An adaptive ensemble of on-line Extreme Learning Machines with variable forgetting factor for dynamic system prediction
A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-varying, on-line learning algorithms should be adaptive to capture process changes. On-line ensemble methods have been shown to provide better generalization performance tha...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 171; no. C; pp. 693 - 707 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.01.2016
Elsevier |
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-varying, on-line learning algorithms should be adaptive to capture process changes. On-line ensemble methods have been shown to provide better generalization performance than single models in changing environments. However, most on-line ensembles do not include and exclude models during on-line operation. As a result, the ensembles have limited adaptation capability. Moreover, a higher performance can be obtained by combining a selected set of most relevant models of the ensemble for the current situation, rather than combining all the models. This paper proposes a new on-line learning ensemble of regressor models using an ordered aggregation (OA) technique which is able to provide on-line predictions of variables in changing environments. OA dynamically selects an optimal size and composition of a subset of models based on the minimization of the ensemble error on the newest sample. The proposed strategy overcomes the problem of defining the optimal ensemble size, and in most cases it obtains better performance than aggregating all the models. Models are added or removed for assuring adaptation of the ensemble in changing environments. Furthermore, this paper proposes and integrates a new on-line Extreme Learning Machine (ELM) neural network model with variable forgetting factor (FF) using the directional FF method which shows superior performance in industrial applications when compared to the well-known On-line Sequential ELM (OS-ELM) algorithm. Experiments are reported to demonstrate the performance and effectiveness of the proposed methods. |
|---|---|
| AbstractList | A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-varying, on-line learning algorithms should be adaptive to capture process changes. On-line ensemble methods have been shown to provide better generalization performance than single models in changing environments. However, most on-line ensembles do not include and exclude models during on-line operation. As a result, the ensembles have limited adaptation capability. Moreover, a higher performance can be obtained by combining a selected set of most relevant models of the ensemble for the current situation, rather than combining all the models. This paper proposes a new on-line learning ensemble of regressor models using an ordered aggregation (OA) technique which is able to provide on-line predictions of variables in changing environments. OA dynamically selects an optimal size and composition of a subset of models based on the minimization of the ensemble error on the newest sample. The proposed strategy overcomes the problem of defining the optimal ensemble size, and in most cases it obtains better performance than aggregating all the models. Models are added or removed for assuring adaptation of the ensemble in changing environments. Furthermore, this paper proposes and integrates a new on-line Extreme Learning Machine (ELM) neural network model with variable forgetting factor (FF) using the directional FF method which shows superior performance in industrial applications when compared to the well-known On-line Sequential ELM (OS-ELM) algorithm. Experiments are reported to demonstrate the performance and effectiveness of the proposed methods. |
| Author | Araújo, Rui Soares, Symone G. |
| Author_xml | – sequence: 1 givenname: Symone G. orcidid: 0000-0001-9783-6506 surname: Soares fullname: Soares, Symone G. email: symonesoares@isr.uc.pt – sequence: 2 givenname: Rui orcidid: 0000-0002-1007-8675 surname: Araújo fullname: Araújo, Rui email: rui@isr.uc.pt |
| BackLink | https://www.osti.gov/biblio/1359615$$D View this record in Osti.gov |
| BookMark | eNqFkEFrGzEQhUVJoU7af9CD6H23kla7K_VQCCFpAw65tGcxlkaxjFcykurU_z67uKcektPAzPse894luYgpIiGfOWs548PXXRvxj01TKxjvWza2rOvfkRVXo2iUUMMFWTEt-kZ0XHwgl6XsGOMjF3pFnq8jBQeHGo5IMRacNnukydMUm32ISG__1owT0jVCjiE-0Qew2_lQ6HOoW3qEHGBBfMpPWOui8GBrysuGulOEKVhaTqXiRA8ZXbA1pPiRvPewL_jp37wiv-9uf938bNaPP-5vrteNlVLXRng79H4QvUMU1ik5jCBBSjd6vtHSw7BRY6cVuM2cTWkrOdeOgeNKMdvp7op8OfumUoMpNlS0W5tiRFsN73o98H4WybPI5lRKRm8OOUyQT4YzszRsdubcsFkaNmw0c8Mz9u0_bLaHJV3NEPZvwd_PMM7pjwHz8hxGOxeUl99cCq8bvABDlZ4o |
| CitedBy_id | crossref_primary_10_1109_TC_2020_2973631 crossref_primary_10_1016_j_engappai_2018_01_010 crossref_primary_10_1155_2018_6195387 crossref_primary_10_1016_j_eswa_2016_08_052 crossref_primary_10_1109_JSEN_2020_3033153 crossref_primary_10_1177_1748302619895421 crossref_primary_10_3390_aerospace10120994 crossref_primary_10_1016_j_engappai_2023_107757 crossref_primary_10_1177_0959651820975245 crossref_primary_10_1049_iet_rpg_2020_0315 crossref_primary_10_1016_j_neunet_2017_04_001 crossref_primary_10_1007_s00500_020_05289_6 crossref_primary_10_1016_j_chemolab_2017_01_004 crossref_primary_10_1016_j_jenvman_2018_12_090 crossref_primary_10_1016_j_jfranklin_2020_05_031 crossref_primary_10_1109_ACCESS_2019_2959032 crossref_primary_10_1109_TIM_2023_3277998 crossref_primary_10_1016_j_chemolab_2020_104043 crossref_primary_10_1016_j_engappai_2019_03_012 crossref_primary_10_1007_s13042_020_01218_z crossref_primary_10_1016_j_knosys_2019_04_008 crossref_primary_10_1016_j_ymssp_2020_106899 crossref_primary_10_1108_SR_09_2020_0205 crossref_primary_10_1002_rnc_4698 crossref_primary_10_1016_j_chemolab_2023_104942 crossref_primary_10_1016_j_neucom_2025_130397 crossref_primary_10_1007_s10846_019_00998_z crossref_primary_10_1016_j_neucom_2016_04_043 crossref_primary_10_1016_j_sna_2016_04_055 crossref_primary_10_1016_j_engappai_2023_105927 crossref_primary_10_1109_JSTQE_2020_3043779 crossref_primary_10_1109_JSEN_2018_2818886 crossref_primary_10_1016_j_neucom_2015_10_028 crossref_primary_10_1109_TIM_2020_3018568 crossref_primary_10_1016_j_enconman_2017_02_004 crossref_primary_10_1109_TKDE_2018_2876857 crossref_primary_10_1016_j_engappai_2018_05_006 crossref_primary_10_1007_s11063_018_9888_3 crossref_primary_10_1016_j_resourpol_2021_102148 crossref_primary_10_1016_j_neucom_2020_01_083 crossref_primary_10_1109_ACCESS_2018_2815503 crossref_primary_10_1016_j_arcontrol_2022_04_006 crossref_primary_10_1007_s10462_020_09844_3 crossref_primary_10_1016_j_petrol_2017_10_052 |
| Cites_doi | 10.1145/1102351.1102408 10.1016/j.eswa.2014.06.046 10.1016/j.chemolab.2014.06.008 10.1016/j.neucom.2014.05.068 10.1016/j.neucom.2011.12.046 10.1016/j.laa.2006.07.007 10.1016/j.inffus.2008.11.003 10.1109/IJCNN.2009.5178779 10.1016/j.eswa.2013.06.057 10.1109/IJCNN.2006.1716814 10.1525/9780520325883-032 10.1016/S0004-3702(02)00190-X 10.1016/j.eswa.2014.11.053 10.1016/j.compchemeng.2006.05.030 10.1016/j.neucom.2014.10.006 10.1109/TNN.2011.2160459 10.1109/ETFA.2013.6648038 10.1016/S0005-1098(00)00093-5 10.1016/j.energy.2013.02.062 10.1162/neco.2006.18.7.1678 10.1145/502512.502565 10.1016/j.eswa.2014.08.018 10.1016/j.neucom.2012.02.003 10.1016/j.engappai.2014.10.003 10.1016/j.neucom.2012.03.011 10.1016/j.neucom.2014.03.005 10.1016/j.compchemeng.2013.06.014 10.1016/j.ins.2013.12.011 10.1016/j.neucom.2005.12.126 10.1016/0005-1098(87)90054-9 10.1016/j.conengprac.2012.03.014 10.1007/s00521-012-0873-x 10.1002/aic.12346 10.1016/j.neunet.2014.01.008 10.1109/ETFA.2011.6059061 10.1016/j.ins.2008.05.025 10.1016/j.neucom.2013.05.024 10.1109/TNN.2006.880583 10.1109/IJCNN.2001.939461 10.1016/j.neucom.2009.02.013 10.1016/j.neucom.2014.03.075 10.1016/j.neucom.2014.12.029 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION OTOTI |
| DOI | 10.1016/j.neucom.2015.07.035 |
| DatabaseName | CrossRef OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 707 |
| ExternalDocumentID | 1359615 10_1016_j_neucom_2015_07_035 S0925231215010164 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD AALMO ABPIF ABPTK OTOTI |
| ID | FETCH-LOGICAL-c449t-2fc65f625dee2cd8467a4a44d7f1b94fa6b87398adb31289c4119d0ad1880c393 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364883900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Thu May 18 22:37:14 EDT 2023 Sat Nov 29 07:14:55 EST 2025 Tue Nov 18 22:31:11 EST 2025 Fri Feb 23 02:28:31 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Variable forgetting factor On-line Extreme Learning Machines On-line ensemble Ordered aggregation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c449t-2fc65f625dee2cd8467a4a44d7f1b94fa6b87398adb31289c4119d0ad1880c393 |
| Notes | USDOE Office of Nuclear Energy (NE), Nuclear Fuel Cycle and Supply Chain PEst-C/EEI/UI0048/2014 |
| ORCID | 0000-0001-9783-6506 0000-0002-1007-8675 0000000197836506 0000000210078675 |
| OpenAccessLink | https://www.osti.gov/biblio/1359615 |
| PageCount | 15 |
| ParticipantIDs | osti_scitechconnect_1359615 crossref_primary_10_1016_j_neucom_2015_07_035 crossref_citationtrail_10_1016_j_neucom_2015_07_035 elsevier_sciencedirect_doi_10_1016_j_neucom_2015_07_035 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Lv, Liu, Yang, Zeng (bib25) 2013; 55 S. Soares, R. Araújo, P. Sousa, F. Souza, Design and application of soft sensor using ensemble methods, in: Proceedings of the 16th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA׳11, 2011, pp. 1–8. Mangat, Vig (bib52) 2014; 41 Zhao, Wang, Park (bib23) 2012; 87 Kaneko, Funatsu (bib24) 2014; 137 Huang, Zhu, Siew (bib35) 2006; 70 Cao, Schwartz (bib13) 2000; 36 Wang, Zeng, Chen (bib1) 2015; 42 Lim, Lee, Pang (bib12) 2013; 22 Siniscalchi, Svendsen, Lee (bib2) 2014; 140 R. Kulhavý, Probabilistic identification of time-variable systems with unknown model of parameter evolution (Ph.D. thesis), Institute of Information Theory and Automation of Czechoslovak Academy of Sciences, Praha, Czechoslovakia, 1985 (in Czech). Brzezinski, Stefanowski (bib29) 2014; 265 Grbić, Slišković, Kadlec (bib46) 2013; 58 Soares, Antunes, Araújo (bib31) 2013; 121 Elwell, Polikar (bib20) 2011; 22 Dai, Liu (bib4) 2012; 94 C.R. Rao, S.K. Mitra, Generalized inverse of a matrix and its applications, in: Proceedings 6th Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, University of California Press, Berkeley, CA, USA, pp. 601–620, 1972 Deng, Zheng, Wang (bib9) 2014; 53 Shrestha, Solomatine (bib48) 2006; 18 Soares, Araújo (bib27) 2015; 37 Lan, Soh, Huang (bib17) 2009; 72 Kulhavý (bib15) 1987; 23 Wang, Wang, Ji (bib7) 2015; 151 . Kolter, Maloof (bib51) 2007; 8 Kadlec, Gabrys (bib18) 2011; 57 Wang, Han (bib10) 2014; 145 Liang, Huang, Saratchandran, Sundararajan (bib6) 2006; 17 Partalas, Tsoumakas, Hatzikos, Vlahavas (bib32) 2008; 178 Lin, Recke, Knudsen, JØrgensen (bib19) 2007; 31 J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of the 22nd International Conference on Machine Learning, ACM, Bonn, Germany, 2005, pp. 449–456. Haykin (bib8) 1996 Friedman (bib45) 1991; 19 V. Bobál, P. Chalupa, Self-Tuning Controllers Simulink Library, Zlín, Czech Republic T. Matias, D. Gabriel, F. Souza, R. Araújo, J.C. Pereira, Fault detection and replacement of a temperature sensor in a cement rotary kiln, in: Proceedings of the 18th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA׳13, 2013, pp. 1–8. Bobál, Böhm, Fessl, Máchacek (bib14) 2005 R. Klinkenberg, Meta-learning, model selection, and example selection in machine learning domains with concept drift, in: Proceedings of Annual Workshop of the Special Interest Group on Machine Learning, Knowledge Discovery, and Data Mining, FGML-2005, 2005, pp. 164–171. Wang, Alhamdoosh (bib16) 2013; 102 R. Elwell, R. Polikar, Incremental learning in nonstationary environments with controlled forgetting, in: Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 771–778. Santos, Sabourin, Maupin (bib43) 2009; 10 G. Coelho, F. Von Zuben, The influence of the pool of candidates on the performance of selection and combination techniques in ensembles, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN׳06, 2006, pp. 5132–5139. Galicia, He, Wang (bib49) 2012; 20 Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (1–2) (2002) 239–263, code available at L. Fortuna, S. Graziani, A. Rizzo, M.G. Xibilia, Soft Sensors for Monitoring and Control of Industrial Processes (Advances in Industrial Control), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. Sun, Chen, Toh, Lin (bib5) 2015; 155 E. Ikonomovska, Algorithms for learning regression trees and ensembles on evolving data streams (Ph.D. thesis), Jožef Stefan International Postgraduate School, 2012. Mirza, Lin, Liu (bib50) 2015; 149 Soares, Araújo (bib28) 2015; 42 A. Lazarevic, Z. Obradovic, Effective pruning of neural network classifier ensembles, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN׳01, vol. 2, 2001, pp. 796–801. Maponi (bib38) 2007; 420 Ben-Israel, Greville (bib36) 2003 N.C. Oza, S. Russell, Experimental comparisons of online and batch versions of bagging and boosting, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD׳01, 2001, pp. 359–364. Mendes, Araújo, Souza (bib39) 2013; 40 2008. 10.1016/j.neucom.2015.07.035_bib37 10.1016/j.neucom.2015.07.035_bib33 10.1016/j.neucom.2015.07.035_bib34 10.1016/j.neucom.2015.07.035_bib30 Siniscalchi (10.1016/j.neucom.2015.07.035_bib2) 2014; 140 Elwell (10.1016/j.neucom.2015.07.035_bib20) 2011; 22 Brzezinski (10.1016/j.neucom.2015.07.035_bib29) 2014; 265 Kadlec (10.1016/j.neucom.2015.07.035_bib18) 2011; 57 Mangat (10.1016/j.neucom.2015.07.035_bib52) 2014; 41 Bobál (10.1016/j.neucom.2015.07.035_bib14) 2005 Zhao (10.1016/j.neucom.2015.07.035_bib23) 2012; 87 Friedman (10.1016/j.neucom.2015.07.035_bib45) 1991; 19 Deng (10.1016/j.neucom.2015.07.035_bib9) 2014; 53 10.1016/j.neucom.2015.07.035_bib26 Santos (10.1016/j.neucom.2015.07.035_bib43) 2009; 10 Mirza (10.1016/j.neucom.2015.07.035_bib50) 2015; 149 10.1016/j.neucom.2015.07.035_bib22 Lin (10.1016/j.neucom.2015.07.035_bib19) 2007; 31 Soares (10.1016/j.neucom.2015.07.035_bib27) 2015; 37 10.1016/j.neucom.2015.07.035_bib21 Wang (10.1016/j.neucom.2015.07.035_bib7) 2015; 151 Huang (10.1016/j.neucom.2015.07.035_bib35) 2006; 70 Kaneko (10.1016/j.neucom.2015.07.035_bib24) 2014; 137 Ben-Israel (10.1016/j.neucom.2015.07.035_bib36) 2003 Soares (10.1016/j.neucom.2015.07.035_bib31) 2013; 121 Kulhavý (10.1016/j.neucom.2015.07.035_bib15) 1987; 23 Galicia (10.1016/j.neucom.2015.07.035_bib49) 2012; 20 Partalas (10.1016/j.neucom.2015.07.035_bib32) 2008; 178 10.1016/j.neucom.2015.07.035_bib11 Lv (10.1016/j.neucom.2015.07.035_bib25) 2013; 55 Dai (10.1016/j.neucom.2015.07.035_bib4) 2012; 94 Kolter (10.1016/j.neucom.2015.07.035_bib51) 2007; 8 Maponi (10.1016/j.neucom.2015.07.035_bib38) 2007; 420 Lan (10.1016/j.neucom.2015.07.035_bib17) 2009; 72 Lim (10.1016/j.neucom.2015.07.035_bib12) 2013; 22 Haykin (10.1016/j.neucom.2015.07.035_bib8) 1996 Wang (10.1016/j.neucom.2015.07.035_bib1) 2015; 42 10.1016/j.neucom.2015.07.035_bib47 10.1016/j.neucom.2015.07.035_bib44 Mendes (10.1016/j.neucom.2015.07.035_bib39) 2013; 40 10.1016/j.neucom.2015.07.035_bib42 10.1016/j.neucom.2015.07.035_bib40 Sun (10.1016/j.neucom.2015.07.035_bib5) 2015; 155 10.1016/j.neucom.2015.07.035_bib41 Wang (10.1016/j.neucom.2015.07.035_bib10) 2014; 145 Shrestha (10.1016/j.neucom.2015.07.035_bib48) 2006; 18 Cao (10.1016/j.neucom.2015.07.035_bib13) 2000; 36 Soares (10.1016/j.neucom.2015.07.035_bib28) 2015; 42 Liang (10.1016/j.neucom.2015.07.035_bib6) 2006; 17 10.1016/j.neucom.2015.07.035_bib3 Wang (10.1016/j.neucom.2015.07.035_bib16) 2013; 102 Grbić (10.1016/j.neucom.2015.07.035_bib46) 2013; 58 |
| References_xml | – volume: 149 start-page: 316 year: 2015 end-page: 329 ident: bib50 article-title: Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift publication-title: Neurocomputing – volume: 42 start-page: 855 year: 2015 end-page: 863 ident: bib1 article-title: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting publication-title: Expert Syst. Appl. – reference: R. Elwell, R. Polikar, Incremental learning in nonstationary environments with controlled forgetting, in: Proceedings of the International Joint Conference on Neural Networks, 2009, pp. 771–778. – reference: A. Lazarevic, Z. Obradovic, Effective pruning of neural network classifier ensembles, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN׳01, vol. 2, 2001, pp. 796–801. – volume: 121 start-page: 498 year: 2013 end-page: 511 ident: bib31 article-title: Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development publication-title: Neurocomputing – reference: N.C. Oza, S. Russell, Experimental comparisons of online and batch versions of bagging and boosting, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD׳01, 2001, pp. 359–364. – volume: 53 start-page: 1 year: 2014 end-page: 7 ident: bib9 article-title: Cross-person activity recognition using reduced kernel extreme learning machine publication-title: Neural Netw. – reference: L. Fortuna, S. Graziani, A. Rizzo, M.G. Xibilia, Soft Sensors for Monitoring and Control of Industrial Processes (Advances in Industrial Control), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. – year: 2005 ident: bib14 article-title: Digital self-tuning controllers publication-title: Advanced Textbooks in Control and Signal Processing – volume: 22 start-page: 1517 year: 2011 end-page: 1531 ident: bib20 article-title: Incremental learning of concept drift in nonstationary environments publication-title: IEEE Trans. Neural Netw. – volume: 36 start-page: 1725 year: 2000 end-page: 1731 ident: bib13 article-title: A directional forgetting algorithm based on the decomposition of the information matrix publication-title: Automatica – volume: 87 start-page: 79 year: 2012 end-page: 89 ident: bib23 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing – reference: T. Matias, D. Gabriel, F. Souza, R. Araújo, J.C. Pereira, Fault detection and replacement of a temperature sensor in a cement rotary kiln, in: Proceedings of the 18th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA׳13, 2013, pp. 1–8. – volume: 55 start-page: 319 year: 2013 end-page: 329 ident: bib25 article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler publication-title: Energy – reference: 〉. – volume: 58 start-page: 84 year: 2013 end-page: 97 ident: bib46 article-title: Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models publication-title: Comput. Chem. Eng. – year: 2003 ident: bib36 article-title: Generalized Inverses – reference: Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (1–2) (2002) 239–263, code available at 〈 – volume: 57 start-page: 1288 year: 2011 end-page: 1301 ident: bib18 article-title: Local learning-based adaptive soft sensor for catalyst activation prediction publication-title: AIChE J. – volume: 155 start-page: 194 year: 2015 end-page: 204 ident: bib5 article-title: Sequential extreme learning machine incorporating survival error potential publication-title: Neurocomputing – volume: 420 start-page: 276 year: 2007 end-page: 294 ident: bib38 article-title: The solution of linear systems by using the Sherman–Morrison formula publication-title: Linear Algebra Appl. – volume: 20 start-page: 747 year: 2012 end-page: 760 ident: bib49 article-title: Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control publication-title: Control Eng. Pract. – volume: 94 start-page: 152 year: 2012 end-page: 158 ident: bib4 article-title: Alleviating the problem of local minima in backpropagation through competitive learning publication-title: Neurocomputing – volume: 40 start-page: 6964 year: 2013 end-page: 6975 ident: bib39 article-title: Adaptive fuzzy identification and predictive control for industrial processes publication-title: Expert Syst. Appl. – volume: 151 start-page: 883 year: 2015 end-page: 890 ident: bib7 article-title: An oscillation bound of the generalization performance of extreme learning machine and corresponding analysis publication-title: Neurocomputing – volume: 18 start-page: 1678 year: 2006 end-page: 1710 ident: bib48 article-title: Experiments with AdaBoost.RT, an improved boosting scheme for regression publication-title: Neural Comput. – year: 1996 ident: bib8 article-title: Adaptive Filter Theory – volume: 265 start-page: 50 year: 2014 end-page: 67 ident: bib29 article-title: Combining block-based and online methods in learning ensembles from concept drifting data streams publication-title: Inf. Sci. – reference: S. Soares, R. Araújo, P. Sousa, F. Souza, Design and application of soft sensor using ensemble methods, in: Proceedings of the 16th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA׳11, 2011, pp. 1–8. – volume: 178 start-page: 3867 year: 2008 end-page: 3879 ident: bib32 article-title: Greedy regression ensemble selection publication-title: Inf. Sci. – reference: R. Klinkenberg, Meta-learning, model selection, and example selection in machine learning domains with concept drift, in: Proceedings of Annual Workshop of the Special Interest Group on Machine Learning, Knowledge Discovery, and Data Mining, FGML-2005, 2005, pp. 164–171. – reference: C.R. Rao, S.K. Mitra, Generalized inverse of a matrix and its applications, in: Proceedings 6th Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics, University of California Press, Berkeley, CA, USA, pp. 601–620, 1972 〈 – reference: J.Z. Kolter, M.A. Maloof, Using additive expert ensembles to cope with concept drift, in: Proceedings of the 22nd International Conference on Machine Learning, ACM, Bonn, Germany, 2005, pp. 449–456. – volume: 19 start-page: 1 year: 1991 end-page: 67 ident: bib45 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 22 start-page: 569 year: 2013 end-page: 576 ident: bib12 article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations publication-title: Neural Comput. Appl. – volume: 42 start-page: 2935 year: 2015 end-page: 2948 ident: bib28 article-title: A dynamic and on-line ensemble regression for changing environments publication-title: Expert Syst. Appl. – volume: 10 start-page: 150 year: 2009 end-page: 162 ident: bib43 article-title: Overfitting cautious selection of classifier ensembles with genetic algorithms publication-title: Inf. Fusion – volume: 37 start-page: 392 year: 2015 end-page: 406 ident: bib27 article-title: An on-line weighted ensemble of regressor models to handle concept drifts publication-title: Eng. Appl. Artif. Intell. – reference: R. Kulhavý, Probabilistic identification of time-variable systems with unknown model of parameter evolution (Ph.D. thesis), Institute of Information Theory and Automation of Czechoslovak Academy of Sciences, Praha, Czechoslovakia, 1985 (in Czech). – volume: 72 start-page: 3391 year: 2009 end-page: 3395 ident: bib17 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing – reference: G. Coelho, F. Von Zuben, The influence of the pool of candidates on the performance of selection and combination techniques in ensembles, in: Proceedings of the International Joint Conference on Neural Networks, IJCNN׳06, 2006, pp. 5132–5139. – volume: 140 start-page: 326 year: 2014 end-page: 338 ident: bib2 article-title: An artificial neural network approach to automatic speech processing publication-title: Neurocomputing – reference: V. Bobál, P. Chalupa, Self-Tuning Controllers Simulink Library, Zlín, Czech Republic, 〈 – reference: E. Ikonomovska, Algorithms for learning regression trees and ensembles on evolving data streams (Ph.D. thesis), Jožef Stefan International Postgraduate School, 2012. – volume: 137 start-page: 57 year: 2014 end-page: 66 ident: bib24 article-title: Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants publication-title: Chemom. Intell. Lab. Syst. – volume: 145 start-page: 90 year: 2014 end-page: 97 ident: bib10 article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction publication-title: Neurocomputing – volume: 23 start-page: 589 year: 1987 end-page: 600 ident: bib15 article-title: Restricted exponential forgetting in real-time identification publication-title: Automatica – reference: 〉, 2008. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bib35 article-title: Extreme learning machine publication-title: Neurocomputing – volume: 17 start-page: 1411 year: 2006 end-page: 1423 ident: bib6 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans. Neural Netw. – volume: 102 start-page: 98 year: 2013 end-page: 110 ident: bib16 article-title: Evolutionary extreme learning machine ensembles with size control publication-title: Neurocomputing – volume: 8 start-page: 2755 year: 2007 end-page: 2790 ident: bib51 article-title: Dynamic weighted majority publication-title: J. Mach. Learn. Res. – volume: 41 start-page: 8234 year: 2014 end-page: 8244 ident: bib52 article-title: Novel associative classifier based on dynamic adaptive PSO: application to determining candidates for thoracic surgery publication-title: Expert Syst. Appl. – volume: 31 start-page: 419 year: 2007 end-page: 425 ident: bib19 article-title: A systematic approach for soft sensor development publication-title: Comput. Chem. Eng. – ident: 10.1016/j.neucom.2015.07.035_bib26 doi: 10.1145/1102351.1102408 – volume: 41 start-page: 8234 issue: 18 year: 2014 ident: 10.1016/j.neucom.2015.07.035_bib52 article-title: Novel associative classifier based on dynamic adaptive PSO: application to determining candidates for thoracic surgery publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.06.046 – volume: 137 start-page: 57 year: 2014 ident: 10.1016/j.neucom.2015.07.035_bib24 article-title: Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.06.008 – year: 2003 ident: 10.1016/j.neucom.2015.07.035_bib36 – ident: 10.1016/j.neucom.2015.07.035_bib47 – volume: 145 start-page: 90 year: 2014 ident: 10.1016/j.neucom.2015.07.035_bib10 article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.068 – volume: 102 start-page: 98 year: 2013 ident: 10.1016/j.neucom.2015.07.035_bib16 article-title: Evolutionary extreme learning machine ensembles with size control publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.046 – volume: 420 start-page: 276 issue: 2–3 year: 2007 ident: 10.1016/j.neucom.2015.07.035_bib38 article-title: The solution of linear systems by using the Sherman–Morrison formula publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2006.07.007 – volume: 10 start-page: 150 issue: 2 year: 2009 ident: 10.1016/j.neucom.2015.07.035_bib43 article-title: Overfitting cautious selection of classifier ensembles with genetic algorithms publication-title: Inf. Fusion doi: 10.1016/j.inffus.2008.11.003 – ident: 10.1016/j.neucom.2015.07.035_bib21 doi: 10.1109/IJCNN.2009.5178779 – volume: 40 start-page: 6964 issue: 17 year: 2013 ident: 10.1016/j.neucom.2015.07.035_bib39 article-title: Adaptive fuzzy identification and predictive control for industrial processes publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.06.057 – ident: 10.1016/j.neucom.2015.07.035_bib33 doi: 10.1109/IJCNN.2006.1716814 – ident: 10.1016/j.neucom.2015.07.035_bib37 doi: 10.1525/9780520325883-032 – ident: 10.1016/j.neucom.2015.07.035_bib30 doi: 10.1016/S0004-3702(02)00190-X – volume: 42 start-page: 2935 issue: 6 year: 2015 ident: 10.1016/j.neucom.2015.07.035_bib28 article-title: A dynamic and on-line ensemble regression for changing environments publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.11.053 – volume: 31 start-page: 419 issue: 5–6 year: 2007 ident: 10.1016/j.neucom.2015.07.035_bib19 article-title: A systematic approach for soft sensor development publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.05.030 – ident: 10.1016/j.neucom.2015.07.035_bib42 – volume: 151 start-page: 883 issue: Part 2 year: 2015 ident: 10.1016/j.neucom.2015.07.035_bib7 article-title: An oscillation bound of the generalization performance of extreme learning machine and corresponding analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.10.006 – volume: 22 start-page: 1517 issue: 10 year: 2011 ident: 10.1016/j.neucom.2015.07.035_bib20 article-title: Incremental learning of concept drift in nonstationary environments publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2160459 – ident: 10.1016/j.neucom.2015.07.035_bib11 doi: 10.1109/ETFA.2013.6648038 – volume: 8 start-page: 2755 year: 2007 ident: 10.1016/j.neucom.2015.07.035_bib51 article-title: Dynamic weighted majority publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 1725 issue: 11 year: 2000 ident: 10.1016/j.neucom.2015.07.035_bib13 article-title: A directional forgetting algorithm based on the decomposition of the information matrix publication-title: Automatica doi: 10.1016/S0005-1098(00)00093-5 – volume: 55 start-page: 319 year: 2013 ident: 10.1016/j.neucom.2015.07.035_bib25 article-title: A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler publication-title: Energy doi: 10.1016/j.energy.2013.02.062 – volume: 18 start-page: 1678 issue: 7 year: 2006 ident: 10.1016/j.neucom.2015.07.035_bib48 article-title: Experiments with AdaBoost.RT, an improved boosting scheme for regression publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1678 – ident: 10.1016/j.neucom.2015.07.035_bib22 doi: 10.1145/502512.502565 – volume: 42 start-page: 855 issue: 2 year: 2015 ident: 10.1016/j.neucom.2015.07.035_bib1 article-title: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.018 – volume: 87 start-page: 79 year: 2012 ident: 10.1016/j.neucom.2015.07.035_bib23 article-title: Online sequential extreme learning machine with forgetting mechanism publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.003 – volume: 37 start-page: 392 year: 2015 ident: 10.1016/j.neucom.2015.07.035_bib27 article-title: An on-line weighted ensemble of regressor models to handle concept drifts publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.10.003 – volume: 94 start-page: 152 year: 2012 ident: 10.1016/j.neucom.2015.07.035_bib4 article-title: Alleviating the problem of local minima in backpropagation through competitive learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.03.011 – volume: 140 start-page: 326 year: 2014 ident: 10.1016/j.neucom.2015.07.035_bib2 article-title: An artificial neural network approach to automatic speech processing publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.005 – volume: 58 start-page: 84 year: 2013 ident: 10.1016/j.neucom.2015.07.035_bib46 article-title: Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.06.014 – volume: 265 start-page: 50 year: 2014 ident: 10.1016/j.neucom.2015.07.035_bib29 article-title: Combining block-based and online methods in learning ensembles from concept drifting data streams publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.12.011 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 10.1016/j.neucom.2015.07.035_bib35 article-title: Extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 10.1016/j.neucom.2015.07.035_bib41 – volume: 23 start-page: 589 issue: 5 year: 1987 ident: 10.1016/j.neucom.2015.07.035_bib15 article-title: Restricted exponential forgetting in real-time identification publication-title: Automatica doi: 10.1016/0005-1098(87)90054-9 – volume: 20 start-page: 747 issue: 8 year: 2012 ident: 10.1016/j.neucom.2015.07.035_bib49 article-title: Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2012.03.014 – volume: 22 start-page: 569 issue: 3–4 year: 2013 ident: 10.1016/j.neucom.2015.07.035_bib12 article-title: Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0873-x – year: 2005 ident: 10.1016/j.neucom.2015.07.035_bib14 article-title: Digital self-tuning controllers – volume: 57 start-page: 1288 issue: 5 year: 2011 ident: 10.1016/j.neucom.2015.07.035_bib18 article-title: Local learning-based adaptive soft sensor for catalyst activation prediction publication-title: AIChE J. doi: 10.1002/aic.12346 – volume: 53 start-page: 1 year: 2014 ident: 10.1016/j.neucom.2015.07.035_bib9 article-title: Cross-person activity recognition using reduced kernel extreme learning machine publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.01.008 – ident: 10.1016/j.neucom.2015.07.035_bib3 doi: 10.1109/ETFA.2011.6059061 – volume: 178 start-page: 3867 issue: 20 year: 2008 ident: 10.1016/j.neucom.2015.07.035_bib32 article-title: Greedy regression ensemble selection publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.05.025 – volume: 121 start-page: 498 year: 2013 ident: 10.1016/j.neucom.2015.07.035_bib31 article-title: Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.024 – year: 1996 ident: 10.1016/j.neucom.2015.07.035_bib8 – volume: 17 start-page: 1411 issue: 6 year: 2006 ident: 10.1016/j.neucom.2015.07.035_bib6 article-title: A fast and accurate online sequential learning algorithm for feedforward networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.880583 – ident: 10.1016/j.neucom.2015.07.035_bib34 doi: 10.1109/IJCNN.2001.939461 – volume: 72 start-page: 3391 issue: 13–15 year: 2009 ident: 10.1016/j.neucom.2015.07.035_bib17 article-title: Ensemble of online sequential extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.02.013 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.neucom.2015.07.035_bib45 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 149 start-page: 316 issue: Part A year: 2015 ident: 10.1016/j.neucom.2015.07.035_bib50 article-title: Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.075 – volume: 155 start-page: 194 year: 2015 ident: 10.1016/j.neucom.2015.07.035_bib5 article-title: Sequential extreme learning machine incorporating survival error potential publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.029 – ident: 10.1016/j.neucom.2015.07.035_bib44 – ident: 10.1016/j.neucom.2015.07.035_bib40 |
| SSID | ssj0017129 |
| Score | 2.4230943 |
| Snippet | A demand for predictive models for on-line estimation of variables is increasing in industry. As industrial processes are time-varying, on-line learning... |
| SourceID | osti crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 693 |
| SubjectTerms | On-line ensemble On-line Extreme Learning Machines Ordered aggregation Variable forgetting factor |
| Title | An adaptive ensemble of on-line Extreme Learning Machines with variable forgetting factor for dynamic system prediction |
| URI | https://dx.doi.org/10.1016/j.neucom.2015.07.035 https://www.osti.gov/biblio/1359615 |
| Volume | 171 |
| WOSCitedRecordID | wos000364883900071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hlAMXoDxEKaA9cENb-bFre4-mCoKqqpAoKDdrvbuGRNSJ2qSEf8_MPpxQKIUDFyvaZBNnv8_j2fHMN4S85K2WNhEJSzWHDYoWglVdZliVdzoDby4vnE7Bp-Py5KSaTOT7kBJ04doJlH1frddy8V-hhjEAG0tn_wHu4UthAF4D6HAE2OH4V8DX_Stl1MKlBMEe1Z61Pn9w3jPnUo7XS4wJRmXVz9h76Asmv_uY7CVsnl05VeeC5S4r2jflcRmJxnewDwrQKDFgpnoAdxa1oFZwX3T9IkIkoj5DQQaD7BsiDx_mWPvkwq_fYXWArgcb-il8gv8a_rHjwGq6HZ1Ir0YnYtnMdtwxEwycSm-Crbe6VZm5evafzLJvzRL4d_hbc-8jD7OD3q4w9wdOQDgpVq-AckVIO82FLFCPYCcrhQQLuFO_G0-OhmdOZZp5ZcZwgrHQ0mUD_voL1zkyoznY5i0f5fQ-uRs2F7T2pNglt2z_gNyLjTtosOMPybe6p5EjNHKEzjsaOEIDR2jkCI0cocgRGjlCNxyhniM4QgNHqOcI3XDkEfn4Znx6-JaFDhxMcy6XLOt0ITrYIhtrM23QV1VccW7KLm0l71TRVmUuK2VaWLBKwvWeSpMogyp_Opf5YzLqgUBPCE1V0losBOe55qKVkttKF62QqZK6zfQeyeNyNjrI02OXlK9NzEOcNR6EBkFokrIBEPYIG2YtvDzLDZ8vI1JNcDG969gApW6YuY_A4ixUV9aYhgbTAqme_vHdfXJnc208I6Pl-co-J7f15XJ6cf4i8PAHz0emmA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+ensemble+of+on-line+Extreme+Learning+Machines+with+variable+forgetting+factor+for+dynamic+system+prediction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Soares%2C+Symone+G.&rft.au=Ara%C3%BAjo%2C+Rui&rft.date=2016-01-01&rft.pub=Elsevier&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=171&rft.issue=C&rft_id=info:doi/10.1016%2Fj.neucom.2015.07.035&rft.externalDocID=1359615 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |