An adaptive ensemble of on-line Extreme Learning Machines with variable forgetting factor for dynamic system prediction

A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-varying, on-line learning algorithms should be adaptive to capture process changes. On-line ensemble methods have been shown to provide better generalization performance tha...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 171; no. C; pp. 693 - 707
Main Authors: Soares, Symone G., Araújo, Rui
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.01.2016
Elsevier
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-varying, on-line learning algorithms should be adaptive to capture process changes. On-line ensemble methods have been shown to provide better generalization performance than single models in changing environments. However, most on-line ensembles do not include and exclude models during on-line operation. As a result, the ensembles have limited adaptation capability. Moreover, a higher performance can be obtained by combining a selected set of most relevant models of the ensemble for the current situation, rather than combining all the models. This paper proposes a new on-line learning ensemble of regressor models using an ordered aggregation (OA) technique which is able to provide on-line predictions of variables in changing environments. OA dynamically selects an optimal size and composition of a subset of models based on the minimization of the ensemble error on the newest sample. The proposed strategy overcomes the problem of defining the optimal ensemble size, and in most cases it obtains better performance than aggregating all the models. Models are added or removed for assuring adaptation of the ensemble in changing environments. Furthermore, this paper proposes and integrates a new on-line Extreme Learning Machine (ELM) neural network model with variable forgetting factor (FF) using the directional FF method which shows superior performance in industrial applications when compared to the well-known On-line Sequential ELM (OS-ELM) algorithm. Experiments are reported to demonstrate the performance and effectiveness of the proposed methods.
AbstractList A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-varying, on-line learning algorithms should be adaptive to capture process changes. On-line ensemble methods have been shown to provide better generalization performance than single models in changing environments. However, most on-line ensembles do not include and exclude models during on-line operation. As a result, the ensembles have limited adaptation capability. Moreover, a higher performance can be obtained by combining a selected set of most relevant models of the ensemble for the current situation, rather than combining all the models. This paper proposes a new on-line learning ensemble of regressor models using an ordered aggregation (OA) technique which is able to provide on-line predictions of variables in changing environments. OA dynamically selects an optimal size and composition of a subset of models based on the minimization of the ensemble error on the newest sample. The proposed strategy overcomes the problem of defining the optimal ensemble size, and in most cases it obtains better performance than aggregating all the models. Models are added or removed for assuring adaptation of the ensemble in changing environments. Furthermore, this paper proposes and integrates a new on-line Extreme Learning Machine (ELM) neural network model with variable forgetting factor (FF) using the directional FF method which shows superior performance in industrial applications when compared to the well-known On-line Sequential ELM (OS-ELM) algorithm. Experiments are reported to demonstrate the performance and effectiveness of the proposed methods.
Author Araújo, Rui
Soares, Symone G.
Author_xml – sequence: 1
  givenname: Symone G.
  orcidid: 0000-0001-9783-6506
  surname: Soares
  fullname: Soares, Symone G.
  email: symonesoares@isr.uc.pt
– sequence: 2
  givenname: Rui
  orcidid: 0000-0002-1007-8675
  surname: Araújo
  fullname: Araújo, Rui
  email: rui@isr.uc.pt
BackLink https://www.osti.gov/biblio/1359615$$D View this record in Osti.gov
BookMark eNqFkEFrGzEQhUVJoU7af9CD6H23kla7K_VQCCFpAw65tGcxlkaxjFcykurU_z67uKcektPAzPse894luYgpIiGfOWs548PXXRvxj01TKxjvWza2rOvfkRVXo2iUUMMFWTEt-kZ0XHwgl6XsGOMjF3pFnq8jBQeHGo5IMRacNnukydMUm32ISG__1owT0jVCjiE-0Qew2_lQ6HOoW3qEHGBBfMpPWOui8GBrysuGulOEKVhaTqXiRA8ZXbA1pPiRvPewL_jp37wiv-9uf938bNaPP-5vrteNlVLXRng79H4QvUMU1ik5jCBBSjd6vtHSw7BRY6cVuM2cTWkrOdeOgeNKMdvp7op8OfumUoMpNlS0W5tiRFsN73o98H4WybPI5lRKRm8OOUyQT4YzszRsdubcsFkaNmw0c8Mz9u0_bLaHJV3NEPZvwd_PMM7pjwHz8hxGOxeUl99cCq8bvABDlZ4o
CitedBy_id crossref_primary_10_1109_TC_2020_2973631
crossref_primary_10_1016_j_engappai_2018_01_010
crossref_primary_10_1155_2018_6195387
crossref_primary_10_1016_j_eswa_2016_08_052
crossref_primary_10_1109_JSEN_2020_3033153
crossref_primary_10_1177_1748302619895421
crossref_primary_10_3390_aerospace10120994
crossref_primary_10_1016_j_engappai_2023_107757
crossref_primary_10_1177_0959651820975245
crossref_primary_10_1049_iet_rpg_2020_0315
crossref_primary_10_1016_j_neunet_2017_04_001
crossref_primary_10_1007_s00500_020_05289_6
crossref_primary_10_1016_j_chemolab_2017_01_004
crossref_primary_10_1016_j_jenvman_2018_12_090
crossref_primary_10_1016_j_jfranklin_2020_05_031
crossref_primary_10_1109_ACCESS_2019_2959032
crossref_primary_10_1109_TIM_2023_3277998
crossref_primary_10_1016_j_chemolab_2020_104043
crossref_primary_10_1016_j_engappai_2019_03_012
crossref_primary_10_1007_s13042_020_01218_z
crossref_primary_10_1016_j_knosys_2019_04_008
crossref_primary_10_1016_j_ymssp_2020_106899
crossref_primary_10_1108_SR_09_2020_0205
crossref_primary_10_1002_rnc_4698
crossref_primary_10_1016_j_chemolab_2023_104942
crossref_primary_10_1016_j_neucom_2025_130397
crossref_primary_10_1007_s10846_019_00998_z
crossref_primary_10_1016_j_neucom_2016_04_043
crossref_primary_10_1016_j_sna_2016_04_055
crossref_primary_10_1016_j_engappai_2023_105927
crossref_primary_10_1109_JSTQE_2020_3043779
crossref_primary_10_1109_JSEN_2018_2818886
crossref_primary_10_1016_j_neucom_2015_10_028
crossref_primary_10_1109_TIM_2020_3018568
crossref_primary_10_1016_j_enconman_2017_02_004
crossref_primary_10_1109_TKDE_2018_2876857
crossref_primary_10_1016_j_engappai_2018_05_006
crossref_primary_10_1007_s11063_018_9888_3
crossref_primary_10_1016_j_resourpol_2021_102148
crossref_primary_10_1016_j_neucom_2020_01_083
crossref_primary_10_1109_ACCESS_2018_2815503
crossref_primary_10_1016_j_arcontrol_2022_04_006
crossref_primary_10_1007_s10462_020_09844_3
crossref_primary_10_1016_j_petrol_2017_10_052
Cites_doi 10.1145/1102351.1102408
10.1016/j.eswa.2014.06.046
10.1016/j.chemolab.2014.06.008
10.1016/j.neucom.2014.05.068
10.1016/j.neucom.2011.12.046
10.1016/j.laa.2006.07.007
10.1016/j.inffus.2008.11.003
10.1109/IJCNN.2009.5178779
10.1016/j.eswa.2013.06.057
10.1109/IJCNN.2006.1716814
10.1525/9780520325883-032
10.1016/S0004-3702(02)00190-X
10.1016/j.eswa.2014.11.053
10.1016/j.compchemeng.2006.05.030
10.1016/j.neucom.2014.10.006
10.1109/TNN.2011.2160459
10.1109/ETFA.2013.6648038
10.1016/S0005-1098(00)00093-5
10.1016/j.energy.2013.02.062
10.1162/neco.2006.18.7.1678
10.1145/502512.502565
10.1016/j.eswa.2014.08.018
10.1016/j.neucom.2012.02.003
10.1016/j.engappai.2014.10.003
10.1016/j.neucom.2012.03.011
10.1016/j.neucom.2014.03.005
10.1016/j.compchemeng.2013.06.014
10.1016/j.ins.2013.12.011
10.1016/j.neucom.2005.12.126
10.1016/0005-1098(87)90054-9
10.1016/j.conengprac.2012.03.014
10.1007/s00521-012-0873-x
10.1002/aic.12346
10.1016/j.neunet.2014.01.008
10.1109/ETFA.2011.6059061
10.1016/j.ins.2008.05.025
10.1016/j.neucom.2013.05.024
10.1109/TNN.2006.880583
10.1109/IJCNN.2001.939461
10.1016/j.neucom.2009.02.013
10.1016/j.neucom.2014.03.075
10.1016/j.neucom.2014.12.029
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.neucom.2015.07.035
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 707
ExternalDocumentID 1359615
10_1016_j_neucom_2015_07_035
S0925231215010164
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c449t-2fc65f625dee2cd8467a4a44d7f1b94fa6b87398adb31289c4119d0ad1880c393
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364883900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Thu May 18 22:37:14 EDT 2023
Sat Nov 29 07:14:55 EST 2025
Tue Nov 18 22:31:11 EST 2025
Fri Feb 23 02:28:31 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Variable forgetting factor
On-line Extreme Learning Machines
On-line ensemble
Ordered aggregation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-2fc65f625dee2cd8467a4a44d7f1b94fa6b87398adb31289c4119d0ad1880c393
Notes USDOE Office of Nuclear Energy (NE), Nuclear Fuel Cycle and Supply Chain
PEst-C/EEI/UI0048/2014
ORCID 0000-0001-9783-6506
0000-0002-1007-8675
0000000197836506
0000000210078675
OpenAccessLink https://www.osti.gov/biblio/1359615
PageCount 15
ParticipantIDs osti_scitechconnect_1359615
crossref_primary_10_1016_j_neucom_2015_07_035
crossref_citationtrail_10_1016_j_neucom_2015_07_035
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_07_035
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Lv, Liu, Yang, Zeng (bib25) 2013; 55
S. Soares, R. Araújo, P. Sousa, F. Souza, Design and application of soft sensor using ensemble methods, in: Proceedings of the 16th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA׳11, 2011, pp. 1–8.
Mangat, Vig (bib52) 2014; 41
Zhao, Wang, Park (bib23) 2012; 87
Kaneko, Funatsu (bib24) 2014; 137
Huang, Zhu, Siew (bib35) 2006; 70
Cao, Schwartz (bib13) 2000; 36
Wang, Zeng, Chen (bib1) 2015; 42
Lim, Lee, Pang (bib12) 2013; 22
Siniscalchi, Svendsen, Lee (bib2) 2014; 140
R. Kulhavý, Probabilistic identification of time-variable systems with unknown model of parameter evolution (Ph.D. thesis), Institute of Information Theory and Automation of Czechoslovak Academy of Sciences, Praha, Czechoslovakia, 1985 (in Czech).
Brzezinski, Stefanowski (bib29) 2014; 265
Grbić, Slišković, Kadlec (bib46) 2013; 58
Soares, Antunes, Araújo (bib31) 2013; 121
Elwell, Polikar (bib20) 2011; 22
Dai, Liu (bib4) 2012; 94
C.R. Rao, S.K. Mitra, Generalized inverse of a matrix and its applications, in: Proceedings 6th Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, University of California Press, Berkeley, CA, USA, pp. 601–620, 1972
Deng, Zheng, Wang (bib9) 2014; 53
Shrestha, Solomatine (bib48) 2006; 18
Soares, Araújo (bib27) 2015; 37
Lan, Soh, Huang (bib17) 2009; 72
Kulhavý (bib15) 1987; 23
Wang, Wang, Ji (bib7) 2015; 151
.
Kolter, Maloof (bib51) 2007; 8
Kadlec, Gabrys (bib18) 2011; 57
Wang, Han (bib10) 2014; 145
Liang, Huang, Saratchandran, Sundararajan (bib6) 2006; 17
Partalas, Tsoumakas, Hatzikos, Vlahavas (bib32) 2008; 178
Lin, Recke, Knudsen, JØrgensen (bib19) 2007; 31
J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of the 22nd International Conference on Machine Learning, ACM, Bonn, Germany, 2005, pp. 449–456.
Haykin (bib8) 1996
Friedman (bib45) 1991; 19
V. Bobál, P. Chalupa, Self-Tuning Controllers Simulink Library, Zlín, Czech Republic
T. Matias, D. Gabriel, F. Souza, R. Araújo, J.C. Pereira, Fault detection and replacement of a temperature sensor in a cement rotary kiln, in: Proceedings of the 18th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA׳13, 2013, pp. 1–8.
Bobál, Böhm, Fessl, Máchacek (bib14) 2005
R. Klinkenberg, Meta-learning, model selection, and example selection in machine learning domains with concept drift, in: Proceedings of Annual Workshop of the Special Interest Group on Machine Learning, Knowledge Discovery, and Data Mining, FGML-2005, 2005, pp. 164–171.
Wang, Alhamdoosh (bib16) 2013; 102
R. Elwell, R. Polikar, Incremental learning in nonstationary environments with controlled forgetting, in: Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 771–778.
Santos, Sabourin, Maupin (bib43) 2009; 10
G. Coelho, F. Von Zuben, The influence of the pool of candidates on the performance of selection and combination techniques in ensembles, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN׳06, 2006, pp. 5132–5139.
Galicia, He, Wang (bib49) 2012; 20
Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (1–2) (2002) 239–263, code available at
L. Fortuna, S. Graziani, A. Rizzo, M.G. Xibilia, Soft Sensors for Monitoring and Control of Industrial Processes (Advances in Industrial Control), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
Sun, Chen, Toh, Lin (bib5) 2015; 155
E. Ikonomovska, Algorithms for learning regression trees and ensembles on evolving data streams (Ph.D. thesis), Jožef Stefan International Postgraduate School, 2012.
Mirza, Lin, Liu (bib50) 2015; 149
Soares, Araújo (bib28) 2015; 42
A. Lazarevic, Z. Obradovic, Effective pruning of neural network classifier ensembles, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN׳01, vol. 2, 2001, pp. 796–801.
Maponi (bib38) 2007; 420
Ben-Israel, Greville (bib36) 2003
N.C. Oza, S. Russell, Experimental comparisons of online and batch versions of bagging and boosting, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD׳01, 2001, pp. 359–364.
Mendes, Araújo, Souza (bib39) 2013; 40
2008.
10.1016/j.neucom.2015.07.035_bib37
10.1016/j.neucom.2015.07.035_bib33
10.1016/j.neucom.2015.07.035_bib34
10.1016/j.neucom.2015.07.035_bib30
Siniscalchi (10.1016/j.neucom.2015.07.035_bib2) 2014; 140
Elwell (10.1016/j.neucom.2015.07.035_bib20) 2011; 22
Brzezinski (10.1016/j.neucom.2015.07.035_bib29) 2014; 265
Kadlec (10.1016/j.neucom.2015.07.035_bib18) 2011; 57
Mangat (10.1016/j.neucom.2015.07.035_bib52) 2014; 41
Bobál (10.1016/j.neucom.2015.07.035_bib14) 2005
Zhao (10.1016/j.neucom.2015.07.035_bib23) 2012; 87
Friedman (10.1016/j.neucom.2015.07.035_bib45) 1991; 19
Deng (10.1016/j.neucom.2015.07.035_bib9) 2014; 53
10.1016/j.neucom.2015.07.035_bib26
Santos (10.1016/j.neucom.2015.07.035_bib43) 2009; 10
Mirza (10.1016/j.neucom.2015.07.035_bib50) 2015; 149
10.1016/j.neucom.2015.07.035_bib22
Lin (10.1016/j.neucom.2015.07.035_bib19) 2007; 31
Soares (10.1016/j.neucom.2015.07.035_bib27) 2015; 37
10.1016/j.neucom.2015.07.035_bib21
Wang (10.1016/j.neucom.2015.07.035_bib7) 2015; 151
Huang (10.1016/j.neucom.2015.07.035_bib35) 2006; 70
Kaneko (10.1016/j.neucom.2015.07.035_bib24) 2014; 137
Ben-Israel (10.1016/j.neucom.2015.07.035_bib36) 2003
Soares (10.1016/j.neucom.2015.07.035_bib31) 2013; 121
Kulhavý (10.1016/j.neucom.2015.07.035_bib15) 1987; 23
Galicia (10.1016/j.neucom.2015.07.035_bib49) 2012; 20
Partalas (10.1016/j.neucom.2015.07.035_bib32) 2008; 178
10.1016/j.neucom.2015.07.035_bib11
Lv (10.1016/j.neucom.2015.07.035_bib25) 2013; 55
Dai (10.1016/j.neucom.2015.07.035_bib4) 2012; 94
Kolter (10.1016/j.neucom.2015.07.035_bib51) 2007; 8
Maponi (10.1016/j.neucom.2015.07.035_bib38) 2007; 420
Lan (10.1016/j.neucom.2015.07.035_bib17) 2009; 72
Lim (10.1016/j.neucom.2015.07.035_bib12) 2013; 22
Haykin (10.1016/j.neucom.2015.07.035_bib8) 1996
Wang (10.1016/j.neucom.2015.07.035_bib1) 2015; 42
10.1016/j.neucom.2015.07.035_bib47
10.1016/j.neucom.2015.07.035_bib44
Mendes (10.1016/j.neucom.2015.07.035_bib39) 2013; 40
10.1016/j.neucom.2015.07.035_bib42
10.1016/j.neucom.2015.07.035_bib40
Sun (10.1016/j.neucom.2015.07.035_bib5) 2015; 155
10.1016/j.neucom.2015.07.035_bib41
Wang (10.1016/j.neucom.2015.07.035_bib10) 2014; 145
Shrestha (10.1016/j.neucom.2015.07.035_bib48) 2006; 18
Cao (10.1016/j.neucom.2015.07.035_bib13) 2000; 36
Soares (10.1016/j.neucom.2015.07.035_bib28) 2015; 42
Liang (10.1016/j.neucom.2015.07.035_bib6) 2006; 17
10.1016/j.neucom.2015.07.035_bib3
Wang (10.1016/j.neucom.2015.07.035_bib16) 2013; 102
Grbić (10.1016/j.neucom.2015.07.035_bib46) 2013; 58
References_xml – volume: 149
  start-page: 316
  year: 2015
  end-page: 329
  ident: bib50
  article-title: Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift
  publication-title: Neurocomputing
– volume: 42
  start-page: 855
  year: 2015
  end-page: 863
  ident: bib1
  article-title: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting
  publication-title: Expert Syst. Appl.
– reference: R. Elwell, R. Polikar, Incremental learning in nonstationary environments with controlled forgetting, in: Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 771–778.
– reference: A. Lazarevic, Z. Obradovic, Effective pruning of neural network classifier ensembles, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN׳01, vol. 2, 2001, pp. 796–801.
– volume: 121
  start-page: 498
  year: 2013
  end-page: 511
  ident: bib31
  article-title: Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development
  publication-title: Neurocomputing
– reference: N.C. Oza, S. Russell, Experimental comparisons of online and batch versions of bagging and boosting, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD׳01, 2001, pp. 359–364.
– volume: 53
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib9
  article-title: Cross-person activity recognition using reduced kernel extreme learning machine
  publication-title: Neural Netw.
– reference: L. Fortuna, S. Graziani, A. Rizzo, M.G. Xibilia, Soft Sensors for Monitoring and Control of Industrial Processes (Advances in Industrial Control), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
– year: 2005
  ident: bib14
  article-title: Digital self-tuning controllers
  publication-title: Advanced Textbooks in Control and Signal Processing
– volume: 22
  start-page: 1517
  year: 2011
  end-page: 1531
  ident: bib20
  article-title: Incremental learning of concept drift in nonstationary environments
  publication-title: IEEE Trans. Neural Netw.
– volume: 36
  start-page: 1725
  year: 2000
  end-page: 1731
  ident: bib13
  article-title: A directional forgetting algorithm based on the decomposition of the information matrix
  publication-title: Automatica
– volume: 87
  start-page: 79
  year: 2012
  end-page: 89
  ident: bib23
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
– reference: T. Matias, D. Gabriel, F. Souza, R. Araújo, J.C. Pereira, Fault detection and replacement of a temperature sensor in a cement rotary kiln, in: Proceedings of the 18th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA׳13, 2013, pp. 1–8.
– volume: 55
  start-page: 319
  year: 2013
  end-page: 329
  ident: bib25
  article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
  publication-title: Energy
– reference: 〉.
– volume: 58
  start-page: 84
  year: 2013
  end-page: 97
  ident: bib46
  article-title: Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
  publication-title: Comput. Chem. Eng.
– year: 2003
  ident: bib36
  article-title: Generalized Inverses
– reference: Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (1–2) (2002) 239–263, code available at 〈
– volume: 57
  start-page: 1288
  year: 2011
  end-page: 1301
  ident: bib18
  article-title: Local learning-based adaptive soft sensor for catalyst activation prediction
  publication-title: AIChE J.
– volume: 155
  start-page: 194
  year: 2015
  end-page: 204
  ident: bib5
  article-title: Sequential extreme learning machine incorporating survival error potential
  publication-title: Neurocomputing
– volume: 420
  start-page: 276
  year: 2007
  end-page: 294
  ident: bib38
  article-title: The solution of linear systems by using the Sherman–Morrison formula
  publication-title: Linear Algebra Appl.
– volume: 20
  start-page: 747
  year: 2012
  end-page: 760
  ident: bib49
  article-title: Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control
  publication-title: Control Eng. Pract.
– volume: 94
  start-page: 152
  year: 2012
  end-page: 158
  ident: bib4
  article-title: Alleviating the problem of local minima in backpropagation through competitive learning
  publication-title: Neurocomputing
– volume: 40
  start-page: 6964
  year: 2013
  end-page: 6975
  ident: bib39
  article-title: Adaptive fuzzy identification and predictive control for industrial processes
  publication-title: Expert Syst. Appl.
– volume: 151
  start-page: 883
  year: 2015
  end-page: 890
  ident: bib7
  article-title: An oscillation bound of the generalization performance of extreme learning machine and corresponding analysis
  publication-title: Neurocomputing
– volume: 18
  start-page: 1678
  year: 2006
  end-page: 1710
  ident: bib48
  article-title: Experiments with AdaBoost.RT, an improved boosting scheme for regression
  publication-title: Neural Comput.
– year: 1996
  ident: bib8
  article-title: Adaptive Filter Theory
– volume: 265
  start-page: 50
  year: 2014
  end-page: 67
  ident: bib29
  article-title: Combining block-based and online methods in learning ensembles from concept drifting data streams
  publication-title: Inf. Sci.
– reference: S. Soares, R. Araújo, P. Sousa, F. Souza, Design and application of soft sensor using ensemble methods, in: Proceedings of the 16th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA׳11, 2011, pp. 1–8.
– volume: 178
  start-page: 3867
  year: 2008
  end-page: 3879
  ident: bib32
  article-title: Greedy regression ensemble selection
  publication-title: Inf. Sci.
– reference: R. Klinkenberg, Meta-learning, model selection, and example selection in machine learning domains with concept drift, in: Proceedings of Annual Workshop of the Special Interest Group on Machine Learning, Knowledge Discovery, and Data Mining, FGML-2005, 2005, pp. 164–171.
– reference: C.R. Rao, S.K. Mitra, Generalized inverse of a matrix and its applications, in: Proceedings 6th Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, University of California Press, Berkeley, CA, USA, pp. 601–620, 1972 〈
– reference: J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of the 22nd International Conference on Machine Learning, ACM, Bonn, Germany, 2005, pp. 449–456.
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: bib45
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 22
  start-page: 569
  year: 2013
  end-page: 576
  ident: bib12
  article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations
  publication-title: Neural Comput. Appl.
– volume: 42
  start-page: 2935
  year: 2015
  end-page: 2948
  ident: bib28
  article-title: A dynamic and on-line ensemble regression for changing environments
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 150
  year: 2009
  end-page: 162
  ident: bib43
  article-title: Overfitting cautious selection of classifier ensembles with genetic algorithms
  publication-title: Inf. Fusion
– volume: 37
  start-page: 392
  year: 2015
  end-page: 406
  ident: bib27
  article-title: An on-line weighted ensemble of regressor models to handle concept drifts
  publication-title: Eng. Appl. Artif. Intell.
– reference: R. Kulhavý, Probabilistic identification of time-variable systems with unknown model of parameter evolution (Ph.D. thesis), Institute of Information Theory and Automation of Czechoslovak Academy of Sciences, Praha, Czechoslovakia, 1985 (in Czech).
– volume: 72
  start-page: 3391
  year: 2009
  end-page: 3395
  ident: bib17
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
– reference: G. Coelho, F. Von Zuben, The influence of the pool of candidates on the performance of selection and combination techniques in ensembles, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN׳06, 2006, pp. 5132–5139.
– volume: 140
  start-page: 326
  year: 2014
  end-page: 338
  ident: bib2
  article-title: An artificial neural network approach to automatic speech processing
  publication-title: Neurocomputing
– reference: V. Bobál, P. Chalupa, Self-Tuning Controllers Simulink Library, Zlín, Czech Republic, 〈
– reference: E. Ikonomovska, Algorithms for learning regression trees and ensembles on evolving data streams (Ph.D. thesis), Jožef Stefan International Postgraduate School, 2012.
– volume: 137
  start-page: 57
  year: 2014
  end-page: 66
  ident: bib24
  article-title: Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 145
  start-page: 90
  year: 2014
  end-page: 97
  ident: bib10
  article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction
  publication-title: Neurocomputing
– volume: 23
  start-page: 589
  year: 1987
  end-page: 600
  ident: bib15
  article-title: Restricted exponential forgetting in real-time identification
  publication-title: Automatica
– reference: 〉, 2008.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib35
  article-title: Extreme learning machine
  publication-title: Neurocomputing
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bib6
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 102
  start-page: 98
  year: 2013
  end-page: 110
  ident: bib16
  article-title: Evolutionary extreme learning machine ensembles with size control
  publication-title: Neurocomputing
– volume: 8
  start-page: 2755
  year: 2007
  end-page: 2790
  ident: bib51
  article-title: Dynamic weighted majority
  publication-title: J. Mach. Learn. Res.
– volume: 41
  start-page: 8234
  year: 2014
  end-page: 8244
  ident: bib52
  article-title: Novel associative classifier based on dynamic adaptive PSO: application to determining candidates for thoracic surgery
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 419
  year: 2007
  end-page: 425
  ident: bib19
  article-title: A systematic approach for soft sensor development
  publication-title: Comput. Chem. Eng.
– ident: 10.1016/j.neucom.2015.07.035_bib26
  doi: 10.1145/1102351.1102408
– volume: 41
  start-page: 8234
  issue: 18
  year: 2014
  ident: 10.1016/j.neucom.2015.07.035_bib52
  article-title: Novel associative classifier based on dynamic adaptive PSO: application to determining candidates for thoracic surgery
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.06.046
– volume: 137
  start-page: 57
  year: 2014
  ident: 10.1016/j.neucom.2015.07.035_bib24
  article-title: Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.06.008
– year: 2003
  ident: 10.1016/j.neucom.2015.07.035_bib36
– ident: 10.1016/j.neucom.2015.07.035_bib47
– volume: 145
  start-page: 90
  year: 2014
  ident: 10.1016/j.neucom.2015.07.035_bib10
  article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.068
– volume: 102
  start-page: 98
  year: 2013
  ident: 10.1016/j.neucom.2015.07.035_bib16
  article-title: Evolutionary extreme learning machine ensembles with size control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.046
– volume: 420
  start-page: 276
  issue: 2–3
  year: 2007
  ident: 10.1016/j.neucom.2015.07.035_bib38
  article-title: The solution of linear systems by using the Sherman–Morrison formula
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2006.07.007
– volume: 10
  start-page: 150
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2015.07.035_bib43
  article-title: Overfitting cautious selection of classifier ensembles with genetic algorithms
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2008.11.003
– ident: 10.1016/j.neucom.2015.07.035_bib21
  doi: 10.1109/IJCNN.2009.5178779
– volume: 40
  start-page: 6964
  issue: 17
  year: 2013
  ident: 10.1016/j.neucom.2015.07.035_bib39
  article-title: Adaptive fuzzy identification and predictive control for industrial processes
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.057
– ident: 10.1016/j.neucom.2015.07.035_bib33
  doi: 10.1109/IJCNN.2006.1716814
– ident: 10.1016/j.neucom.2015.07.035_bib37
  doi: 10.1525/9780520325883-032
– ident: 10.1016/j.neucom.2015.07.035_bib30
  doi: 10.1016/S0004-3702(02)00190-X
– volume: 42
  start-page: 2935
  issue: 6
  year: 2015
  ident: 10.1016/j.neucom.2015.07.035_bib28
  article-title: A dynamic and on-line ensemble regression for changing environments
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.11.053
– volume: 31
  start-page: 419
  issue: 5–6
  year: 2007
  ident: 10.1016/j.neucom.2015.07.035_bib19
  article-title: A systematic approach for soft sensor development
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2006.05.030
– ident: 10.1016/j.neucom.2015.07.035_bib42
– volume: 151
  start-page: 883
  issue: Part 2
  year: 2015
  ident: 10.1016/j.neucom.2015.07.035_bib7
  article-title: An oscillation bound of the generalization performance of extreme learning machine and corresponding analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.006
– volume: 22
  start-page: 1517
  issue: 10
  year: 2011
  ident: 10.1016/j.neucom.2015.07.035_bib20
  article-title: Incremental learning of concept drift in nonstationary environments
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2160459
– ident: 10.1016/j.neucom.2015.07.035_bib11
  doi: 10.1109/ETFA.2013.6648038
– volume: 8
  start-page: 2755
  year: 2007
  ident: 10.1016/j.neucom.2015.07.035_bib51
  article-title: Dynamic weighted majority
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 1725
  issue: 11
  year: 2000
  ident: 10.1016/j.neucom.2015.07.035_bib13
  article-title: A directional forgetting algorithm based on the decomposition of the information matrix
  publication-title: Automatica
  doi: 10.1016/S0005-1098(00)00093-5
– volume: 55
  start-page: 319
  year: 2013
  ident: 10.1016/j.neucom.2015.07.035_bib25
  article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.062
– volume: 18
  start-page: 1678
  issue: 7
  year: 2006
  ident: 10.1016/j.neucom.2015.07.035_bib48
  article-title: Experiments with AdaBoost.RT, an improved boosting scheme for regression
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1678
– ident: 10.1016/j.neucom.2015.07.035_bib22
  doi: 10.1145/502512.502565
– volume: 42
  start-page: 855
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2015.07.035_bib1
  article-title: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.018
– volume: 87
  start-page: 79
  year: 2012
  ident: 10.1016/j.neucom.2015.07.035_bib23
  article-title: Online sequential extreme learning machine with forgetting mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.003
– volume: 37
  start-page: 392
  year: 2015
  ident: 10.1016/j.neucom.2015.07.035_bib27
  article-title: An on-line weighted ensemble of regressor models to handle concept drifts
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.10.003
– volume: 94
  start-page: 152
  year: 2012
  ident: 10.1016/j.neucom.2015.07.035_bib4
  article-title: Alleviating the problem of local minima in backpropagation through competitive learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.03.011
– volume: 140
  start-page: 326
  year: 2014
  ident: 10.1016/j.neucom.2015.07.035_bib2
  article-title: An artificial neural network approach to automatic speech processing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.005
– volume: 58
  start-page: 84
  year: 2013
  ident: 10.1016/j.neucom.2015.07.035_bib46
  article-title: Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.06.014
– volume: 265
  start-page: 50
  year: 2014
  ident: 10.1016/j.neucom.2015.07.035_bib29
  article-title: Combining block-based and online methods in learning ensembles from concept drifting data streams
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.12.011
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.neucom.2015.07.035_bib35
  article-title: Extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 10.1016/j.neucom.2015.07.035_bib41
– volume: 23
  start-page: 589
  issue: 5
  year: 1987
  ident: 10.1016/j.neucom.2015.07.035_bib15
  article-title: Restricted exponential forgetting in real-time identification
  publication-title: Automatica
  doi: 10.1016/0005-1098(87)90054-9
– volume: 20
  start-page: 747
  issue: 8
  year: 2012
  ident: 10.1016/j.neucom.2015.07.035_bib49
  article-title: Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2012.03.014
– volume: 22
  start-page: 569
  issue: 3–4
  year: 2013
  ident: 10.1016/j.neucom.2015.07.035_bib12
  article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0873-x
– year: 2005
  ident: 10.1016/j.neucom.2015.07.035_bib14
  article-title: Digital self-tuning controllers
– volume: 57
  start-page: 1288
  issue: 5
  year: 2011
  ident: 10.1016/j.neucom.2015.07.035_bib18
  article-title: Local learning-based adaptive soft sensor for catalyst activation prediction
  publication-title: AIChE J.
  doi: 10.1002/aic.12346
– volume: 53
  start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2015.07.035_bib9
  article-title: Cross-person activity recognition using reduced kernel extreme learning machine
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.01.008
– ident: 10.1016/j.neucom.2015.07.035_bib3
  doi: 10.1109/ETFA.2011.6059061
– volume: 178
  start-page: 3867
  issue: 20
  year: 2008
  ident: 10.1016/j.neucom.2015.07.035_bib32
  article-title: Greedy regression ensemble selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.05.025
– volume: 121
  start-page: 498
  year: 2013
  ident: 10.1016/j.neucom.2015.07.035_bib31
  article-title: Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.024
– year: 1996
  ident: 10.1016/j.neucom.2015.07.035_bib8
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.neucom.2015.07.035_bib6
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– ident: 10.1016/j.neucom.2015.07.035_bib34
  doi: 10.1109/IJCNN.2001.939461
– volume: 72
  start-page: 3391
  issue: 13–15
  year: 2009
  ident: 10.1016/j.neucom.2015.07.035_bib17
  article-title: Ensemble of online sequential extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.02.013
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.neucom.2015.07.035_bib45
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 149
  start-page: 316
  issue: Part A
  year: 2015
  ident: 10.1016/j.neucom.2015.07.035_bib50
  article-title: Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.075
– volume: 155
  start-page: 194
  year: 2015
  ident: 10.1016/j.neucom.2015.07.035_bib5
  article-title: Sequential extreme learning machine incorporating survival error potential
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.029
– ident: 10.1016/j.neucom.2015.07.035_bib44
– ident: 10.1016/j.neucom.2015.07.035_bib40
SSID ssj0017129
Score 2.4230943
Snippet A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-varying, on-line learning...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 693
SubjectTerms On-line ensemble
On-line Extreme Learning Machines
Ordered aggregation
Variable forgetting factor
Title An adaptive ensemble of on-line Extreme Learning Machines with variable forgetting factor for dynamic system prediction
URI https://dx.doi.org/10.1016/j.neucom.2015.07.035
https://www.osti.gov/biblio/1359615
Volume 171
WOSCitedRecordID wos000364883900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hlAMXoDxEKaA9cENb-bFre4-mCoKqqpAoKDdrvbuGRNSJ2qSEf8_MPpxQKIUDFyvaZBNnv8_j2fHMN4S85K2WNhEJSzWHDYoWglVdZliVdzoDby4vnE7Bp-Py5KSaTOT7kBJ04doJlH1frddy8V-hhjEAG0tn_wHu4UthAF4D6HAE2OH4V8DX_Stl1MKlBMEe1Z61Pn9w3jPnUo7XS4wJRmXVz9h76Asmv_uY7CVsnl05VeeC5S4r2jflcRmJxnewDwrQKDFgpnoAdxa1oFZwX3T9IkIkoj5DQQaD7BsiDx_mWPvkwq_fYXWArgcb-il8gv8a_rHjwGq6HZ1Ir0YnYtnMdtwxEwycSm-Crbe6VZm5evafzLJvzRL4d_hbc-8jD7OD3q4w9wdOQDgpVq-AckVIO82FLFCPYCcrhQQLuFO_G0-OhmdOZZp5ZcZwgrHQ0mUD_voL1zkyoznY5i0f5fQ-uRs2F7T2pNglt2z_gNyLjTtosOMPybe6p5EjNHKEzjsaOEIDR2jkCI0cocgRGjlCNxyhniM4QgNHqOcI3XDkEfn4Znx6-JaFDhxMcy6XLOt0ITrYIhtrM23QV1VccW7KLm0l71TRVmUuK2VaWLBKwvWeSpMogyp_Opf5YzLqgUBPCE1V0losBOe55qKVkttKF62QqZK6zfQeyeNyNjrI02OXlK9NzEOcNR6EBkFokrIBEPYIG2YtvDzLDZ8vI1JNcDG969gApW6YuY_A4ixUV9aYhgbTAqme_vHdfXJnc208I6Pl-co-J7f15XJ6cf4i8PAHz0emmA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+ensemble+of+on-line+Extreme+Learning+Machines+with+variable+forgetting+factor+for+dynamic+system+prediction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Soares%2C+Symone+G.&rft.au=Ara%C3%BAjo%2C+Rui&rft.date=2016-01-01&rft.pub=Elsevier&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=171&rft.issue=C&rft_id=info:doi/10.1016%2Fj.neucom.2015.07.035&rft.externalDocID=1359615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon