Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor
Purpose Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Methods Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance...
Gespeichert in:
| Veröffentlicht in: | Magnetic resonance in medicine Jg. 77; H. 1; S. 221 - 228 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Wiley Subscription Services, Inc
01.01.2017
|
| Schlagworte: | |
| ISSN: | 0740-3194, 1522-2594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Purpose
Development of a passive respiratory motion sensor based on the noise variance of the receive coil array.
Methods
Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested.
Results
The noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k‐space read‐out line.
Conclusion
Within clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221–228, 2017. © 2016 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | Purpose Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Methods Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested. Results The noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k-space read-out line. Conclusion Within clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221-228, 2017. © 2016 Wiley Periodicals, Inc. PURPOSEDevelopment of a passive respiratory motion sensor based on the noise variance of the receive coil array.METHODSRespiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested.RESULTSThe noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k-space read-out line.CONCLUSIONWithin clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221-228, 2017. © 2016 Wiley Periodicals, Inc. Purpose Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Methods Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested. Results The noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k-space read-out line. Conclusion Within clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221-228, 2017. Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested. The noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k-space read-out line. Within clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221-228, 2017. © 2016 Wiley Periodicals, Inc. Purpose Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Methods Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested. Results The noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k‐space read‐out line. Conclusion Within clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221–228, 2017. © 2016 Wiley Periodicals, Inc. |
| Author | Luijten, P.R. Raaijmakers, A.J.E. Andreychenko, A. van den Berg, C.A.T. Crijns, S.P.M. Lagendijk, J.J.W. Sbrizzi, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Andreychenko fullname: Andreychenko, A. email: A.Andreychenko@umcutrecht.nl organization: University Medical Center Utrecht – sequence: 2 givenname: A.J.E. surname: Raaijmakers fullname: Raaijmakers, A.J.E. organization: University Medical Center Utrecht – sequence: 3 givenname: A. surname: Sbrizzi fullname: Sbrizzi, A. organization: University Medical Center Utrecht – sequence: 4 givenname: S.P.M. surname: Crijns fullname: Crijns, S.P.M. organization: University Medical Center Utrecht – sequence: 5 givenname: J.J.W. surname: Lagendijk fullname: Lagendijk, J.J.W. organization: University Medical Center Utrecht – sequence: 6 givenname: P.R. surname: Luijten fullname: Luijten, P.R. organization: University Medical Center Utrecht – sequence: 7 givenname: C.A.T. surname: van den Berg fullname: van den Berg, C.A.T. organization: University Medical Center Utrecht |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26762855$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1LHTEUhoNY9Gpd9A9IoJu6GM3XTJJlkbYWlEKx3YZMcoZGZpJrMtdy_31zvdeNWHF1Ns_7nOS8R2g_pggIfaDknBLCLqY8nbOOErWHFrRlrGGtFvtoQaQgDadaHKKjUu4IIVpLcYAOWSc7ptp2gX7f_oE82RHHFArgB5uDjQ5wGrDFGRyEB8DZ-pCGDPcriG6NXQojtuURKMuQ7ZzyGk9pDiniArGk_B69G-xY4GQ3j9Gvr19uL6-a6x_fvl9-vm6cEFo1wmsvVdtbAA7KM0cc7TveSqWl5XWSngot-1Z34KnySjLfDwJ65jloBvwYfdp6lznV15XZTKE4GEcbIa2KoapeQgpO1FtQzgXvGKvox2foXVrlWD9iGNNciE4r-hpVXUzXzWTjOt1Rq34Cb5Y5TDavzVMFFbjYAi6nUjIMxoXZbm45ZxtGQ4nZlGxqyeax5Jo4e5Z4kr7E7ux_wwjr_4Pm5ufNNvEPuuS0Cw |
| CODEN | MRMEEN |
| CitedBy_id | crossref_primary_10_1109_TMI_2021_3112818 crossref_primary_10_1002_mrm_28580 crossref_primary_10_1002_mrm_26866 crossref_primary_10_1002_mrm_27834 crossref_primary_10_1002_mrm_27038 crossref_primary_10_1016_j_phro_2025_100815 crossref_primary_10_1088_1361_6560_aae56d crossref_primary_10_1109_ACCESS_2021_3102380 crossref_primary_10_1109_TMI_2018_2808699 crossref_primary_10_1002_mrm_30150 crossref_primary_10_1088_1361_6560_ab8cd8 crossref_primary_10_1016_j_radonc_2023_109948 crossref_primary_10_1109_TMI_2022_3186913 crossref_primary_10_1016_j_media_2023_102843 crossref_primary_10_1002_nbm_3830 crossref_primary_10_1007_s10334_022_01032_4 crossref_primary_10_3390_biomimetics9030170 crossref_primary_10_1088_1361_6579_adfc23 crossref_primary_10_1016_j_mri_2017_07_015 crossref_primary_10_1088_1361_6560_ab554a crossref_primary_10_1186_s13634_021_00832_5 crossref_primary_10_1088_1361_6560_ab5c62 crossref_primary_10_1002_mrm_27884 crossref_primary_10_1002_mrm_26775 crossref_primary_10_1002_mrm_27906 |
| Cites_doi | 10.1002/mrm.1910160203 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L 10.1148/radiology.173.1.2781017 10.1002/mrm.22309 10.1016/0730-725X(88)90403-1 10.1097/00004728-198611000-00046 10.1002/mrm.20656 10.1053/j.semnuclmed.2015.01.001 10.1371/journal.pone.0133921 10.1016/j.ijrobp.2014.10.050 10.2967/jnumed.111.092353 10.1118/1.4907960 10.1088/0031-9155/59/21/R349 10.1002/mrm.20331 10.2214/ajr.143.6.1175 10.1002/mrm.1910280209 10.1002/mrm.22854 |
| ContentType | Journal Article |
| Copyright | 2016 Wiley Periodicals, Inc. 2017 International Society for Magnetic Resonance in Medicine |
| Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. – notice: 2017 International Society for Magnetic Resonance in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
| DOI | 10.1002/mrm.26108 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic Engineering Research Database Biochemistry Abstracts 1 MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 228 |
| ExternalDocumentID | 4287203371 26762855 10_1002_mrm_26108 MRM26108 |
| Genre | article Journal Article |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
| ID | FETCH-LOGICAL-c4498-4d9d785baee3e8d2c0c1b6357897a33570b1497b596ed18d872dbf4eb2d3e92e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391038800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 |
| IngestDate | Tue Oct 07 09:41:58 EDT 2025 Thu Jul 10 19:26:03 EDT 2025 Sat Nov 29 14:46:12 EST 2025 Sat Nov 29 14:26:30 EST 2025 Thu Apr 03 07:04:37 EDT 2025 Sat Nov 29 02:37:39 EST 2025 Tue Nov 18 22:14:38 EST 2025 Wed Jan 22 16:36:23 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | noise motion sensor motion correction motion monitoring receive RF coil |
| Language | English |
| License | 2016 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4498-4d9d785baee3e8d2c0c1b6357897a33570b1497b596ed18d872dbf4eb2d3e92e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26108 |
| PMID | 26762855 |
| PQID | 1852959402 |
| PQPubID | 1016391 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1859474308 proquest_miscellaneous_1853343622 proquest_journals_2293446981 proquest_journals_1852959402 pubmed_primary_26762855 crossref_citationtrail_10_1002_mrm_26108 crossref_primary_10_1002_mrm_26108 wiley_primary_10_1002_mrm_26108_MRM26108 |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 2017-01-00 2017-Jan 20170101 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 45 1984; 143 2011 1990; 16 1986; 10 2010 1988; 6 2015; 42 2015; 10 1992; 28 2008 2014; 59 2005; 53 2011; 66 1989; 173 2005; 54 1999; 42 2005 2015 2015; 91 2010; 63 2012; 53 1999 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Haacke EM (e_1_2_8_14_1) 1999 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 Solbach KPD (e_1_2_8_11_1) 2011 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_12_1 |
| References_xml | – volume: 91 start-page: 571 year: 2015 end-page: 578 article-title: Optimizing 4‐dimensional magnetic resonance imaging data sampling for respiratory motion analysis of pancreatic tumors publication-title: Int J Radiat Oncol Biol Phys – volume: 42 start-page: 963 year: 1999 end-page: 969 article-title: Motion correction with PROPELLER MRI: application to head motion and free‐breathing cardiac imaging publication-title: Mag Reson Med – volume: 59 start-page: R349 year: 2014 end-page: R369 article-title: MR guidance in radiotherapy publication-title: Phys Med Biol – volume: 28 start-page: 275 year: 1992 end-page: 289 article-title: Projection reconstruction techniques for reduction of motion effects in MRI publication-title: Mag Reson Med – volume: 143 start-page: 1175 year: 1984 end-page: 1182 article-title: Magnetic resonance imaging with respiratory gating: techniques and advantages publication-title: American J Roentgenology – year: 2005 – volume: 173 start-page: 255 year: 1989 end-page: 263 article-title: Adaptive technique for high‐definition MR imaging of moving structures publication-title: Radiology – volume: 10 start-page: e0133921 year: 2015 article-title: Highest resolution in vivo human brain MRI using prospective motion correction publication-title: PloS One – start-page: 3045 year: 2010 – volume: 53 start-page: 159 year: 2005 end-page: 168 article-title: Preliminary investigation of respiratory self‐gating for free‐breathing segmented cine MRI publication-title: Mag Reson Med – start-page: 97 year: 2015 – volume: 6 start-page: 281 year: 1988 end-page: 289 article-title: The rf coil as a sensitive motion detector for magnetic resonance imaging publication-title: Mag Reson Imaging – volume: 45 start-page: 212 year: 2015 end-page: 223 article-title: Motion correction options in PET/MRI publication-title: Seminars in Nuclear Medicine – year: 2011 article-title: Measuring system for use in magnetic resonance tomography to detect position of heart in human being, has detector detecting detuning or impedance of antenna or signals as measuring signals to determine position of heart in human being publication-title: Google Patents – start-page: 705 year: 2015 – volume: 63 start-page: 1080 year: 2010 end-page: 1087 article-title: Real‐time MR‐thermometry and dosimetry for interventional guidance on abdominal organs publication-title: Mag Reson Med – volume: 54 start-page: 1273 year: 2005 end-page: 1280 article-title: Matrix description of general motion correction applied to multishot images publication-title: Mag Reson Med – volume: 66 start-page: 467 year: 2011 end-page: 475 article-title: Motion correction using coil arrays (MOCCA) for free‐breathing cardiac cine MRI publication-title: Mag Reson Med – volume: 16 start-page: 192 year: 1990 end-page: 225 article-title: The NMR phased array publication-title: Mag Reson Med – volume: 10 start-page: 1080 year: 1986 end-page: 1082 article-title: Respiration artifacts in MR imaging: reduction by breath holding publication-title: J Comput Assist Tomogr – volume: 53 start-page: 1284 year: 2012 end-page: 1291 article-title: MRI‐based nonrigid motion correction in simultaneous PET/MRI publication-title: J Nuclear Med – volume: 42 start-page: 1411 year: 2015 end-page: 1423 article-title: Monitoring local heating around an interventional MRI antenna with RF radiometry publication-title: Med Phys – year: 1999 – start-page: 202 year: 2008 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.1910160203 – year: 2011 ident: e_1_2_8_11_1 article-title: Measuring system for use in magnetic resonance tomography to detect position of heart in human being, has detector detecting detuning or impedance of antenna or signals as measuring signals to determine position of heart in human being publication-title: Google Patents – ident: e_1_2_8_20_1 – ident: e_1_2_8_6_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L – ident: e_1_2_8_4_1 doi: 10.1148/radiology.173.1.2781017 – volume-title: Magnetic resonance imaging: physical principles and sequence design year: 1999 ident: e_1_2_8_14_1 – ident: e_1_2_8_17_1 doi: 10.1002/mrm.22309 – ident: e_1_2_8_25_1 – ident: e_1_2_8_9_1 doi: 10.1016/0730-725X(88)90403-1 – ident: e_1_2_8_2_1 doi: 10.1097/00004728-198611000-00046 – ident: e_1_2_8_21_1 doi: 10.1002/mrm.20656 – ident: e_1_2_8_24_1 doi: 10.1053/j.semnuclmed.2015.01.001 – ident: e_1_2_8_10_1 – ident: e_1_2_8_16_1 doi: 10.1371/journal.pone.0133921 – ident: e_1_2_8_26_1 doi: 10.1016/j.ijrobp.2014.10.050 – ident: e_1_2_8_19_1 – ident: e_1_2_8_23_1 doi: 10.2967/jnumed.111.092353 – ident: e_1_2_8_18_1 – ident: e_1_2_8_15_1 doi: 10.1118/1.4907960 – ident: e_1_2_8_12_1 – ident: e_1_2_8_22_1 doi: 10.1088/0031-9155/59/21/R349 – ident: e_1_2_8_7_1 doi: 10.1002/mrm.20331 – ident: e_1_2_8_3_1 doi: 10.2214/ajr.143.6.1175 – ident: e_1_2_8_5_1 doi: 10.1002/mrm.1910280209 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.22854 |
| SSID | ssj0009974 |
| Score | 2.342831 |
| Snippet | Purpose
Development of a passive respiratory motion sensor based on the noise variance of the receive coil array.
Methods
Respiratory motion alters the body... Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Respiratory motion alters the body resistance. The... Purpose Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. Methods Respiratory motion alters the body... PurposeDevelopment of a passive respiratory motion sensor based on the noise variance of the receive coil array.MethodsRespiratory motion alters the body... PURPOSEDevelopment of a passive respiratory motion sensor based on the noise variance of the receive coil array.METHODSRespiratory motion alters the body... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 221 |
| SubjectTerms | Algorithms Diaphragm Diaphragm - diagnostic imaging Diaphragm - physiology Humans Magnetic Resonance Imaging - methods Modulation motion correction motion monitoring motion sensor Motion sensors Motional resistance Movement - physiology Noise Noise monitoring Radio frequency Radio Waves receive RF coil Respiration Scanners Sensor arrays Sensors Signal Processing, Computer-Assisted Signal-To-Noise Ratio Thermal noise |
| Title | Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26108 https://www.ncbi.nlm.nih.gov/pubmed/26762855 https://www.proquest.com/docview/1852959402 https://www.proquest.com/docview/2293446981 https://www.proquest.com/docview/1853343622 https://www.proquest.com/docview/1859474308 |
| Volume | 77 |
| WOSCitedRecordID | wos000391038800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9B2aa97IN9dTDkTTzwkrW1ndoWT4itAmmtJgSjb5G_IlUqyZQA0v77nZ00CAHTJJ7iyJfIH3fnO5_9O4DdPISXUsUSaYY24eF8o-TcJSYPDofGr7SOySbEbCbnc_VzDfZXd2EafIhuwy1IRtTXQcC1qQc3oKEX1cVXNP_DRd8Ninyb9mDj28nk7McN5q5qQJgFD6pG8RWw0JAOuo9vL0d3bMzbJmtccyYvH9XaV_CiNTXJQcMbr2HNF5vwbNoG0zfhaTz9aes38AuZBRX0khTlovbkGv3nwAykzIkmqBI9qkRSabco86o5ev2H2HKxJLqOBF20njRJgUiNznFZvYWzyffTw6OkTbiQWM6VTLhTTsjUaO-Zl47aoR2ZAFgnldAMn0ODDpUwqRp7N5JOCupMztE5d8wr6tk76BVl4T8AEWgZUObo2BgsydzYCPWGk-IZQ83Wh73VuGe2RSMPSTGWWYOjTDMcsSyOWB--dKS_GwiO-4i2V5OXtVJYZ-FiuEoVusj3VlM0dXjIoDnqw-euGsUrxEx04cur-AvGOK7y9J80iqMlFlrxvuGbrqF0LMIl1RT7G9nj4R5k05NpLHz8f9IteE6DmRG3hLahd1ld-U_wxF5fLupqB9bFXO60UoFv58ezv42tDc0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hSh8XaOlrebRu1UMvgV3b2dgSF4RAoLKrqqItt8ivSCstSZUAUv99Z5xsECqgSj3FkieR7cyMv_HjG4BPBW0vpVokyg5dIul8o5LSJ7aggMPgW8bEZBPZdKrOz_XXJdhb3IVp-SH6BTeyjOivycBpQXr3hjX0or7YQfxPN30fSQQalLjh58n0hnJXtxzMmSRPo-WCV2jId_tXb89Gf0HM24g1TjlHa__X2Oew2kFNtt_qxgtYCuU6PJl0m-nr8Die_nTNS_iByoIOes7KatYEdo3xMykDqwpmGLrEgC6R1cbPqqJuj17_Zq6azZlpokC_W8_apECsweC4ql_B96PDs4PjpEu4kDgptUqk1z5TqTUhiKA8d0M3skRYp3RmBD6HFgOqzKZ6HPxIeZVxbwuJwbkXQfMgXsNyWZXhLbAMkQEXno-txZIqrItUb_hXghDo2QbweTHwuevYyCkpxjxveZR5jiOWxxEbwMde9FdLwXGX0Nbi7-WdFTY5XQzXqcYQ-c5qjlBHUgbN0QA-9NVoXrRnYspQXcVPCCFxlucPymiJSIxa8aZVnL6hfJzRJdUU-xv14_4e5JNvk1jY-HfR9_D0-Gxymp-eTL9swjNOkCMuD23B8mV9FbZhxV1fzpr6XTSNP7K4Dpg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_kbKUvtdqv8zOWPvRl612ScxPwpVSPFr1DpBbflnwtHJy7sqtC__vOZPdWpLYIfdpAJks-ZiYzmeQ3AB9zCi-NtEiUHbhE0v1GJaVPbE4Oh8FWxsRkE-l0qi4v9dkSHC7ewjT4EN2BG0lG1Nck4OHa5_v3qKFX1dVntP_ppe-ypCQyPVg-Oh9fnN6D7uoGhTmVpGu0XCALDfh-1_jhfvSHkfnQZo2bznj1_7r7Cl62xib70nDHGiyFYh1WJm04fR2ex_ufrn4NP5FdUEXPWVHO6sDu0IMmdmBlzgxDpRhQKbLK-FmZV83l61_MlbM5M3Uk6OL1rEkLxGp0j8vqDVyMj398_Za0KRcSJ6VWifTap2pkTQgiKM_dwA0tQdYpnRqB34FFlyq1ON3BD5VXKfc2l-ieexE0D-It9IqyCO-BpWgbcOH5gbVYUrl1EewNVyUIgbqtD58WE5-5Fo-c0mLMswZJmWc4Y1mcsT586EivGxCOx4i2FquXtXJYZ_Q0XI80OsmPVnM0diTl0Bz2Ya-rRgGjqIkpQnkbfyGExH2e_5NGS7TFqBfvGsbpOsoPUnqmOsLxRv74-wiyyfkkFjaeTroLK2dH4-z0-_RkE15wsjni-dAW9G6q27ANz9zdzayudlrZ-A1zEg9B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+noise+variance+of+a+receive+radiofrequency+coil+as+a+respiratory+motion+sensor&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Andreychenko%2C+A&rft.au=Raaijmakers%2C+A+J+E&rft.au=Sbrizzi%2C+A&rft.au=Crijns%2C+S+P+M&rft.date=2017-01-01&rft.eissn=1522-2594&rft.volume=77&rft.issue=1&rft.spage=221&rft.epage=228&rft_id=info:doi/10.1002%2Fmrm.26108&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |