Response of the Quasi‐Biennial Oscillation to a warming climate in global climate models
We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2 climates. No consistency was found among the models for the QBO period response, wit...
Uložené v:
| Vydané v: | Quarterly journal of the Royal Meteorological Society Ročník 148; číslo 744; s. 1490 - 1518 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2022
Wiley Subscription Services, Inc Wiley Wiley Blackwell (John Wiley & Sons) |
| Predmet: | |
| ISSN: | 0035-9009, 1477-870X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2 climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2 simulations. In the quadrupled CO2 simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2 amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change.
The response of the Quasi‐Biennial Oscillation (QBO) to a warming climate was examined in eleven general circulation models. No consistency was found among the models for the QBO period response. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate. |
|---|---|
| AbstractList | We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2 climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2 simulations. In the quadrupled CO2 simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2 amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change. We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO 2 climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO 2 simulations. In the quadrupled CO 2 simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO 2 , the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO 2 amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change. We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2 climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2 simulations. In the quadrupled CO2 simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2 amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change. The response of the Quasi‐Biennial Oscillation (QBO) to a warming climate was examined in eleven general circulation models. No consistency was found among the models for the QBO period response. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate. |
| Author | Hamilton, Kevin McLandress, Charles Braesicke, Peter Butchart, Neal Stockdale, Timothy N. Osprey, Scott Naoe, Hiroaki Simpson, Isla R. Richter, Jadwiga H. Lott, Francois Garcia, Rolando R. Gray, Lesley J. Kawatani, Yoshio Versick, Stefan Cagnazzo, Chiara Serva, Federico Bushell, Andrew C. Scinocca, John Yoshida, Kohei Holt, Laura Anstey, James Kerzenmacher, Tobias Chen, Chih‐Chieh Yukimoto, Seiji Watanabe, Shingo |
| Author_xml | – sequence: 1 givenname: Jadwiga H. orcidid: 0000-0001-7048-0781 surname: Richter fullname: Richter, Jadwiga H. email: jrichter@ucar.edu organization: National Center for Atmospheric Research (NCAR) – sequence: 2 givenname: Neal surname: Butchart fullname: Butchart, Neal organization: Met Office Hadley Centre – sequence: 3 givenname: Yoshio surname: Kawatani fullname: Kawatani, Yoshio organization: Japan Agency for Marine‐Earth Science and Technology – sequence: 4 givenname: Andrew C. orcidid: 0000-0001-5683-4387 surname: Bushell fullname: Bushell, Andrew C. organization: Met Office – sequence: 5 givenname: Laura orcidid: 0000-0003-0211-053X surname: Holt fullname: Holt, Laura organization: North West Research Associates (NWRA) – sequence: 6 givenname: Federico orcidid: 0000-0002-7118-0817 surname: Serva fullname: Serva, Federico organization: Institute of Marine Sciences, National Research Council (ISMAR‐CNR) – sequence: 7 givenname: James surname: Anstey fullname: Anstey, James organization: Canadian Centre for Climate Modelling and Analysis (CCCma) – sequence: 8 givenname: Isla R. surname: Simpson fullname: Simpson, Isla R. organization: National Center for Atmospheric Research (NCAR) – sequence: 9 givenname: Scott orcidid: 0000-0002-8751-1211 surname: Osprey fullname: Osprey, Scott organization: University of Oxford – sequence: 10 givenname: Kevin surname: Hamilton fullname: Hamilton, Kevin organization: International Pacific Research Center (IPRC) – sequence: 11 givenname: Peter surname: Braesicke fullname: Braesicke, Peter organization: Karlsruher Institut für Technologie (KIT) – sequence: 12 givenname: Chiara surname: Cagnazzo fullname: Cagnazzo, Chiara organization: Institute of Marine Sciences, National Research Council (ISMAR‐CNR) – sequence: 13 givenname: Chih‐Chieh surname: Chen fullname: Chen, Chih‐Chieh organization: National Center for Atmospheric Research (NCAR) – sequence: 14 givenname: Rolando R. surname: Garcia fullname: Garcia, Rolando R. organization: National Center for Atmospheric Research (NCAR) – sequence: 15 givenname: Lesley J. surname: Gray fullname: Gray, Lesley J. organization: University of Oxford – sequence: 16 givenname: Tobias orcidid: 0000-0001-8413-0539 surname: Kerzenmacher fullname: Kerzenmacher, Tobias organization: Karlsruher Institut für Technologie (KIT) – sequence: 17 givenname: Francois orcidid: 0000-0003-2126-5510 surname: Lott fullname: Lott, Francois organization: Laboratoire de Météorologie Dynamique (LMD) – sequence: 18 givenname: Charles surname: McLandress fullname: McLandress, Charles organization: University of Toronto – sequence: 19 givenname: Hiroaki orcidid: 0000-0002-6261-0854 surname: Naoe fullname: Naoe, Hiroaki organization: Meteorological Research Institute (MRI) – sequence: 20 givenname: John surname: Scinocca fullname: Scinocca, John organization: Canadian Centre for Climate Modelling and Analysis (CCCma) – sequence: 21 givenname: Timothy N. orcidid: 0000-0002-7901-0337 surname: Stockdale fullname: Stockdale, Timothy N. organization: European Centre for Medium‐Range Weather Forecasts (ECMWF) – sequence: 22 givenname: Stefan surname: Versick fullname: Versick, Stefan organization: Karlsruher Institut für Technologie (KIT) – sequence: 23 givenname: Shingo surname: Watanabe fullname: Watanabe, Shingo organization: Japan Agency for Marine‐Earth Science and Technology – sequence: 24 givenname: Kohei surname: Yoshida fullname: Yoshida, Kohei organization: Meteorological Research Institute (MRI) – sequence: 25 givenname: Seiji surname: Yukimoto fullname: Yukimoto, Seiji organization: Meteorological Research Institute (MRI) |
| BackLink | https://hal.science/hal-03049568$$DView record in HAL https://www.osti.gov/biblio/1601914$$D View this record in Osti.gov |
| BookMark | eNp10d9qFDEUBvAgFdxW8RWCXojI1JPJv8llLdVWFkpFQbwJZ2Yz3SzZZHeSbemdj-Az-iSd7agXoleBw4-P7-QckoOYoiPkOYNjBlC_3a6OuRbmEZkxoXXVaPh6QGYAXFYGwDwhhzmvAEDqWs_It08ub1LMjqaelqWjVzvM_uf3H--8i9FjoJe58yFg8SnSkijSWxzWPl7TLvg1Fkd9pNchtSP9PVmnhQv5KXncY8ju2a_3iHx5f_b59LyaX364OD2ZV50QxlSoUaEErXqUUmEPrXLI24XTvK6Nlm2zkMIIVAxRCNn2spauY1xw3jaqcfyIvJhyUy7ejm2L65ZditF1xTIFzDAxotcTWmKwm2HsOdzZhN6en8ztfgYchJGquWGjfTnZzZC2O5eLXaXdEMcdbK1kYxojYa9eTaobUs6D6__EMrD7S9jtyu4vMcrqLzl2fPjQMqAP__BvJn_rg7v7X6y9-vig7wHojplA |
| CitedBy_id | crossref_primary_10_1029_2024MS004381 crossref_primary_10_1002_qj_4793 crossref_primary_10_1029_2021GL097386 crossref_primary_10_1002_qj_3881 crossref_primary_10_1007_s00382_022_06625_2 crossref_primary_10_1175_JCLI_D_21_0270_1 crossref_primary_10_1029_2023GL106324 crossref_primary_10_1038_s41612_024_00874_0 crossref_primary_10_1029_2020JD032653 crossref_primary_10_1029_2021JD035165 crossref_primary_10_1007_s00376_023_3127_1 crossref_primary_10_5194_acp_25_5647_2025 crossref_primary_10_1111_nyas_14664 crossref_primary_10_5194_acp_22_2601_2022 crossref_primary_10_1175_JCLI_D_20_0024_1 crossref_primary_10_1038_s41526_023_00259_2 crossref_primary_10_1029_2023MS003624 crossref_primary_10_5194_acp_24_3297_2024 crossref_primary_10_1029_2019GL086903 crossref_primary_10_1002_qj_3919 crossref_primary_10_1029_2021JD036142 crossref_primary_10_5194_acp_21_7395_2021 crossref_primary_10_1007_s00376_025_4338_4 crossref_primary_10_5194_acp_23_3799_2023 crossref_primary_10_1029_2022MS003585 crossref_primary_10_1057_s41599_024_04022_0 crossref_primary_10_5194_acp_22_15379_2022 crossref_primary_10_1038_s43017_022_00323_7 crossref_primary_10_5194_acp_20_14669_2020 crossref_primary_10_1002_qj_4048 crossref_primary_10_1029_2024JD041780 crossref_primary_10_1029_2023GL104711 crossref_primary_10_1175_JAS_D_19_0293_1 crossref_primary_10_1029_2021GL097596 crossref_primary_10_1029_2021GL093058 crossref_primary_10_1029_2025GL114832 crossref_primary_10_5194_amt_17_5785_2024 crossref_primary_10_5194_acp_23_9549_2023 crossref_primary_10_1002_qj_4534 crossref_primary_10_1007_s13351_025_4237_8 crossref_primary_10_1002_qj_3765 crossref_primary_10_1002_qj_3820 crossref_primary_10_1029_2022GL101075 crossref_primary_10_1029_2023MS004145 crossref_primary_10_1029_2024JD042501 crossref_primary_10_1029_2024JD040744 crossref_primary_10_3390_atmos11090943 crossref_primary_10_1029_2023MS004184 |
| Cites_doi | 10.1038/nature12140 10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2 10.1029/2009GL037163 10.1175/JCLI3830.1 10.1175/2009JAS3112.1 10.1175/JCLI‐D‐16‐0663.1 10.1175/2008JAS2712.1 10.1186/BF03353209 10.1002/2015JD024125 10.1016/S1364-6826(96)00080-6 10.1175/1520-0469(1985)042<0376:COTELS>2.0.CO;2 10.1175/2010JCLI3575.1 10.1029/2012GL051001 10.1175/2010JAS3608.1 10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2 10.1002/qj.3765 10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2 10.1002/2013JD020731 10.1029/2010JD014181 10.1029/JD090iD03p05629 10.1175/2010JCLI3404.1 10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2 10.1029/2004GL021971 10.1002/2013MS000303 10.1175/JCLI-D-12-00536.1 10.1175/2009JCLI3069.1 10.1175/1520-0469(2004)061<1805:GWGBAT>2.0.CO;2 10.1098/rsta.1980.0157 10.1002/qj.3827 10.1126/science.aah4156 10.1016/S1364-6826(96)00079-X 10.1029/JC086iC10p09707 10.1002/qj.2132 10.1029/1999RG000073 10.1029/2009JD012777 10.1002/2013JD020797 10.5194/gmd‐11‐1009‐2018 10.1002/2016MS000699 10.1002/qj.4048 10.1007/s00382-014-2314-2 10.1175/JAS‐D‐13‐0325.1 10.1175/JCLI3735.1 10.1175/JAS-D-15-0022.1 10.1002/jgrd.50705 10.1175/1520-0469(1990)047<2465:AMMOTQ>2.0.CO;2 10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2 10.1002/qj.828 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 10.1029/2012JD018813 10.5194/acp-3-1-2003 10.2151/jmsj.2012-A20 10.1007/s00382-006-0162-4 10.1175/2009JAS3223.1 10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2 10.1175/2010JAS3623.1 10.1002/2016GL067762 10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2 10.1175/JCLI-D-16-0620.1 |
| ContentType | Journal Article |
| Copyright | 2020 Royal Meteorological Society 2022 Royal Meteorological Society Attribution |
| Copyright_xml | – notice: 2020 Royal Meteorological Society – notice: 2022 Royal Meteorological Society – notice: Attribution |
| DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G 1XC VOOES OTOTI |
| DOI | 10.1002/qj.3749 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1477-870X |
| EndPage | 1518 |
| ExternalDocumentID | 1601914 oai:HAL:hal-03049568v1 10_1002_qj_3749 QJ3749 |
| Genre | article |
| GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology – fundername: Division of Atmospheric and Geospace Sciences – fundername: Agence Nationale Recherche – fundername: Japan Society for the Promotion of Science – fundername: European Union – fundername: Natural Environment Research Council – fundername: Biological and Environmental Research – fundername: State of Baden-Wurttemberg – fundername: Met Office Hadley Centre Programme – fundername: Seventh Framework Programme |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 VOH W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XOL XV2 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ABUFD ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7TG 7TN F1W H96 KL. L.G 1XC VOOES ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
| ID | FETCH-LOGICAL-c4499-a7a6a5076fa556af0b6ea3bde7322975b8d5494a61aa445bf525ec13433b868e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517292100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0035-9009 |
| IngestDate | Fri May 19 00:43:54 EDT 2023 Tue Oct 14 20:18:34 EDT 2025 Fri Jul 25 09:27:09 EDT 2025 Tue Nov 18 22:28:12 EST 2025 Sat Nov 29 01:49:59 EST 2025 Wed Jan 22 16:25:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 744 |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4499-a7a6a5076fa556af0b6ea3bde7322975b8d5494a61aa445bf525ec13433b868e3 |
| Notes | Funding information Agence Nationale Recherche, Biological and Environmental Research, Division of Atmospheric and Geospace Sciences, European Union, Japan Agency for Marine‐Earth Science and Technology, Japan Science and Technology Agency, Japan Society for the Promotion of Science, Met Office Hadley Centre Programme, Ministry of Education, Culture, Sports, Science and Technology, Natural Environment Research Council, Seventh Framework Programme, State of Baden‐Wurttemberg ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
| ORCID | 0000-0001-7048-0781 0000-0002-7118-0817 0000-0002-8751-1211 0000-0002-6261-0854 0000-0003-0211-053X 0000-0003-2126-5510 0000-0001-5683-4387 0000-0001-8413-0539 0000-0002-7901-0337 0000000321265510 0000000262610854 0000000279010337 0000000170480781 0000000287511211 0000000156834387 000000030211053X 0000000184130539 0000000271180817 |
| OpenAccessLink | https://hal.science/hal-03049568 |
| PQID | 2658989501 |
| PQPubID | 1016432 |
| PageCount | 32 |
| ParticipantIDs | osti_scitechconnect_1601914 hal_primary_oai_HAL_hal_03049568v1 proquest_journals_2658989501 crossref_primary_10_1002_qj_3749 crossref_citationtrail_10_1002_qj_3749 wiley_primary_10_1002_qj_3749_QJ3749 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 Part A |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 Part A |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Reading – name: United Kingdom |
| PublicationTitle | Quarterly journal of the Royal Meteorological Society |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc Wiley Wiley Blackwell (John Wiley & Sons) |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc – name: Wiley – name: Wiley Blackwell (John Wiley & Sons) |
| References | 1968; 25 2013; 26 2004; 61 2015; 72 2003; 16 1980; 296 2016a; 8 1981; 86 2010; 23 2010; 67 2015; 45 2017; 30 1991; 48 1990; 47 1986; 43 2006; 27 2016b; 121 2010; 115 2013; 118 1987 2016; 43 2003; 3 2016; 353 2005; 32 1985; 90 2008; 65 2011; 68 1999; 51 2014; 6 1998; 55 2011; 137 2014; 119 2009; 22 1974; 31 2012 1997a; 59 2015; 120 2006; 19 2012; 39 1985; 42 1972; 29 1997b; 59 2009; 36 2012; 90A 2013; 497 2014; 140 2001; 39 2018; 11 2014; 71 2022; 148 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 Fu Q. (e_1_2_7_24_1) 2015; 120 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 CISL (e_1_2_7_17_1) 2012 Andrews D.G. (e_1_2_7_2_1) 1987 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 68 start-page: 265 year: 2011 end-page: 283 article-title: The Quasi‐Biennial Oscillation in a double CO climate publication-title: Journal of the Atmospheric Sciences – volume: 23 start-page: 5349 year: 2010 end-page: 5374 article-title: Chemistry–climate model simulations of Twenty‐first Century stratospheric climate and circulation changes publication-title: Journal of Climate – volume: 30 start-page: 1909 year: 2017 end-page: 1922 article-title: Stratospheric control of the Madden–Julian oscillation publication-title: Journal of Climate – volume: 119 start-page: 2329 year: 2014 end-page: 2355 article-title: Interaction of gravity waves with the QBO: a satellite perspective publication-title: Journal of Geophysical Research: Atmospheres – volume: 43 start-page: 1873 year: 1986 end-page: 1877 article-title: An update to the observed Quasi‐Biennial Oscillation of stratospheric winds over the tropics publication-title: Journal of the Atmospheric Sciences – volume: 120 start-page: 10214 year: 2015 end-page: 10228 article-title: Observational evidence of strengthening of the Brewer–Dobson circulation since 1980 publication-title: Journal of Geophysical Research – volume: 31 start-page: 674 year: 1974 end-page: 701 article-title: Interactions of cumulus cloud ensemble with the large‐scale environment publication-title: Journal of the Atmospheric Sciences – volume: 23 start-page: 5810 year: 2010 end-page: 5825 article-title: Revisiting the influence of the Quasi‐Biennial Oscillation on tropical cyclone activity publication-title: Journal of Climate – volume: 39 issue: 6 year: 2012 article-title: A stochastic parameterization of non‐orographic gravity waves: formalism and impact on the equatorial stratosphere publication-title: Geophysical Research Letters – volume: 67 start-page: 136 year: 2010 end-page: 156 article-title: Towards a physically based gravity wave source parameterization in a general circulation model publication-title: Journal of the Atmospheric Sciences – volume: 148 start-page: 1541 year: 2022 end-page: 1567 article-title: An evaluation of tropical waves and wave forcing of the QBO in the QBOi models publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 36 issue: 6 year: 2009 article-title: Influence of stratospheric Quasi‐Biennial Oscillation on tropical cyclone tracks in the western North Pacific publication-title: Geophysical Research Letters – volume: 72 start-page: 4349 year: 2015 end-page: 4371 article-title: Parameterized gravity wave momentum fluxes from sources related to convection and large‐scale precipitation processes in a global atmosphere model publication-title: Journal of the Atmospheric Sciences – volume: 68 start-page: 784 year: 2011 end-page: 797 article-title: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: critical‐layer control of subtropical wave breaking publication-title: Journal of the Atmospheric Sciences – volume: 16 start-page: 2552 year: 2003 end-page: 2568 article-title: On the relationship between the QBO and tropical deep convection publication-title: Journal of Climate – volume: 137 start-page: 553 year: 2011 end-page: 597 article-title: The ERA‐Interim reanalysis: configuration and performance of the data assimilation system publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 30 start-page: 5661 year: 2017 end-page: 5674 article-title: Dynamics of the disrupted 2015/16 Quasi‐Biennial Oscillation publication-title: Journal of Climate – volume: 497 start-page: 478 year: 2013 end-page: 481 article-title: Weakened stratospheric Quasi‐Biennial Oscillation driven by increased tropical mean upwelling publication-title: Nature – volume: 26 start-page: 7117 year: 2013 end-page: 7135 article-title: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models publication-title: Journal of Climate – volume: 59 start-page: 371 year: 1997a end-page: 386 article-title: Doppler‐spread parametization of gravity‐wave momentum deposition in the middle atmosphere. Part 1: basic formulation publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – volume: 90 start-page: 5629 year: 1985 end-page: 5635 article-title: Interannual variations in the height of the tropical tropopause publication-title: Journal of Geophysical Research: Atmospheres – volume: 86 start-page: 9707 year: 1981 end-page: 9714 article-title: Turbulence and stress owing to gravity wave and tidal breakdown publication-title: Journal of Geophysical Research – volume: 61 start-page: 324 year: 2004 end-page: 337 article-title: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind publication-title: Journal of the Atmospheric Sciences – volume: 43 start-page: 1392 year: 2016 end-page: 1398 article-title: Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric Quasi‐Biennial Oscillation publication-title: Geophysical Research Letters – volume: 353 start-page: 1424 year: 2016 end-page: 1427 article-title: An unexpected disruption of the atmospheric Quasi‐Biennial Oscillation publication-title: Science – volume: 3 start-page: 1 year: 2003 end-page: 27 article-title: Uncertainties and assessments of chemistry–climate models of the stratosphere publication-title: Atmospheric Chemistry and Physics – volume: 55 start-page: 163 year: 1998 end-page: 185 article-title: Seasonal cycles and QBO variations in stratospheric CH and H O observed in UARS HALOE data publication-title: Journal of the Atmospheric Sciences – volume: 6 start-page: 357 year: 2014 end-page: 383 article-title: Effects of vertical resolution and non‐orographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5 publication-title: Journal of Advances in Modeling Earth Systems – volume: 121 start-page: 8886 year: 2016b end-page: 8895 article-title: The QBO, gravity waves forced by tropical convection, and ENSO publication-title: Journal of Geophysical Research: Atmospheres – volume: 42 start-page: 376 year: 1985 end-page: 396 article-title: Climatology of the equatorial lower stratosphere publication-title: Journal of the Atmospheric Sciences – volume: 296 start-page: 73 year: 1980 end-page: 85 article-title: Wave propagation and transport in the middle atmosphere publication-title: Philosophical Transactions of the Royal Society of London. Series A – volume: 115 issue: D20 year: 2010 article-title: Influence of the Quasi‐Biennial Oscillation on the North Pacific and El Niño teleconnections publication-title: Journal of Geophysical Research – volume: 148 start-page: 1568 year: 2022 end-page: 1592 article-title: QBO teleconnections in a multi‐model ensemble of QBO‐resolving models publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 90A start-page: 351 year: 2012 end-page: 360 article-title: Sensitivity of the QBO to mean tropical upwelling under a changing climate simulated with an Earth System Model publication-title: Journal of the Meteorological Society of Japan, Series II – volume: 29 start-page: 1076 year: 1972 end-page: 1080 article-title: An updated theory for the quasi‐biennial cycle of the tropical stratosphere publication-title: Journal of the Atmospheric Sciences – volume: 115 start-page: 1 year: 2010 end-page: 17 article-title: Wave forcing in the stratosphere under doubled‐CO conditions in a 100‐year coupled chemistry–climate model study publication-title: Journal of Geophysical Research Atmospheres – volume: 48 start-page: 236 year: 1991 end-page: 263 article-title: Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving publication-title: Journal of the Atmospheric Sciences – year: 1987 – volume: 25 start-page: 1095 year: 1968 end-page: 1107 article-title: A theory for the Quasi‐Biennial Oscillation publication-title: Journal of the Atmospheric Sciences – volume: 32 issue: 8 year: 2005 article-title: Sensitivity of the Quasi‐Biennial Oscillation to CO doubling publication-title: Geophysical Research Letters – volume: 19 start-page: 2665 year: 2006 end-page: 2690 article-title: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals publication-title: Journal of Climate – volume: 119 start-page: 2156 year: 2014 end-page: 2173 article-title: Kelvin and Rossby‐gravity wave packets in the lower stratosphere of some high‐top CMIP5 models publication-title: Journal of Geophysical Research – volume: 27 start-page: 727 year: 2006 end-page: 741 article-title: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation publication-title: Climate Dynamics – volume: 59 start-page: 387 year: 1997b end-page: 400 article-title: Doppler‐spread parametization of gravity‐wave momentum deposition in the middle atmosphere. Part 2: broad and quasi‐monochromatic spectra, and implementation publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – volume: 71 start-page: 2489 year: 2014 end-page: 2515 article-title: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming publication-title: Journal of the Atmospheric Sciences – volume: 65 start-page: 2731 year: 2008 end-page: 2739 article-title: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases publication-title: Journal of the Atmospheric Sciences – volume: 47 start-page: 2465 year: 1990 end-page: 2474 article-title: A multiwave model of the Quasi‐Biennial Oscillation publication-title: Journal of the Atmospheric Sciences – year: 2012 – volume: 118 issue: 1 year: 2013 article-title: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models publication-title: Journal of Geophysical Research; Atmospheres – volume: 61 start-page: 1805 year: 2004 end-page: 1815 article-title: Gravity wave generation by a three‐dimensional thermal forcing publication-title: Journal of the Atmospheric Sciences – volume: 19 start-page: 3882 year: 2006 end-page: 3901 article-title: Climatology and forcing of the Quasi‐Biennial Oscillation in the MAECHAM5 model publication-title: Journal of Climate – volume: 67 start-page: 981 year: 2010 end-page: 997 article-title: The roles of equatorial trapped waves and internal inertia‐gravity waves in driving the Quasi‐Biennial Oscillation. Part II: three‐dimensional distribution of wave forcing publication-title: Journal of the Atmospheric Sciences – volume: 8 start-page: 1092 year: 2016a end-page: 1105 article-title: Modeling the QBO – Improvements resulting from higher‐model vertical resolution publication-title: Journal of Advances in Modeling Earth Systems – volume: 51 start-page: 475 year: 1999 end-page: 484 article-title: Toward an ultra‐simple spectral gravity wave parameterization for general circulation models publication-title: Earth Planets Space – volume: 39 start-page: 179 year: 2001 end-page: 229 article-title: The Quasi‐Biennial Oscillation publication-title: Review of Geophysics – volume: 22 start-page: 5449 year: 2009 end-page: 5463 article-title: Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere model publication-title: Journal of Climate – volume: 45 start-page: 825 year: 2015 end-page: 836 article-title: The Quasi‐Biennial Oscillation in a warmer climate: sensitivity to different gravity wave parameterizations publication-title: Climate Dynamics – volume: 118 start-page: 8897 year: 2013 end-page: 8909 article-title: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere publication-title: Journal of Geophysical Research; Atmospheres – volume: 148 start-page: 1459 year: 2022 end-page: 1489 article-title: Evaluation of the Quasi‐Biennial Oscillation in global climate models for the SPARC QBO‐initiative publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 11 start-page: 1009 year: 2018 end-page: 1032 article-title: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi‐Biennial Oscillation initiative (QBOi) publication-title: Geoscientific Model Development – volume: 140 start-page: 1 year: 2014 end-page: 21 article-title: High‐latitude influence of the Quasi‐Biennial Oscillation publication-title: Quarterly Journal of the Royal Meteorological Society – ident: e_1_2_7_37_1 doi: 10.1038/nature12140 – volume: 120 start-page: 10214 year: 2015 ident: e_1_2_7_24_1 article-title: Observational evidence of strengthening of the Brewer–Dobson circulation since 1980 publication-title: Journal of Geophysical Research – ident: e_1_2_7_50_1 doi: 10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2 – volume-title: Middle Atmosphere Dynamics year: 1987 ident: e_1_2_7_2_1 – ident: e_1_2_7_33_1 doi: 10.1029/2009GL037163 – ident: e_1_2_7_30_1 doi: 10.1175/JCLI3830.1 – ident: e_1_2_7_52_1 doi: 10.1175/2009JAS3112.1 – ident: e_1_2_7_19_1 doi: 10.1175/JCLI‐D‐16‐0663.1 – ident: e_1_2_7_25_1 doi: 10.1175/2008JAS2712.1 – ident: e_1_2_7_59_1 doi: 10.1186/BF03353209 – ident: e_1_2_7_28_1 doi: 10.1002/2015JD024125 – ident: e_1_2_7_32_1 doi: 10.1016/S1364-6826(96)00080-6 – ident: e_1_2_7_22_1 doi: 10.1175/1520-0469(1985)042<0376:COTELS>2.0.CO;2 – ident: e_1_2_7_16_1 doi: 10.1175/2010JCLI3575.1 – ident: e_1_2_7_45_1 doi: 10.1029/2012GL051001 – ident: e_1_2_7_56_1 doi: 10.1175/2010JAS3608.1 – ident: e_1_2_7_10_1 doi: 10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2 – ident: e_1_2_7_12_1 doi: 10.1002/qj.3765 – ident: e_1_2_7_48_1 doi: 10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2 – ident: e_1_2_7_23_1 doi: 10.1002/2013JD020731 – ident: e_1_2_7_26_1 doi: 10.1029/2010JD014181 – ident: e_1_2_7_51_1 doi: 10.1029/JD090iD03p05629 – ident: e_1_2_7_14_1 doi: 10.1175/2010JCLI3404.1 – ident: e_1_2_7_43_1 doi: 10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2 – ident: e_1_2_7_29_1 doi: 10.1029/2004GL021971 – ident: e_1_2_7_53_1 doi: 10.1002/2013MS000303 – ident: e_1_2_7_8_1 doi: 10.1175/JCLI-D-12-00536.1 – ident: e_1_2_7_47_1 doi: 10.1175/2009JCLI3069.1 – ident: e_1_2_7_9_1 doi: 10.1175/1520-0469(2004)061<1805:GWGBAT>2.0.CO;2 – ident: e_1_2_7_35_1 doi: 10.1098/rsta.1980.0157 – ident: e_1_2_7_34_1 doi: 10.1002/qj.3827 – ident: e_1_2_7_49_1 doi: 10.1126/science.aah4156 – ident: e_1_2_7_31_1 doi: 10.1016/S1364-6826(96)00079-X – ident: e_1_2_7_42_1 doi: 10.1029/JC086iC10p09707 – ident: e_1_2_7_3_1 doi: 10.1002/qj.2132 – ident: e_1_2_7_7_1 doi: 10.1029/1999RG000073 – ident: e_1_2_7_61_1 doi: 10.1029/2009JD012777 – ident: e_1_2_7_46_1 doi: 10.1002/2013JD020797 – volume-title: Yellowstone: IBM iDataPlex /FDR‐IB year: 2012 ident: e_1_2_7_17_1 – ident: e_1_2_7_15_1 doi: 10.5194/gmd‐11‐1009‐2018 – ident: e_1_2_7_27_1 doi: 10.1002/2016MS000699 – ident: e_1_2_7_4_1 doi: 10.1002/qj.4048 – ident: e_1_2_7_55_1 doi: 10.1007/s00382-014-2314-2 – ident: e_1_2_7_57_1 doi: 10.1175/JAS‐D‐13‐0325.1 – ident: e_1_2_7_40_1 doi: 10.1175/JCLI3735.1 – ident: e_1_2_7_11_1 doi: 10.1175/JAS-D-15-0022.1 – ident: e_1_2_7_44_1 doi: 10.1002/jgrd.50705 – ident: e_1_2_7_54_1 doi: 10.1175/1520-0469(1990)047<2465:AMMOTQ>2.0.CO;2 – ident: e_1_2_7_18_1 doi: 10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2 – ident: e_1_2_7_20_1 doi: 10.1002/qj.828 – ident: e_1_2_7_5_1 doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 – ident: e_1_2_7_41_1 doi: 10.1029/2012JD018813 – ident: e_1_2_7_6_1 doi: 10.5194/acp-3-1-2003 – ident: e_1_2_7_60_1 doi: 10.2151/jmsj.2012-A20 – ident: e_1_2_7_13_1 doi: 10.1007/s00382-006-0162-4 – ident: e_1_2_7_38_1 doi: 10.1175/2009JAS3223.1 – ident: e_1_2_7_36_1 doi: 10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2 – ident: e_1_2_7_39_1 doi: 10.1175/2010JAS3623.1 – ident: e_1_2_7_62_1 doi: 10.1002/2016GL067762 – ident: e_1_2_7_21_1 doi: 10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2 – ident: e_1_2_7_58_1 doi: 10.1175/JCLI-D-16-0620.1 |
| SSID | ssj0005727 |
| Score | 2.5792563 |
| Snippet | We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice... |
| SourceID | osti hal proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1490 |
| SubjectTerms | Atmospheric circulation Carbon dioxide Climate change Climate models GCMs General circulation models Global climate Global warming Gravity waves Modelling Momentum flux Momentum transfer Ocean, Atmosphere QBO QBOi Quasi-biennial oscillation Sciences of the Universe Simulation Stratosphere Tropical climate Velocity Zonal winds |
| Title | Response of the Quasi‐Biennial Oscillation to a warming climate in global climate models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.3749 https://www.proquest.com/docview/2658989501 https://hal.science/hal-03049568 https://www.osti.gov/biblio/1601914 |
| Volume | 148 |
| WOSCitedRecordID | wos000517292100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1477-870X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005727 issn: 0035-9009 databaseCode: DRFUL dateStart: 20020101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VpYdeCoVWTfmQVSFuKUlsJ_ERKCuEKAUEEurFsr1Ou2i1KZsFrv0J_Y38ks44YQGhSpV6iuLYkeXxxG-c5zcAG9Zba0WWxpZbGwvEb7TRJGLrE6-cGiBkECHZRHF0VF5cqONHqb5afYjZhht5Rvhek4Mb22w9iIZeXX7ihVBzMJ_hrJU9mP982j8_fOB3FF2-Vi5jhUiiPTFLjbe6pk-WorkfRITs1ehYT8DmY8ga1pz-wn_0dhFed0CTbbcz4w288OMliL4gRq4nYSudbbLd0RABa7hbhm-nLV3Ws7piCAvZybVphne_fu8QJwynKfuKy-Wo5c6xac0MuzXEpPnOXHiPZ8MxawVGZiUh0U7zFs77e2e7-3GXeSF2AkOg2BQmN4gU88pImZsqsbk33A58gf6vCmnLAcaVwuSpMUJIW8lMepdywbkt89Lzd9Ab12P_HpiojCpUUtnEZsJYjMecIo0fxD1J7riPYPPeCNp1suSUHWOkW0HlTF9dahq6CNis4s9WieN5lY9oxdlTUs7e3z7UVEZ_gOlk5E0awQoZWeOQkUyuIz6Rm-oUI1OVighW722vO29udIYwTZVKJth4I1j5bz3QJwd0-fBv1VbgVUanKQIRaBV608m1X4OX7mY6bCbr3YT-A-Kb-Hs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VpVJ7KaUtagqlFkLcUpLY-fARKKulXbYFgYR6sWyvA4tWm7K70Cs_gd_IL2HGCQuoqlSppyiJHVmesf3GeX4DsG6cMUYkcWi4MaFA_EYbTSI0LnLSyj5CBuGTTeS9XnFyIn80rEo6C1PrQ8w23Ghk-PmaBjhtSG8-qIZenH_muZBzMC_QidC7578cto-7DwSPvEnYytNQIpSoj8xS5c2m6pO1aO6MmJCtCkfWE7T5GLP6Rae98D_NfQ2vGqjJtmrfWIRnbvQGgn1EydXYb6azDbYzHCBk9Xdv4edhTZh1rCoZAkN2cKkng9vrm21ihaGjsu-4YA5r9hybVkyz35q4NKfM-u84NhixWmJk9sSn2pm8g-P27tFOJ2xyL4RWYBAU6lxnGrFiVuo0zXQZmcxpbvouxxlA5qkp-hhZCp3FWguRmjJNUmdjLjg3RVY4vgStUTVy74GJUstcRqWJTCK0wYjMSlL5QeQTZZa7ADburaBsI0xO-TGGqpZUTtTFuaKuC4DNCv6qtTj-LLKGZpy9Je3szlZX0TP6B0xnI6_iAJbJygq7jIRyLTGK7FTFGJvKWASwcm981YzniUoQqMlCphFWXvdm_lsL1MFXunz4t2Kf4EXnaL-runu9b8vwMqGzFZ4WtAKt6fjSfYTn9mo6mIxXG---A8B0_Gs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bTtwwEB2VpUK80BaoGqDFQoi3lCR2Ln6k0BW0y3JRkRAvlu112kWrDewu8NpP6Df2SzrjhKUIVULqU5TEjiyPL2ecM2cANo0zxogkDg03JhSI3-igSYTGRU5a2UPIIHyyibzbLc7P5XHDqqRYmFofYnrgRjPDr9c0wd1Vr9x-UA29vvzIcyFnYFZQCpkWzO6dts86DwSPvEnYytNQIpSoQ2ap8nZT9dFeNPODmJCtCmfWI7T5N2b1m0771f809zUsNFCT7dRj4w28cMNFCA4RJVcjf5jOttjuoI-Q1d8twcVpTZh1rCoZAkN2cqPH_d8_f30iVhgOVHaEG-agZs-xScU0u9PEpfnOrP-OY_0hqyVGpk98qp3xMpy1P3_b3Q-b3AuhFegEhTrXmUasmJU6TTNdRiZzmpuey3EFkHlqih56lkJnsdZCpKZMk9TZmAvOTZEVjr-F1rAaunfARKllLqPSRCYR2qBHZiWp_CDyiTLLXQBb91ZQthEmp_wYA1VLKifq-lJR1wXApgWvai2Op0U20IzTt6Sdvb_TUfSM_gFTbORtHMAqWVlhl5FQriVGkZ2oGH1TGYsA1u6Nr5r5PFYJAjVZyDTCypvezP9qgTr5QpeV5xVbh7njvbbqHHS_rsJ8QqEVnhW0Bq3J6Ma9h5f2dtIfjz40g_sPUUf75g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+the+Quasi%E2%80%90Biennial+Oscillation+to+a+warming+climate+in+global+climate+models&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Richter%2C+Jadwiga+H&rft.au=Butchart%2C+Neal&rft.au=Kawatani%2C+Yoshio&rft.au=Bushell%2C+Andrew+C&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=148&rft.issue=744&rft.spage=1490&rft.epage=1518&rft_id=info:doi/10.1002%2Fqj.3749&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon |