page: 8060 year: 2016 ident: C8SC02575D-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03889 – volume: 393 start-page: 51 year: 2004 ident: C8SC02575D-(cit58)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.06.011 – volume: 12 start-page: 2101 year: 2011 ident: C8SC02575D-(cit45)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.201100245 – volume: 27 start-page: 2185 year: 1988 ident: C8SC02575D-(cit50)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic00285a034 – year: 2005 ident: C8SC02575D-(cit53)/*[position()=1] – volume: 7 start-page: 242 year: 2016 ident: C8SC02575D-(cit16)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC00715E – volume: 48 start-page: 988 year: 2012 ident: C8SC02575D-(cit12)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C2CC16101J – volume: 119 start-page: 5806 year: 2015 ident: C8SC02575D-(cit20)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp511469f – volume: 255 start-page: 327 year: 1996 ident: C8SC02575D-(cit65)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(96)00349-1 – volume: 42 start-page: 193 year: 1990 ident: C8SC02575D-(cit57)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.42.193 – volume: 137 start-page: 9153 year: 2015 ident: C8SC02575D-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04856 – volume: 25 start-page: 4093 year: 1995 ident: C8SC02575D-(cit48)/*[position()=1] publication-title: Synth. Commun. doi: 10.1080/00397919508011487 – volume: 199 start-page: 1 year: 2008 ident: C8SC02575D-(cit51)/*[position()=1] publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2008.04.007 – volume: 603 start-page: 602 year: 1971 ident: C8SC02575D-(cit38)/*[position()=1] publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c29710000602 – volume: 8 start-page: 541 year: 2017 ident: C8SC02575D-(cit17)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC02477G – volume: 55 start-page: 2685 year: 2016 ident: C8SC02575D-(cit27)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01752 – volume: 121 start-page: 8787 year: 2017 ident: C8SC02575D-(cit31)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b01911 – volume: 17 start-page: 3334 year: 1978 ident: C8SC02575D-(cit49)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic50190a006 – volume: 17 start-page: 7823 year: 2015 ident: C8SC02575D-(cit29)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05663A – volume: 137 start-page: 8541 year: 2015 ident: C8SC02575D-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03737 – volume: 41 start-page: 324 year: 2009 ident: C8SC02575D-(cit35)/*[position()=1] publication-title: Surf. Interface Anal. doi: 10.1002/sia.3026 – volume: 600 start-page: 1771 year: 2006 ident: C8SC02575D-(cit36)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/j.susc.2006.01.041 – volume: 138 start-page: 1174 year: 2016 ident: C8SC02575D-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07723 – volume: 103 start-page: 8940 year: 1999 ident: C8SC02575D-(cit6)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp991681r – volume: 46 start-page: 6194 year: 2017 ident: C8SC02575D-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00322F – volume: 10 start-page: 2480 year: 2017 ident: C8SC02575D-(cit15)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201700285 – volume: 37 start-page: 785 year: 1988 ident: C8SC02575D-(cit56)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.785 – volume: 130 start-page: 5056 year: 2008 ident: C8SC02575D-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja711090w – volume: 18 start-page: 3422 year: 1979 ident: C8SC02575D-(cit72)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic50202a027 – volume: 635 start-page: 187 year: 2001 ident: C8SC02575D-(cit69)/*[position()=1] publication-title: J. Organomet. Chem. doi: 10.1016/S0022-328X(01)01079-8 – volume: 8 start-page: 12199 year: 2014 ident: C8SC02575D-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn503869n – volume: 105 start-page: 2999 year: 2005 ident: C8SC02575D-(cit64)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 11 start-page: 11647 year: 2009 ident: C8SC02575D-(cit37)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b912468c – volume: 103 start-page: 2228 year: 1999 ident: C8SC02575D-(cit32)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp984414e – volume: 62 start-page: 265 year: 2000 ident: C8SC02575D-(cit7)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(99)00168-3 – volume: 185 start-page: 143 year: 2015 ident: C8SC02575D-(cit25)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/C5FD00068H – volume: 90 start-page: 5317 year: 1986 ident: C8SC02575D-(cit71)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100412a082 – volume: 30 start-page: 318 year: 1965 ident: C8SC02575D-(cit47)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo01012a522 – volume: 9 start-page: 26786 year: 2017 ident: C8SC02575D-(cit24)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05856 – volume-title: Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data year: 1992 ident: C8SC02575D-(cit39)/*[position()=1] – volume: 45 start-page: 6215 year: 2006 ident: C8SC02575D-(cit44)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200600543 – volume: 9 start-page: 3693 year: 2016 ident: C8SC02575D-(cit10)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02903E – volume: 55 start-page: 5971 year: 2016 ident: C8SC02575D-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201511822 – volume: 138 start-page: 12308 year: 2016 ident: C8SC02575D-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05865 – volume: 22 start-page: 5261 year: 2016 ident: C8SC02575D-(cit4)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201504015 – volume: 4 start-page: 2551 year: 2012 ident: C8SC02575D-(cit1)/*[position()=1] publication-title: Coord. Chem. Rev. – volume: 105 start-page: 3039 year: 2001 ident: C8SC02575D-(cit18)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp003499s – volume: 40 start-page: 2089 year: 2005 ident: C8SC02575D-(cit74)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic0400991 – volume: 6 start-page: 6398 year: 2015 ident: C8SC02575D-(cit21)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC01752A – volume: 6 start-page: 5025 year: 1994 ident: C8SC02575D-(cit73)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 9 start-page: 2864 year: 1991 ident: C8SC02575D-(cit54)/*[position()=1] publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.577145 – volume: 42 start-page: 2357 year: 2013 ident: C8SC02575D-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35246J – volume: 9 start-page: 33470 year: 2017 ident: C8SC02575D-(cit33)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01532 – volume: 9 start-page: 6721 year: 2018 ident: C8SC02575D-(cit26)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC00899J – volume: 41 start-page: 13105 year: 2012 ident: C8SC02575D-(cit41)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c2dt30829k – volume: 256 start-page: 2414 year: 2012 ident: C8SC02575D-(cit42)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.04.017 – volume: 82 start-page: 299 year: 1985 ident: C8SC02575D-(cit61)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448975 – volume: 98 start-page: 5648 year: 1993 ident: C8SC02575D-(cit55)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 16 start-page: 25234 year: 2014 ident: C8SC02575D-(cit5)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04489D – volume: 135 start-page: 11696 year: 2013 ident: C8SC02575D-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404525e – volume: 52 start-page: 9371 year: 2016 ident: C8SC02575D-(cit28)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC05222C |
| SSID | ssj0000331527 |
| Score | 2.4079626 |
| Snippet | A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H
2
evolution from water, using integrated photocatalysts, furnished... A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H2 evolution from water, using integrated photocatalysts, furnished... A new approach to increasing the faradaic efficiency of dye-sensitised photocathodes for H2 evolution from water is described, using integrated photocatalysts... |
| SourceID | pubmedcentral proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 99 |
| SubjectTerms | Catalysis Chemistry Chromophores Hydrogen evolution Light irradiation Nickel oxides Photocatalysis Photocatalysts Photocathodes Photoelectric effect Photoelectric emission Ruthenium Silver chloride Surface analysis (chemical) White light |
| Title | Photoelectrocatalytic H2 evolution from integrated photocatalysts adsorbed on NiO |
| URI | https://www.proquest.com/docview/2158488071 https://www.proquest.com/docview/2179535619 https://pubmed.ncbi.nlm.nih.gov/PMC6333170 |
| Volume | 10 |
| WOSCitedRecordID | wos000454835000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: HEAL-Link subscriptions: Royal Society of Chemistry customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_mEPTFb7E6R0VffCi2Tdokj1Ide5D5DXsraZLiQNqxVsH_3qRrOwsKvja_0PTukrsmud8BXEjOpcDMdyTDyMGYYIfz1Ne2rIj2npSlrEoUviOTCZ1O2UMPLv44wUfsKqLPkXbMJLgxCy0JTX2Gp6eo3UhxEapLs_ou9pww8N2GhrTTu-t4VtFk9y7kD-cy2v7fsHZgqw4e7eultnehp7I92Iiamm378Pjwlpd5Xdqm2pn50lB77Nvqs7Yx2ySU2C1LhLTnpssSW5SFzWWRLxL9XEMns_sDeB3dvkRjpy6a4AiMWelgolzF9cwVhoFYCJkiHnCEFZPIpOGG1BPES1Kim4KQiwSFic-pLxlBie6DDqGf5Zk6MuncIaVpipie9lhxzohUVDJJEp4azhkLLhuJxqJmFDeFLd7j6mQbsXglJAvOW-x8yaPxK2rQKCau51IR66CEmmWGeBactc1asOZog2cq_zAYwgL9cR6zgHQU2r7N8Gh3W7LZW8WnHSJtQsQ9_tcQT2BTx0xsuQszgH65-FCnsC4-y1mxGMIamdJh9WM_rMz0G4Bn4Qw |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectrocatalytic+H2+evolution+from+integrated+photocatalysts+adsorbed+on+NiO&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=P%C3%B5ldme%2C+Nils&rft.au=O%27Reilly%2C+Laura&rft.au=Fletcher%2C+Ian&rft.au=Portoles%2C+Jose&rft.date=2019&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=10&rft.issue=1&rft.spage=99&rft.epage=112&rft_id=info:doi/10.1039%2FC8SC02575D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8SC02575D |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |