Response of the Quasi‐Biennial Oscillation to a warming climate in global climate models

We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2 climates. No consistency was found among the models for the QBO period response, wit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quarterly journal of the Royal Meteorological Society Ročník 148; číslo 744; s. 1490 - 1518
Hlavní autori: Richter, Jadwiga H., Butchart, Neal, Kawatani, Yoshio, Bushell, Andrew C., Holt, Laura, Serva, Federico, Anstey, James, Simpson, Isla R., Osprey, Scott, Hamilton, Kevin, Braesicke, Peter, Cagnazzo, Chiara, Chen, Chih‐Chieh, Garcia, Rolando R., Gray, Lesley J., Kerzenmacher, Tobias, Lott, Francois, McLandress, Charles, Naoe, Hiroaki, Scinocca, John, Stockdale, Timothy N., Versick, Stefan, Watanabe, Shingo, Yoshida, Kohei, Yukimoto, Seiji
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 01.04.2022
Wiley Subscription Services, Inc
Wiley
Wiley Blackwell (John Wiley & Sons)
Predmet:
ISSN:0035-9009, 1477-870X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2 climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2 simulations. In the quadrupled CO2 simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2 amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change. The response of the Quasi‐Biennial Oscillation (QBO) to a warming climate was examined in eleven general circulation models. No consistency was found among the models for the QBO period response. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate.
AbstractList We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2 climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2 simulations. In the quadrupled CO2 simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2 amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change.
We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO 2 climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO 2 simulations. In the quadrupled CO 2 simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO 2 , the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO 2 amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change.
We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice simulations for present‐day, doubled, and quadrupled CO2 climates. No consistency was found among the models for the QBO period response, with the period decreasing by 8 months in some models and lengthening by up to 13 months in others in the doubled CO2 simulations. In the quadrupled CO2 simulations, a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present‐day QBO, although it could still be identified in the deseasonalized zonal mean zonal wind timeseries. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate with the largest relative decrease near 60 hPa. In simulations with doubled and quadrupled CO2, the multi‐model mean QBO amplitudes decreased by 36 and 51%, respectively. Across the models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO2 amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parametrized gravity wave momentum fluxes, and to some degree the resolved upward wave flux. We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change. The response of the Quasi‐Biennial Oscillation (QBO) to a warming climate was examined in eleven general circulation models. No consistency was found among the models for the QBO period response. In contrast, all the models projected a decrease in the QBO amplitude in a warmer climate.
Author Hamilton, Kevin
McLandress, Charles
Braesicke, Peter
Butchart, Neal
Stockdale, Timothy N.
Osprey, Scott
Naoe, Hiroaki
Simpson, Isla R.
Richter, Jadwiga H.
Lott, Francois
Garcia, Rolando R.
Gray, Lesley J.
Kawatani, Yoshio
Versick, Stefan
Cagnazzo, Chiara
Serva, Federico
Bushell, Andrew C.
Scinocca, John
Yoshida, Kohei
Holt, Laura
Anstey, James
Kerzenmacher, Tobias
Chen, Chih‐Chieh
Yukimoto, Seiji
Watanabe, Shingo
Author_xml – sequence: 1
  givenname: Jadwiga H.
  orcidid: 0000-0001-7048-0781
  surname: Richter
  fullname: Richter, Jadwiga H.
  email: jrichter@ucar.edu
  organization: National Center for Atmospheric Research (NCAR)
– sequence: 2
  givenname: Neal
  surname: Butchart
  fullname: Butchart, Neal
  organization: Met Office Hadley Centre
– sequence: 3
  givenname: Yoshio
  surname: Kawatani
  fullname: Kawatani, Yoshio
  organization: Japan Agency for Marine‐Earth Science and Technology
– sequence: 4
  givenname: Andrew C.
  orcidid: 0000-0001-5683-4387
  surname: Bushell
  fullname: Bushell, Andrew C.
  organization: Met Office
– sequence: 5
  givenname: Laura
  orcidid: 0000-0003-0211-053X
  surname: Holt
  fullname: Holt, Laura
  organization: North West Research Associates (NWRA)
– sequence: 6
  givenname: Federico
  orcidid: 0000-0002-7118-0817
  surname: Serva
  fullname: Serva, Federico
  organization: Institute of Marine Sciences, National Research Council (ISMAR‐CNR)
– sequence: 7
  givenname: James
  surname: Anstey
  fullname: Anstey, James
  organization: Canadian Centre for Climate Modelling and Analysis (CCCma)
– sequence: 8
  givenname: Isla R.
  surname: Simpson
  fullname: Simpson, Isla R.
  organization: National Center for Atmospheric Research (NCAR)
– sequence: 9
  givenname: Scott
  orcidid: 0000-0002-8751-1211
  surname: Osprey
  fullname: Osprey, Scott
  organization: University of Oxford
– sequence: 10
  givenname: Kevin
  surname: Hamilton
  fullname: Hamilton, Kevin
  organization: International Pacific Research Center (IPRC)
– sequence: 11
  givenname: Peter
  surname: Braesicke
  fullname: Braesicke, Peter
  organization: Karlsruher Institut für Technologie (KIT)
– sequence: 12
  givenname: Chiara
  surname: Cagnazzo
  fullname: Cagnazzo, Chiara
  organization: Institute of Marine Sciences, National Research Council (ISMAR‐CNR)
– sequence: 13
  givenname: Chih‐Chieh
  surname: Chen
  fullname: Chen, Chih‐Chieh
  organization: National Center for Atmospheric Research (NCAR)
– sequence: 14
  givenname: Rolando R.
  surname: Garcia
  fullname: Garcia, Rolando R.
  organization: National Center for Atmospheric Research (NCAR)
– sequence: 15
  givenname: Lesley J.
  surname: Gray
  fullname: Gray, Lesley J.
  organization: University of Oxford
– sequence: 16
  givenname: Tobias
  orcidid: 0000-0001-8413-0539
  surname: Kerzenmacher
  fullname: Kerzenmacher, Tobias
  organization: Karlsruher Institut für Technologie (KIT)
– sequence: 17
  givenname: Francois
  orcidid: 0000-0003-2126-5510
  surname: Lott
  fullname: Lott, Francois
  organization: Laboratoire de Météorologie Dynamique (LMD)
– sequence: 18
  givenname: Charles
  surname: McLandress
  fullname: McLandress, Charles
  organization: University of Toronto
– sequence: 19
  givenname: Hiroaki
  orcidid: 0000-0002-6261-0854
  surname: Naoe
  fullname: Naoe, Hiroaki
  organization: Meteorological Research Institute (MRI)
– sequence: 20
  givenname: John
  surname: Scinocca
  fullname: Scinocca, John
  organization: Canadian Centre for Climate Modelling and Analysis (CCCma)
– sequence: 21
  givenname: Timothy N.
  orcidid: 0000-0002-7901-0337
  surname: Stockdale
  fullname: Stockdale, Timothy N.
  organization: European Centre for Medium‐Range Weather Forecasts (ECMWF)
– sequence: 22
  givenname: Stefan
  surname: Versick
  fullname: Versick, Stefan
  organization: Karlsruher Institut für Technologie (KIT)
– sequence: 23
  givenname: Shingo
  surname: Watanabe
  fullname: Watanabe, Shingo
  organization: Japan Agency for Marine‐Earth Science and Technology
– sequence: 24
  givenname: Kohei
  surname: Yoshida
  fullname: Yoshida, Kohei
  organization: Meteorological Research Institute (MRI)
– sequence: 25
  givenname: Seiji
  surname: Yukimoto
  fullname: Yukimoto, Seiji
  organization: Meteorological Research Institute (MRI)
BackLink https://hal.science/hal-03049568$$DView record in HAL
https://www.osti.gov/biblio/1601914$$D View this record in Osti.gov
BookMark eNp10d9qFDEUBvAgFdxW8RWCXojI1JPJv8llLdVWFkpFQbwJZ2Yz3SzZZHeSbemdj-Az-iSd7agXoleBw4-P7-QckoOYoiPkOYNjBlC_3a6OuRbmEZkxoXXVaPh6QGYAXFYGwDwhhzmvAEDqWs_It08ub1LMjqaelqWjVzvM_uf3H--8i9FjoJe58yFg8SnSkijSWxzWPl7TLvg1Fkd9pNchtSP9PVmnhQv5KXncY8ju2a_3iHx5f_b59LyaX364OD2ZV50QxlSoUaEErXqUUmEPrXLI24XTvK6Nlm2zkMIIVAxRCNn2spauY1xw3jaqcfyIvJhyUy7ejm2L65ZditF1xTIFzDAxotcTWmKwm2HsOdzZhN6en8ztfgYchJGquWGjfTnZzZC2O5eLXaXdEMcdbK1kYxojYa9eTaobUs6D6__EMrD7S9jtyu4vMcrqLzl2fPjQMqAP__BvJn_rg7v7X6y9-vig7wHojplA
CitedBy_id crossref_primary_10_1029_2024MS004381
crossref_primary_10_1002_qj_4793
crossref_primary_10_1029_2021GL097386
crossref_primary_10_1002_qj_3881
crossref_primary_10_1007_s00382_022_06625_2
crossref_primary_10_1175_JCLI_D_21_0270_1
crossref_primary_10_1029_2023GL106324
crossref_primary_10_1038_s41612_024_00874_0
crossref_primary_10_1029_2020JD032653
crossref_primary_10_1029_2021JD035165
crossref_primary_10_1007_s00376_023_3127_1
crossref_primary_10_5194_acp_25_5647_2025
crossref_primary_10_1111_nyas_14664
crossref_primary_10_5194_acp_22_2601_2022
crossref_primary_10_1175_JCLI_D_20_0024_1
crossref_primary_10_1038_s41526_023_00259_2
crossref_primary_10_1029_2023MS003624
crossref_primary_10_5194_acp_24_3297_2024
crossref_primary_10_1029_2019GL086903
crossref_primary_10_1002_qj_3919
crossref_primary_10_1029_2021JD036142
crossref_primary_10_5194_acp_21_7395_2021
crossref_primary_10_1007_s00376_025_4338_4
crossref_primary_10_5194_acp_23_3799_2023
crossref_primary_10_1029_2022MS003585
crossref_primary_10_1057_s41599_024_04022_0
crossref_primary_10_5194_acp_22_15379_2022
crossref_primary_10_1038_s43017_022_00323_7
crossref_primary_10_5194_acp_20_14669_2020
crossref_primary_10_1002_qj_4048
crossref_primary_10_1029_2024JD041780
crossref_primary_10_1029_2023GL104711
crossref_primary_10_1175_JAS_D_19_0293_1
crossref_primary_10_1029_2021GL097596
crossref_primary_10_1029_2021GL093058
crossref_primary_10_1029_2025GL114832
crossref_primary_10_5194_amt_17_5785_2024
crossref_primary_10_5194_acp_23_9549_2023
crossref_primary_10_1002_qj_4534
crossref_primary_10_1007_s13351_025_4237_8
crossref_primary_10_1002_qj_3765
crossref_primary_10_1002_qj_3820
crossref_primary_10_1029_2022GL101075
crossref_primary_10_1029_2023MS004145
crossref_primary_10_1029_2024JD042501
crossref_primary_10_1029_2024JD040744
crossref_primary_10_3390_atmos11090943
crossref_primary_10_1029_2023MS004184
Cites_doi 10.1038/nature12140
10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2
10.1029/2009GL037163
10.1175/JCLI3830.1
10.1175/2009JAS3112.1
10.1175/JCLI‐D‐16‐0663.1
10.1175/2008JAS2712.1
10.1186/BF03353209
10.1002/2015JD024125
10.1016/S1364-6826(96)00080-6
10.1175/1520-0469(1985)042<0376:COTELS>2.0.CO;2
10.1175/2010JCLI3575.1
10.1029/2012GL051001
10.1175/2010JAS3608.1
10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2
10.1002/qj.3765
10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2
10.1002/2013JD020731
10.1029/2010JD014181
10.1029/JD090iD03p05629
10.1175/2010JCLI3404.1
10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2
10.1029/2004GL021971
10.1002/2013MS000303
10.1175/JCLI-D-12-00536.1
10.1175/2009JCLI3069.1
10.1175/1520-0469(2004)061<1805:GWGBAT>2.0.CO;2
10.1098/rsta.1980.0157
10.1002/qj.3827
10.1126/science.aah4156
10.1016/S1364-6826(96)00079-X
10.1029/JC086iC10p09707
10.1002/qj.2132
10.1029/1999RG000073
10.1029/2009JD012777
10.1002/2013JD020797
10.5194/gmd‐11‐1009‐2018
10.1002/2016MS000699
10.1002/qj.4048
10.1007/s00382-014-2314-2
10.1175/JAS‐D‐13‐0325.1
10.1175/JCLI3735.1
10.1175/JAS-D-15-0022.1
10.1002/jgrd.50705
10.1175/1520-0469(1990)047<2465:AMMOTQ>2.0.CO;2
10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2
10.1002/qj.828
10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
10.1029/2012JD018813
10.5194/acp-3-1-2003
10.2151/jmsj.2012-A20
10.1007/s00382-006-0162-4
10.1175/2009JAS3223.1
10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2
10.1175/2010JAS3623.1
10.1002/2016GL067762
10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2
10.1175/JCLI-D-16-0620.1
ContentType Journal Article
Copyright 2020 Royal Meteorological Society
2022 Royal Meteorological Society
Attribution
Copyright_xml – notice: 2020 Royal Meteorological Society
– notice: 2022 Royal Meteorological Society
– notice: Attribution
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
1XC
VOOES
OTOTI
DOI 10.1002/qj.3749
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 1518
ExternalDocumentID 1601914
oai:HAL:hal-03049568v1
10_1002_qj_3749
QJ3749
Genre article
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology
– fundername: Division of Atmospheric and Geospace Sciences
– fundername: Agence Nationale Recherche
– fundername: Japan Society for the Promotion of Science
– fundername: European Union
– fundername: Natural Environment Research Council
– fundername: Biological and Environmental Research
– fundername: State of Baden-Wurttemberg
– fundername: Met Office Hadley Centre Programme
– fundername: Seventh Framework Programme
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7TG
7TN
F1W
H96
KL.
L.G
1XC
VOOES
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4499-a7a6a5076fa556af0b6ea3bde7322975b8d5494a61aa445bf525ec13433b868e3
IEDL.DBID DRFUL
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517292100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-9009
IngestDate Fri May 19 00:43:54 EDT 2023
Tue Oct 14 20:18:34 EDT 2025
Fri Jul 25 09:27:09 EDT 2025
Tue Nov 18 22:28:12 EST 2025
Sat Nov 29 01:49:59 EST 2025
Wed Jan 22 16:25:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 744
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4499-a7a6a5076fa556af0b6ea3bde7322975b8d5494a61aa445bf525ec13433b868e3
Notes Funding information
Agence Nationale Recherche, Biological and Environmental Research, Division of Atmospheric and Geospace Sciences, European Union, Japan Agency for Marine‐Earth Science and Technology, Japan Science and Technology Agency, Japan Society for the Promotion of Science, Met Office Hadley Centre Programme, Ministry of Education, Culture, Sports, Science and Technology, Natural Environment Research Council, Seventh Framework Programme, State of Baden‐Wurttemberg
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0001-7048-0781
0000-0002-7118-0817
0000-0002-8751-1211
0000-0002-6261-0854
0000-0003-0211-053X
0000-0003-2126-5510
0000-0001-5683-4387
0000-0001-8413-0539
0000-0002-7901-0337
0000000321265510
0000000262610854
0000000279010337
0000000170480781
0000000287511211
0000000156834387
000000030211053X
0000000184130539
0000000271180817
OpenAccessLink https://hal.science/hal-03049568
PQID 2658989501
PQPubID 1016432
PageCount 32
ParticipantIDs osti_scitechconnect_1601914
hal_primary_oai_HAL_hal_03049568v1
proquest_journals_2658989501
crossref_primary_10_1002_qj_3749
crossref_citationtrail_10_1002_qj_3749
wiley_primary_10_1002_qj_3749_QJ3749
PublicationCentury 2000
PublicationDate April 2022 Part A
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022 Part A
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Reading
– name: United Kingdom
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2022
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Wiley
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
– name: Wiley Blackwell (John Wiley & Sons)
References 1968; 25
2013; 26
2004; 61
2015; 72
2003; 16
1980; 296
2016a; 8
1981; 86
2010; 23
2010; 67
2015; 45
2017; 30
1991; 48
1990; 47
1986; 43
2006; 27
2016b; 121
2010; 115
2013; 118
1987
2016; 43
2003; 3
2016; 353
2005; 32
1985; 90
2008; 65
2011; 68
1999; 51
2014; 6
1998; 55
2011; 137
2014; 119
2009; 22
1974; 31
2012
1997a; 59
2015; 120
2006; 19
2012; 39
1985; 42
1972; 29
1997b; 59
2009; 36
2012; 90A
2013; 497
2014; 140
2001; 39
2018; 11
2014; 71
2022; 148
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
Fu Q. (e_1_2_7_24_1) 2015; 120
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
CISL (e_1_2_7_17_1) 2012
Andrews D.G. (e_1_2_7_2_1) 1987
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 68
  start-page: 265
  year: 2011
  end-page: 283
  article-title: The Quasi‐Biennial Oscillation in a double CO climate
  publication-title: Journal of the Atmospheric Sciences
– volume: 23
  start-page: 5349
  year: 2010
  end-page: 5374
  article-title: Chemistry–climate model simulations of Twenty‐first Century stratospheric climate and circulation changes
  publication-title: Journal of Climate
– volume: 30
  start-page: 1909
  year: 2017
  end-page: 1922
  article-title: Stratospheric control of the Madden–Julian oscillation
  publication-title: Journal of Climate
– volume: 119
  start-page: 2329
  year: 2014
  end-page: 2355
  article-title: Interaction of gravity waves with the QBO: a satellite perspective
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 43
  start-page: 1873
  year: 1986
  end-page: 1877
  article-title: An update to the observed Quasi‐Biennial Oscillation of stratospheric winds over the tropics
  publication-title: Journal of the Atmospheric Sciences
– volume: 120
  start-page: 10214
  year: 2015
  end-page: 10228
  article-title: Observational evidence of strengthening of the Brewer–Dobson circulation since 1980
  publication-title: Journal of Geophysical Research
– volume: 31
  start-page: 674
  year: 1974
  end-page: 701
  article-title: Interactions of cumulus cloud ensemble with the large‐scale environment
  publication-title: Journal of the Atmospheric Sciences
– volume: 23
  start-page: 5810
  year: 2010
  end-page: 5825
  article-title: Revisiting the influence of the Quasi‐Biennial Oscillation on tropical cyclone activity
  publication-title: Journal of Climate
– volume: 39
  issue: 6
  year: 2012
  article-title: A stochastic parameterization of non‐orographic gravity waves: formalism and impact on the equatorial stratosphere
  publication-title: Geophysical Research Letters
– volume: 67
  start-page: 136
  year: 2010
  end-page: 156
  article-title: Towards a physically based gravity wave source parameterization in a general circulation model
  publication-title: Journal of the Atmospheric Sciences
– volume: 148
  start-page: 1541
  year: 2022
  end-page: 1567
  article-title: An evaluation of tropical waves and wave forcing of the QBO in the QBOi models
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 36
  issue: 6
  year: 2009
  article-title: Influence of stratospheric Quasi‐Biennial Oscillation on tropical cyclone tracks in the western North Pacific
  publication-title: Geophysical Research Letters
– volume: 72
  start-page: 4349
  year: 2015
  end-page: 4371
  article-title: Parameterized gravity wave momentum fluxes from sources related to convection and large‐scale precipitation processes in a global atmosphere model
  publication-title: Journal of the Atmospheric Sciences
– volume: 68
  start-page: 784
  year: 2011
  end-page: 797
  article-title: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: critical‐layer control of subtropical wave breaking
  publication-title: Journal of the Atmospheric Sciences
– volume: 16
  start-page: 2552
  year: 2003
  end-page: 2568
  article-title: On the relationship between the QBO and tropical deep convection
  publication-title: Journal of Climate
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  article-title: The ERA‐Interim reanalysis: configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 30
  start-page: 5661
  year: 2017
  end-page: 5674
  article-title: Dynamics of the disrupted 2015/16 Quasi‐Biennial Oscillation
  publication-title: Journal of Climate
– volume: 497
  start-page: 478
  year: 2013
  end-page: 481
  article-title: Weakened stratospheric Quasi‐Biennial Oscillation driven by increased tropical mean upwelling
  publication-title: Nature
– volume: 26
  start-page: 7117
  year: 2013
  end-page: 7135
  article-title: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models
  publication-title: Journal of Climate
– volume: 59
  start-page: 371
  year: 1997a
  end-page: 386
  article-title: Doppler‐spread parametization of gravity‐wave momentum deposition in the middle atmosphere. Part 1: basic formulation
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 90
  start-page: 5629
  year: 1985
  end-page: 5635
  article-title: Interannual variations in the height of the tropical tropopause
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 86
  start-page: 9707
  year: 1981
  end-page: 9714
  article-title: Turbulence and stress owing to gravity wave and tidal breakdown
  publication-title: Journal of Geophysical Research
– volume: 61
  start-page: 324
  year: 2004
  end-page: 337
  article-title: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind
  publication-title: Journal of the Atmospheric Sciences
– volume: 43
  start-page: 1392
  year: 2016
  end-page: 1398
  article-title: Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric Quasi‐Biennial Oscillation
  publication-title: Geophysical Research Letters
– volume: 353
  start-page: 1424
  year: 2016
  end-page: 1427
  article-title: An unexpected disruption of the atmospheric Quasi‐Biennial Oscillation
  publication-title: Science
– volume: 3
  start-page: 1
  year: 2003
  end-page: 27
  article-title: Uncertainties and assessments of chemistry–climate models of the stratosphere
  publication-title: Atmospheric Chemistry and Physics
– volume: 55
  start-page: 163
  year: 1998
  end-page: 185
  article-title: Seasonal cycles and QBO variations in stratospheric CH and H O observed in UARS HALOE data
  publication-title: Journal of the Atmospheric Sciences
– volume: 6
  start-page: 357
  year: 2014
  end-page: 383
  article-title: Effects of vertical resolution and non‐orographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 121
  start-page: 8886
  year: 2016b
  end-page: 8895
  article-title: The QBO, gravity waves forced by tropical convection, and ENSO
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 42
  start-page: 376
  year: 1985
  end-page: 396
  article-title: Climatology of the equatorial lower stratosphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 296
  start-page: 73
  year: 1980
  end-page: 85
  article-title: Wave propagation and transport in the middle atmosphere
  publication-title: Philosophical Transactions of the Royal Society of London. Series A
– volume: 115
  issue: D20
  year: 2010
  article-title: Influence of the Quasi‐Biennial Oscillation on the North Pacific and El Niño teleconnections
  publication-title: Journal of Geophysical Research
– volume: 148
  start-page: 1568
  year: 2022
  end-page: 1592
  article-title: QBO teleconnections in a multi‐model ensemble of QBO‐resolving models
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 90A
  start-page: 351
  year: 2012
  end-page: 360
  article-title: Sensitivity of the QBO to mean tropical upwelling under a changing climate simulated with an Earth System Model
  publication-title: Journal of the Meteorological Society of Japan, Series II
– volume: 29
  start-page: 1076
  year: 1972
  end-page: 1080
  article-title: An updated theory for the quasi‐biennial cycle of the tropical stratosphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 115
  start-page: 1
  year: 2010
  end-page: 17
  article-title: Wave forcing in the stratosphere under doubled‐CO conditions in a 100‐year coupled chemistry–climate model study
  publication-title: Journal of Geophysical Research Atmospheres
– volume: 48
  start-page: 236
  year: 1991
  end-page: 263
  article-title: Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving
  publication-title: Journal of the Atmospheric Sciences
– year: 1987
– volume: 25
  start-page: 1095
  year: 1968
  end-page: 1107
  article-title: A theory for the Quasi‐Biennial Oscillation
  publication-title: Journal of the Atmospheric Sciences
– volume: 32
  issue: 8
  year: 2005
  article-title: Sensitivity of the Quasi‐Biennial Oscillation to CO doubling
  publication-title: Geophysical Research Letters
– volume: 19
  start-page: 2665
  year: 2006
  end-page: 2690
  article-title: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals
  publication-title: Journal of Climate
– volume: 119
  start-page: 2156
  year: 2014
  end-page: 2173
  article-title: Kelvin and Rossby‐gravity wave packets in the lower stratosphere of some high‐top CMIP5 models
  publication-title: Journal of Geophysical Research
– volume: 27
  start-page: 727
  year: 2006
  end-page: 741
  article-title: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation
  publication-title: Climate Dynamics
– volume: 59
  start-page: 387
  year: 1997b
  end-page: 400
  article-title: Doppler‐spread parametization of gravity‐wave momentum deposition in the middle atmosphere. Part 2: broad and quasi‐monochromatic spectra, and implementation
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 71
  start-page: 2489
  year: 2014
  end-page: 2515
  article-title: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming
  publication-title: Journal of the Atmospheric Sciences
– volume: 65
  start-page: 2731
  year: 2008
  end-page: 2739
  article-title: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases
  publication-title: Journal of the Atmospheric Sciences
– volume: 47
  start-page: 2465
  year: 1990
  end-page: 2474
  article-title: A multiwave model of the Quasi‐Biennial Oscillation
  publication-title: Journal of the Atmospheric Sciences
– year: 2012
– volume: 118
  issue: 1
  year: 2013
  article-title: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models
  publication-title: Journal of Geophysical Research; Atmospheres
– volume: 61
  start-page: 1805
  year: 2004
  end-page: 1815
  article-title: Gravity wave generation by a three‐dimensional thermal forcing
  publication-title: Journal of the Atmospheric Sciences
– volume: 19
  start-page: 3882
  year: 2006
  end-page: 3901
  article-title: Climatology and forcing of the Quasi‐Biennial Oscillation in the MAECHAM5 model
  publication-title: Journal of Climate
– volume: 67
  start-page: 981
  year: 2010
  end-page: 997
  article-title: The roles of equatorial trapped waves and internal inertia‐gravity waves in driving the Quasi‐Biennial Oscillation. Part II: three‐dimensional distribution of wave forcing
  publication-title: Journal of the Atmospheric Sciences
– volume: 8
  start-page: 1092
  year: 2016a
  end-page: 1105
  article-title: Modeling the QBO – Improvements resulting from higher‐model vertical resolution
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 51
  start-page: 475
  year: 1999
  end-page: 484
  article-title: Toward an ultra‐simple spectral gravity wave parameterization for general circulation models
  publication-title: Earth Planets Space
– volume: 39
  start-page: 179
  year: 2001
  end-page: 229
  article-title: The Quasi‐Biennial Oscillation
  publication-title: Review of Geophysics
– volume: 22
  start-page: 5449
  year: 2009
  end-page: 5463
  article-title: Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere model
  publication-title: Journal of Climate
– volume: 45
  start-page: 825
  year: 2015
  end-page: 836
  article-title: The Quasi‐Biennial Oscillation in a warmer climate: sensitivity to different gravity wave parameterizations
  publication-title: Climate Dynamics
– volume: 118
  start-page: 8897
  year: 2013
  end-page: 8909
  article-title: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere
  publication-title: Journal of Geophysical Research; Atmospheres
– volume: 148
  start-page: 1459
  year: 2022
  end-page: 1489
  article-title: Evaluation of the Quasi‐Biennial Oscillation in global climate models for the SPARC QBO‐initiative
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 11
  start-page: 1009
  year: 2018
  end-page: 1032
  article-title: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi‐Biennial Oscillation initiative (QBOi)
  publication-title: Geoscientific Model Development
– volume: 140
  start-page: 1
  year: 2014
  end-page: 21
  article-title: High‐latitude influence of the Quasi‐Biennial Oscillation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– ident: e_1_2_7_37_1
  doi: 10.1038/nature12140
– volume: 120
  start-page: 10214
  year: 2015
  ident: e_1_2_7_24_1
  article-title: Observational evidence of strengthening of the Brewer–Dobson circulation since 1980
  publication-title: Journal of Geophysical Research
– ident: e_1_2_7_50_1
  doi: 10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2
– volume-title: Middle Atmosphere Dynamics
  year: 1987
  ident: e_1_2_7_2_1
– ident: e_1_2_7_33_1
  doi: 10.1029/2009GL037163
– ident: e_1_2_7_30_1
  doi: 10.1175/JCLI3830.1
– ident: e_1_2_7_52_1
  doi: 10.1175/2009JAS3112.1
– ident: e_1_2_7_19_1
  doi: 10.1175/JCLI‐D‐16‐0663.1
– ident: e_1_2_7_25_1
  doi: 10.1175/2008JAS2712.1
– ident: e_1_2_7_59_1
  doi: 10.1186/BF03353209
– ident: e_1_2_7_28_1
  doi: 10.1002/2015JD024125
– ident: e_1_2_7_32_1
  doi: 10.1016/S1364-6826(96)00080-6
– ident: e_1_2_7_22_1
  doi: 10.1175/1520-0469(1985)042<0376:COTELS>2.0.CO;2
– ident: e_1_2_7_16_1
  doi: 10.1175/2010JCLI3575.1
– ident: e_1_2_7_45_1
  doi: 10.1029/2012GL051001
– ident: e_1_2_7_56_1
  doi: 10.1175/2010JAS3608.1
– ident: e_1_2_7_10_1
  doi: 10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2
– ident: e_1_2_7_12_1
  doi: 10.1002/qj.3765
– ident: e_1_2_7_48_1
  doi: 10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2
– ident: e_1_2_7_23_1
  doi: 10.1002/2013JD020731
– ident: e_1_2_7_26_1
  doi: 10.1029/2010JD014181
– ident: e_1_2_7_51_1
  doi: 10.1029/JD090iD03p05629
– ident: e_1_2_7_14_1
  doi: 10.1175/2010JCLI3404.1
– ident: e_1_2_7_43_1
  doi: 10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2
– ident: e_1_2_7_29_1
  doi: 10.1029/2004GL021971
– ident: e_1_2_7_53_1
  doi: 10.1002/2013MS000303
– ident: e_1_2_7_8_1
  doi: 10.1175/JCLI-D-12-00536.1
– ident: e_1_2_7_47_1
  doi: 10.1175/2009JCLI3069.1
– ident: e_1_2_7_9_1
  doi: 10.1175/1520-0469(2004)061<1805:GWGBAT>2.0.CO;2
– ident: e_1_2_7_35_1
  doi: 10.1098/rsta.1980.0157
– ident: e_1_2_7_34_1
  doi: 10.1002/qj.3827
– ident: e_1_2_7_49_1
  doi: 10.1126/science.aah4156
– ident: e_1_2_7_31_1
  doi: 10.1016/S1364-6826(96)00079-X
– ident: e_1_2_7_42_1
  doi: 10.1029/JC086iC10p09707
– ident: e_1_2_7_3_1
  doi: 10.1002/qj.2132
– ident: e_1_2_7_7_1
  doi: 10.1029/1999RG000073
– ident: e_1_2_7_61_1
  doi: 10.1029/2009JD012777
– ident: e_1_2_7_46_1
  doi: 10.1002/2013JD020797
– volume-title: Yellowstone: IBM iDataPlex /FDR‐IB
  year: 2012
  ident: e_1_2_7_17_1
– ident: e_1_2_7_15_1
  doi: 10.5194/gmd‐11‐1009‐2018
– ident: e_1_2_7_27_1
  doi: 10.1002/2016MS000699
– ident: e_1_2_7_4_1
  doi: 10.1002/qj.4048
– ident: e_1_2_7_55_1
  doi: 10.1007/s00382-014-2314-2
– ident: e_1_2_7_57_1
  doi: 10.1175/JAS‐D‐13‐0325.1
– ident: e_1_2_7_40_1
  doi: 10.1175/JCLI3735.1
– ident: e_1_2_7_11_1
  doi: 10.1175/JAS-D-15-0022.1
– ident: e_1_2_7_44_1
  doi: 10.1002/jgrd.50705
– ident: e_1_2_7_54_1
  doi: 10.1175/1520-0469(1990)047<2465:AMMOTQ>2.0.CO;2
– ident: e_1_2_7_18_1
  doi: 10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2
– ident: e_1_2_7_20_1
  doi: 10.1002/qj.828
– ident: e_1_2_7_5_1
  doi: 10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
– ident: e_1_2_7_41_1
  doi: 10.1029/2012JD018813
– ident: e_1_2_7_6_1
  doi: 10.5194/acp-3-1-2003
– ident: e_1_2_7_60_1
  doi: 10.2151/jmsj.2012-A20
– ident: e_1_2_7_13_1
  doi: 10.1007/s00382-006-0162-4
– ident: e_1_2_7_38_1
  doi: 10.1175/2009JAS3223.1
– ident: e_1_2_7_36_1
  doi: 10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2
– ident: e_1_2_7_39_1
  doi: 10.1175/2010JAS3623.1
– ident: e_1_2_7_62_1
  doi: 10.1002/2016GL067762
– ident: e_1_2_7_21_1
  doi: 10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2
– ident: e_1_2_7_58_1
  doi: 10.1175/JCLI-D-16-0620.1
SSID ssj0005727
Score 2.5792563
Snippet We compare the response of the Quasi‐Biennial Oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time‐slice...
SourceID osti
hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1490
SubjectTerms Atmospheric circulation
Carbon dioxide
Climate change
Climate models
GCMs
General circulation models
Global climate
Global warming
Gravity waves
Modelling
Momentum flux
Momentum transfer
Ocean, Atmosphere
QBO
QBOi
Quasi-biennial oscillation
Sciences of the Universe
Simulation
Stratosphere
Tropical climate
Velocity
Zonal winds
Title Response of the Quasi‐Biennial Oscillation to a warming climate in global climate models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.3749
https://www.proquest.com/docview/2658989501
https://hal.science/hal-03049568
https://www.osti.gov/biblio/1601914
Volume 148
WOSCitedRecordID wos000517292100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1477-870X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005727
  issn: 0035-9009
  databaseCode: DRFUL
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VpYdeCoVWTfmQVSFuKUlsJ_ERKCuEKAUEEurFsr1Ou2i1KZsFrv0J_Y38ks44YQGhSpV6iuLYkeXxxG-c5zcAG9Zba0WWxpZbGwvEb7TRJGLrE6-cGiBkECHZRHF0VF5cqONHqb5afYjZhht5Rvhek4Mb22w9iIZeXX7ihVBzMJ_hrJU9mP982j8_fOB3FF2-Vi5jhUiiPTFLjbe6pk-WorkfRITs1ehYT8DmY8ga1pz-wn_0dhFed0CTbbcz4w288OMliL4gRq4nYSudbbLd0RABa7hbhm-nLV3Ws7piCAvZybVphne_fu8QJwynKfuKy-Wo5c6xac0MuzXEpPnOXHiPZ8MxawVGZiUh0U7zFs77e2e7-3GXeSF2AkOg2BQmN4gU88pImZsqsbk33A58gf6vCmnLAcaVwuSpMUJIW8lMepdywbkt89Lzd9Ab12P_HpiojCpUUtnEZsJYjMecIo0fxD1J7riPYPPeCNp1suSUHWOkW0HlTF9dahq6CNis4s9WieN5lY9oxdlTUs7e3z7UVEZ_gOlk5E0awQoZWeOQkUyuIz6Rm-oUI1OVighW722vO29udIYwTZVKJth4I1j5bz3QJwd0-fBv1VbgVUanKQIRaBV608m1X4OX7mY6bCbr3YT-A-Kb-Hs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2VpVJ7KaUtagqlFkLcUpLY-fARKKulXbYFgYR6sWyvA4tWm7K70Cs_gd_IL2HGCQuoqlSppyiJHVmesf3GeX4DsG6cMUYkcWi4MaFA_EYbTSI0LnLSyj5CBuGTTeS9XnFyIn80rEo6C1PrQ8w23Ghk-PmaBjhtSG8-qIZenH_muZBzMC_QidC7578cto-7DwSPvEnYytNQIpSoj8xS5c2m6pO1aO6MmJCtCkfWE7T5GLP6Rae98D_NfQ2vGqjJtmrfWIRnbvQGgn1EydXYb6azDbYzHCBk9Xdv4edhTZh1rCoZAkN2cKkng9vrm21ihaGjsu-4YA5r9hybVkyz35q4NKfM-u84NhixWmJk9sSn2pm8g-P27tFOJ2xyL4RWYBAU6lxnGrFiVuo0zXQZmcxpbvouxxlA5qkp-hhZCp3FWguRmjJNUmdjLjg3RVY4vgStUTVy74GJUstcRqWJTCK0wYjMSlL5QeQTZZa7ADburaBsI0xO-TGGqpZUTtTFuaKuC4DNCv6qtTj-LLKGZpy9Je3szlZX0TP6B0xnI6_iAJbJygq7jIRyLTGK7FTFGJvKWASwcm981YzniUoQqMlCphFWXvdm_lsL1MFXunz4t2Kf4EXnaL-runu9b8vwMqGzFZ4WtAKt6fjSfYTn9mo6mIxXG---A8B0_Gs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bTtwwEB2VpUK80BaoGqDFQoi3lCR2Ln6k0BW0y3JRkRAvlu112kWrDewu8NpP6Df2SzrjhKUIVULqU5TEjiyPL2ecM2cANo0zxogkDg03JhSI3-igSYTGRU5a2UPIIHyyibzbLc7P5XHDqqRYmFofYnrgRjPDr9c0wd1Vr9x-UA29vvzIcyFnYFZQCpkWzO6dts86DwSPvEnYytNQIpSoQ2ap8nZT9dFeNPODmJCtCmfWI7T5N2b1m0771f809zUsNFCT7dRj4w28cMNFCA4RJVcjf5jOttjuoI-Q1d8twcVpTZh1rCoZAkN2cqPH_d8_f30iVhgOVHaEG-agZs-xScU0u9PEpfnOrP-OY_0hqyVGpk98qp3xMpy1P3_b3Q-b3AuhFegEhTrXmUasmJU6TTNdRiZzmpuey3EFkHlqih56lkJnsdZCpKZMk9TZmAvOTZEVjr-F1rAaunfARKllLqPSRCYR2qBHZiWp_CDyiTLLXQBb91ZQthEmp_wYA1VLKifq-lJR1wXApgWvai2Op0U20IzTt6Sdvb_TUfSM_gFTbORtHMAqWVlhl5FQriVGkZ2oGH1TGYsA1u6Nr5r5PFYJAjVZyDTCypvezP9qgTr5QpeV5xVbh7njvbbqHHS_rsJ8QqEVnhW0Bq3J6Ma9h5f2dtIfjz40g_sPUUf75g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+of+the+Quasi%E2%80%90Biennial+Oscillation+to+a+warming+climate+in+global+climate+models&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Richter%2C+Jadwiga+H&rft.au=Butchart%2C+Neal&rft.au=Kawatani%2C+Yoshio&rft.au=Bushell%2C+Andrew+C&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=148&rft.issue=744&rft.spage=1490&rft.epage=1518&rft_id=info:doi/10.1002%2Fqj.3749&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon