TRIM28 Is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming
Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their geno...
Saved in:
| Published in: | Stem cells (Dayton, Ohio) Vol. 35; no. 1; pp. 147 - 157 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Oxford University Press
01.01.2017
|
| Subjects: | |
| ISSN: | 1066-5099, 1549-4918, 1549-4918 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large‐scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147–157
Model of TRIM28 function during reprogramming
A) Ectopic expression of Oct4, Sox2, Klf4 and c‐Myc (OSKM) induces the reprogramming of somatic cells into induced pluripotent stem cells at a low efficiency B) Ectopic expression of OSKM along with knock down of TRIM28 increases the expression of genes nearby H3K9me3, and induces the expression of endogenous retroviruses. This decondensed chromatin state increases the reprogramming efficiency. |
|---|---|
| AbstractList | Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157.Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157. Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large‐scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147–157 Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017; 35:147-157 Model of TRIM28 function during reprogramming A) Ectopic expression of Oct4, Sox2, Klf4 and c-Myc (OSKM) induces the reprogramming of somatic cells into induced pluripotent stem cells at a low efficiency B) Ectopic expression of OSKM along with knock down of TRIM28 increases the expression of genes nearby H3K9me3, and induces the expression of endogenous retroviruses. This decondensed chromatin state increases the reprogramming efficiency. Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157. Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large‐scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147–157 Model of TRIM28 function during reprogramming A) Ectopic expression of Oct4, Sox2, Klf4 and c‐Myc (OSKM) induces the reprogramming of somatic cells into induced pluripotent stem cells at a low efficiency B) Ectopic expression of OSKM along with knock down of TRIM28 increases the expression of genes nearby H3K9me3, and induces the expression of endogenous retroviruses. This decondensed chromatin state increases the reprogramming efficiency. |
| Author | van Lohuizen, Maarten de Vries, Nienke Alexandra Koppens, Martijn Akhtar, Waseem Gogola, Ewa Hulsman, Danielle Beijersbergen, Roderick Leonardus Pawlitzky, Inka Tanger, Ellen Miles, Denise Catherine Gisler, Santiago Lieftink, Cor |
| Author_xml | – sequence: 1 givenname: Denise Catherine surname: Miles fullname: Miles, Denise Catherine email: miles.d@wehi.edu.au organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 2 givenname: Nienke Alexandra surname: de Vries fullname: de Vries, Nienke Alexandra organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 3 givenname: Santiago surname: Gisler fullname: Gisler, Santiago organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 4 givenname: Cor surname: Lieftink fullname: Lieftink, Cor organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 5 givenname: Waseem surname: Akhtar fullname: Akhtar, Waseem organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 6 givenname: Ewa surname: Gogola fullname: Gogola, Ewa organization: The Netherlands Cancer Institute – sequence: 7 givenname: Inka surname: Pawlitzky fullname: Pawlitzky, Inka organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 8 givenname: Danielle surname: Hulsman fullname: Hulsman, Danielle organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 9 givenname: Ellen surname: Tanger fullname: Tanger, Ellen organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 10 givenname: Martijn surname: Koppens fullname: Koppens, Martijn organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 11 givenname: Roderick Leonardus surname: Beijersbergen fullname: Beijersbergen, Roderick Leonardus organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute – sequence: 12 givenname: Maarten surname: van Lohuizen fullname: van Lohuizen, Maarten email: m.v.lohuizen@nki.nl organization: Cancer Genomics Centre (CGC.nl) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27350605$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0U1P3DAQBmCrAvF96B-oLPXSHgLjxE7sY1ltYSWgFSxny3GGlVHibG1HFf--3vJxQAJxsg_PzGvP7JMtP3ok5DODYwZQnsSEw3HJRfWJ7DHBVcEVk1v5DnVdCFBql-zHeA_AuJByh-yWTSWgBrFHrpbXi8tS0kWkxtP52q3QY3KWnpoQHAaaRrrw3WSxo7_7Kbj1mNAnepMj6Qz7nl7jOoyrYIbB-dUh2b4zfcSjp_OA3P6cL2fnxcWvs8Xsx0VhOVdVoWSrJJdKKkTTNcqAFbyCpm06VZsGRG2FqFvgorSiA2O5QCmwlVkro5rqgHx77Juz_0wYkx5ctPk5xuM4Rc2kUAKAK_UBWtYNgzyRTL--ovfjFHz-iC5ZxVgpQcB7KsdWvMkD38R-eVJTO2Cn18ENJjzo59Fn8P0R2DDGGPDuhTDQm7XqzVr1Zq3Znryy1iWT3OhTMK5_r-Kv6_Hh7db6Zjm__F_xD_kGsAk |
| CitedBy_id | crossref_primary_10_4252_wjsc_v12_i12_1553 crossref_primary_10_3389_fonc_2023_1100134 crossref_primary_10_1186_s12967_018_1465_z crossref_primary_10_1155_2017_5619472 crossref_primary_10_1063_5_0004611 crossref_primary_10_1111_febs_15628 crossref_primary_10_3390_cancers13071528 crossref_primary_10_1016_j_molcel_2020_04_024 crossref_primary_10_1371_journal_pcbi_1007351 crossref_primary_10_3389_fmolb_2022_1095142 crossref_primary_10_3389_fcell_2023_1328522 crossref_primary_10_3389_fnmol_2023_1287257 crossref_primary_10_1016_j_tibs_2023_02_007 crossref_primary_10_1186_s12977_021_00584_y crossref_primary_10_1242_dev_200755 crossref_primary_10_1093_nar_gkad247 crossref_primary_10_1089_scd_2019_0152 crossref_primary_10_3389_fonc_2021_638363 crossref_primary_10_3389_fcell_2021_637309 crossref_primary_10_1007_s00109_024_02430_y crossref_primary_10_15252_embr_202254944 crossref_primary_10_3390_v9060130 crossref_primary_10_1002_mco2_790 crossref_primary_10_1186_s12929_017_0374_4 crossref_primary_10_1096_fj_201600988RR crossref_primary_10_1017_S0967199418000424 crossref_primary_10_1186_s13567_021_00911_3 crossref_primary_10_3390_cells10081933 crossref_primary_10_3389_fimmu_2018_02229 crossref_primary_10_3390_ijms22041603 crossref_primary_10_1186_s13578_021_00660_y crossref_primary_10_1016_j_canlet_2025_217695 crossref_primary_10_1093_nar_gkx884 crossref_primary_10_3389_fcell_2023_1097780 crossref_primary_10_3390_cancers14184536 crossref_primary_10_1093_nar_gky210 crossref_primary_10_1007_s12015_019_09931_1 crossref_primary_10_1002_mrd_23559 crossref_primary_10_3390_cancers13051065 crossref_primary_10_1038_s41419_021_04384_2 |
| Cites_doi | 10.1016/j.celrep.2014.12.028 10.1101/gr.147678.112 10.1038/nature08287 10.1016/j.stem.2010.12.001 10.1038/ng.2491 10.1038/nature10868 10.1038/nature15749 10.1101/gr.172809.114 10.1038/nature13992 10.1186/gb-2008-9-9-r137 10.1016/j.cell.2012.11.039 10.1016/j.stem.2008.08.014 10.1016/j.celrep.2014.12.004 10.1038/nature06008 10.1038/nature11244 10.1128/MCB.00487-06 10.1073/pnas.1413299111 10.1128/MCB.00864-13 10.1038/nature08290 10.1016/j.stem.2015.01.005 10.1038/nbt1418 10.1038/ncb2483 10.1371/journal.pcbi.1002486 10.1016/j.cell.2012.09.045 10.1016/j.stemcr.2015.07.007 10.1074/jbc.M110.142059 10.1046/j.1440-169x.1999.00474.x 10.1016/j.cell.2015.08.037 10.1074/jbc.C300023200 10.1101/gad.973302 10.1016/j.stem.2011.10.005 10.1016/j.cell.2014.09.055 10.1016/j.cell.2006.07.024 10.1038/nature08674 10.1073/pnas.0811426106 10.1186/1471-2164-15-583 10.1038/nature10953 10.1038/nature12587 |
| ContentType | Journal Article |
| Copyright | 2016 AlphaMed Press 2016 AlphaMed Press. 2017 AlphaMed Press |
| Copyright_xml | – notice: 2016 AlphaMed Press – notice: 2016 AlphaMed Press. – notice: 2017 AlphaMed Press |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
| DOI | 10.1002/stem.2453 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts Engineering Research Database MEDLINE Genetics Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1549-4918 |
| EndPage | 157 |
| ExternalDocumentID | 4288339921 27350605 10_1002_stem_2453 STEM2453 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Health and Medical Research Council Early Career Fellowship funderid: 1052195 |
| GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AHMMS AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NU- O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- AAMMB AAYXX ABGNP ABJNI ABVGC ABXZS AEFGJ AGXDD AIDQK AIDYY AJNCP ALUQN ALXQX CITATION NTU WIN AFFQV CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c4493-98b9848989eead79a0c54307b7d96a7056c556b0452c5d0ac45e85eb8ead9a973 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391966700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1066-5099 1549-4918 |
| IngestDate | Tue Oct 07 09:43:02 EDT 2025 Sun Nov 09 09:56:18 EST 2025 Sat Nov 29 14:30:07 EST 2025 Sat Nov 29 14:43:49 EST 2025 Wed Feb 19 02:43:06 EST 2025 Tue Nov 18 21:25:43 EST 2025 Sat Nov 29 01:35:09 EST 2025 Wed Jan 22 16:25:07 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Epigenetics Reprogramming Induced pluripotent stem cells Trim28 |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2016 AlphaMed Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4493-98b9848989eead79a0c54307b7d96a7056c556b0452c5d0ac45e85eb8ead9a973 |
| Notes | This article was published online on 06 July 2016. An error was subsequently identified in the coding of the author line and running head. This notice is included in the online and print versions to indicate that both have been corrected 25 July 2016. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stem.2453 |
| PMID | 27350605 |
| PQID | 1853470999 |
| PQPubID | 1046343 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1859500499 proquest_miscellaneous_1826710735 proquest_journals_2131128050 proquest_journals_1853470999 pubmed_primary_27350605 crossref_primary_10_1002_stem_2453 crossref_citationtrail_10_1002_stem_2453 wiley_primary_10_1002_stem_2453_STEM2453 |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 2017-01-01 2017-Jan 20170101 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Stem cells (Dayton, Ohio) |
| PublicationTitleAlternate | Stem Cells |
| PublicationYear | 2017 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | 2002; 16 2014; 515 2015; 163 2012; 483 2007; 448 2015; 5 2015; 16 2013; 45 2013; 23 2013; 502 2015; 10 2008; 9 2010; 463 2010; 285 2015; 528 2014; 24 2013; 487 1999; 41 2008; 3 2012; 14 2014; 111 2003; 278 2011; 8 2014; 159 2011; 9 2012; 151 2010; 28 2006; 26 2008; 26 2014; 15 2009; 460 2006; 126 2014; 34 2010; 7 2012; 8 2009; 106 Marión (2022010902031667200_stem2453-bib-0035) 2009; 460 Soufi (2022010902031667200_stem2453-bib-0003) 2012; 151 Friedli (2022010902031667200_stem2453-bib-0019) 2014; 24 Li (2022010902031667200_stem2453-bib-0031) 2010 Huangfu (2022010902031667200_stem2453-bib-0007) 2008; 26 Yue (2022010902031667200_stem2453-bib-0026) 2014; 515 Macfarlan (2022010902031667200_stem2453-bib-0038) 2013; 487 Matoba (2022010902031667200_stem2453-bib-0039) 2014; 159 Carey (2022010902031667200_stem2453-bib-0022) 2009; 106 Liang (2022010902031667200_stem2453-bib-0006) 2010; 285 Dirac (2022010902031667200_stem2453-bib-0021) 2003; 278 Rowe (2022010902031667200_stem2453-bib-0036) 2013; 23 Prahallad (2022010902031667200_stem2453-bib-0024) 2012; 483 Li (2022010902031667200_stem2453-bib-0034) 2009; 460 Vries (2022010902031667200_stem2453-bib-0029) 2015; 10 Mikkelsen (2022010902031667200_stem2453-bib-0032) 2007; 448 Onder (2022010902031667200_stem2453-bib-0008) 2012; 483 Takahashi (2022010902031667200_stem2453-bib-0001) 2006; 126 Zhang (2022010902031667200_stem2453-bib-0028) 2008; 9 Liang (2022010902031667200_stem2453-bib-0012) 2012; 14 Pedersen (2022010902031667200_stem2453-bib-0027) 2014; 34 Yang (2022010902031667200_stem2453-bib-0033) 2015; 163 Göke (2022010902031667200_stem2453-bib-0037) 2015; 16 Cheloufi (2022010902031667200_stem2453-bib-0014) 2015; 528 Sripathy (2022010902031667200_stem2453-bib-0016) 2006; 26 Rowe (2022010902031667200_stem2453-bib-0017) 2010; 463 Schultz (2022010902031667200_stem2453-bib-0030) 2002; 16 Chen (2022010902031667200_stem2453-bib-0010) 2013; 45 Koche (2022010902031667200_stem2453-bib-0002) 2011; 8 Rais (2022010902031667200_stem2453-bib-0009) 2013; 502 Chantzoura (2022010902031667200_stem2453-bib-0013) 2015; 5 Fasching (2022010902031667200_stem2453-bib-0018) 2015; 10 Wang (2022010902031667200_stem2453-bib-0011) 2011; 9 Yoshimizu (2022010902031667200_stem2453-bib-0020) 1999; 41 Polo (2022010902031667200_stem2453-bib-0004) 2012; 151 Ohnuki (2022010902031667200_stem2453-bib-0015) 2014; 111 Reichmann (2022010902031667200_stem2453-bib-0040) 2012; 8 Mali (2022010902031667200_stem2453-bib-0005) 2010 Hockemeyer (2022010902031667200_stem2453-bib-0023) 2008; 3 Criscione (2022010902031667200_stem2453-bib-0025) 2014; 15 |
| References_xml | – volume: 28 start-page: 713 year: 2010 end-page: 720 – volume: 10 start-page: 383 year: 2015 end-page: 397 article-title: Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression publication-title: Cell Rep – volume: 126 start-page: 663 year: 2006 end-page: 676 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 448 start-page: 553 year: 2007 end-page: 560 article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells publication-title: Nature – volume: 151 start-page: 994 year: 2012 end-page: 1004 article-title: Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome publication-title: Cell – volume: 34 start-page: 1031 year: 2014 end-page: 1045 article-title: The demethylase JMJD2C localizes to H3K4me3‐positive transcription start sites and is dispensable for embryonic development publication-title: Mol Cell Biol – volume: 23 start-page: 452 year: 2013 end-page: 461 article-title: TRIM28 repression of retrotransposon‐based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells publication-title: Genome Res – volume: 5 start-page: 1 year: 2015 end-page: 15 article-title: Reprogramming roadblocks are system dependent publication-title: Stem Cell Rep – volume: 111 start-page: 12426 year: 2014 end-page: 12431 article-title: Dynamic regulation of human endogenous retroviruses mediates factor‐induced reprogramming and differentiation potential publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: e1002486 year: 2012 article-title: Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells publication-title: PLoS Comp Biol – volume: 16 start-page: 135 year: 2015 end-page: 141 article-title: Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells publication-title: Cell Stem Cell – volume: 528 start-page: 218 year: 2015 end-page: 224 article-title: The histone chaperone CAF‐1 safeguards somatic cell identity publication-title: Nature – volume: 15 start-page: 583 year: 2014 article-title: Transcriptional landscape of repetitive elements in normal and cancer human cells publication-title: BMC Genomics – volume: 41 start-page: 675 year: 1999 end-page: 684 article-title: Germline‐specific expression of the Oct‐4/green fluorescent protein (GFP) transgene in mice publication-title: Dev Growth Differ – volume: 16 start-page: 919 year: 2002 end-page: 932 article-title: SETDB1: A novel KAP‐1‐associated histone H3, lysine 9‐specific methyltransferase that contributes to HP1‐mediated silencing of euchromatic genes by KRAB zinc‐finger proteins publication-title: Genes Dev – volume: 9 start-page: R137 year: 2008 article-title: Model‐based analysis of ChIP‐seq (MACS) publication-title: Genome Biol – volume: 460 start-page: 1136 year: 2009 end-page: 1139 article-title: The Ink4/Arf locus is a barrier for iPS cell reprogramming publication-title: Nature – volume: 285 start-page: 25516 year: 2010 end-page: 25521 article-title: Butyrate promotes induced pluripotent stem cell generation publication-title: J Biol Chem – volume: 106 start-page: 157 year: 2009 end-page: 162 article-title: Reprogramming of murine and human somatic cells using a single polycistronic vector publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: 575 year: 2011 end-page: 587 article-title: The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin‐C‐dependent manner publication-title: Cell Stem Cell – volume: 163 start-page: 17 year: 2015 article-title: Systematic identification of factors for provirus silencing in embryonic stem cells publication-title: Cell – volume: 502 start-page: 65 year: 2013 end-page: 70 article-title: Deterministic direct reprogramming of somatic cells to pluripotency publication-title: Nature – volume: 463 start-page: 237 year: 2010 end-page: 240 article-title: KAP1 controls endogenous retroviruses in embryonicstem cells publication-title: Nature – volume: 151 start-page: 1617 year: 2012 end-page: 1632 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell – volume: 515 start-page: 355 year: 2014 end-page: 364 article-title: A comparative encyclopedia of DNA elements in the mouse genome publication-title: Nature – volume: 460 start-page: 1149 year: 2009 end-page: 1153 article-title: A p53‐mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity publication-title: Nature – volume: 8 start-page: 96 year: 2011 end-page: 105 article-title: Reprogramming factor expression initiates widespread targeted chromatin remodeling publication-title: Cell Stem Cell – volume: 159 start-page: 884 year: 2014 end-page: 895 article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation publication-title: Cell – volume: 483 start-page: 100 year: 2012 end-page: 103 article-title: Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR publication-title: Nature – volume: 483 start-page: 598 year: 2012 end-page: 602 article-title: Chromatin‐modifying enzymes as modulators of reprogramming publication-title: Nature – volume: 10 start-page: 20 year: 2015 end-page: 28 article-title: TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells publication-title: Cell Rep – volume: 487 start-page: 57 year: 2013 end-page: 63 article-title: Embryonic stem cell potency fluctuates with endogenous retrovirus activity publication-title: Nature – volume: 278 start-page: 11731 year: 2003 end-page: 11734 article-title: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53 publication-title: J Biol Chem – volume: 45 start-page: 34 year: 2013 end-page: 42 article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs publication-title: Nat Genet – volume: 26 start-page: 8623 year: 2006 end-page: 8638 article-title: The KAP1 corepressor functions to coordinate the assembly of de novo HP1‐demarcated microenvironments of heterochromatin required for KRAB zinc finger protein‐mediated transcriptional Repression publication-title: Mol Cell Biol – volume: 14 start-page: 457 year: 2012 end-page: 466 article-title: Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming publication-title: Nat Cell Biol – volume: 7 start-page: 51 year: 2010 end-page: 63 – volume: 24 start-page: 1251 year: 2014 end-page: 1259 article-title: Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency publication-title: Genome Res – volume: 26 start-page: 795 year: 2008 end-page: 797 article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small‐molecule compounds publication-title: Nat Biotechnol – volume: 3 start-page: 346 year: 2008 end-page: 353 article-title: A drug‐inducible system for direct reprogramming of human somatic cells to pluripotency publication-title: Cell Stem Cell – volume: 10 start-page: 383 year: 2015 ident: 2022010902031667200_stem2453-bib-0029 article-title: Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.028 – start-page: 51 year: 2010 ident: 2022010902031667200_stem2453-bib-0031 article-title: A Mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts – volume: 23 start-page: 452 year: 2013 ident: 2022010902031667200_stem2453-bib-0036 article-title: TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells publication-title: Genome Res doi: 10.1101/gr.147678.112 – volume: 460 start-page: 1149 year: 2009 ident: 2022010902031667200_stem2453-bib-0035 article-title: A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity publication-title: Nature doi: 10.1038/nature08287 – volume: 8 start-page: 96 year: 2011 ident: 2022010902031667200_stem2453-bib-0002 article-title: Reprogramming factor expression initiates widespread targeted chromatin remodeling publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.12.001 – volume: 45 start-page: 34 year: 2013 ident: 2022010902031667200_stem2453-bib-0010 article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs publication-title: Nat Genet doi: 10.1038/ng.2491 – volume: 483 start-page: 100 year: 2012 ident: 2022010902031667200_stem2453-bib-0024 article-title: Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR publication-title: Nature doi: 10.1038/nature10868 – volume: 528 start-page: 218 year: 2015 ident: 2022010902031667200_stem2453-bib-0014 article-title: The histone chaperone CAF-1 safeguards somatic cell identity publication-title: Nature doi: 10.1038/nature15749 – volume: 24 start-page: 1251 year: 2014 ident: 2022010902031667200_stem2453-bib-0019 article-title: Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency publication-title: Genome Res doi: 10.1101/gr.172809.114 – volume: 515 start-page: 355 year: 2014 ident: 2022010902031667200_stem2453-bib-0026 article-title: A comparative encyclopedia of DNA elements in the mouse genome publication-title: Nature doi: 10.1038/nature13992 – volume: 9 start-page: R137 year: 2008 ident: 2022010902031667200_stem2453-bib-0028 article-title: Model-based analysis of ChIP-seq (MACS) publication-title: Genome Biol doi: 10.1186/gb-2008-9-9-r137 – volume: 151 start-page: 1617 year: 2012 ident: 2022010902031667200_stem2453-bib-0004 article-title: A molecular roadmap of reprogramming somatic cells into iPS cells publication-title: Cell doi: 10.1016/j.cell.2012.11.039 – volume: 3 start-page: 346 year: 2008 ident: 2022010902031667200_stem2453-bib-0023 article-title: A drug-inducible system for direct reprogramming of human somatic cells to pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.08.014 – volume: 10 start-page: 20 year: 2015 ident: 2022010902031667200_stem2453-bib-0018 article-title: TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.004 – volume: 448 start-page: 553 year: 2007 ident: 2022010902031667200_stem2453-bib-0032 article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells publication-title: Nature doi: 10.1038/nature06008 – volume: 487 start-page: 57 year: 2013 ident: 2022010902031667200_stem2453-bib-0038 article-title: Embryonic stem cell potency fluctuates with endogenous retrovirus activity publication-title: Nature doi: 10.1038/nature11244 – volume: 26 start-page: 8623 year: 2006 ident: 2022010902031667200_stem2453-bib-0016 article-title: The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional Repression publication-title: Mol Cell Biol doi: 10.1128/MCB.00487-06 – volume: 111 start-page: 12426 year: 2014 ident: 2022010902031667200_stem2453-bib-0015 article-title: Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1413299111 – volume: 34 start-page: 1031 year: 2014 ident: 2022010902031667200_stem2453-bib-0027 article-title: The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development publication-title: Mol Cell Biol doi: 10.1128/MCB.00864-13 – volume: 460 start-page: 1136 year: 2009 ident: 2022010902031667200_stem2453-bib-0034 article-title: The Ink4/Arf locus is a barrier for iPS cell reprogramming publication-title: Nature doi: 10.1038/nature08290 – volume: 16 start-page: 135 year: 2015 ident: 2022010902031667200_stem2453-bib-0037 article-title: Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.005 – volume: 26 start-page: 795 year: 2008 ident: 2022010902031667200_stem2453-bib-0007 article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds publication-title: Nat Biotechnol doi: 10.1038/nbt1418 – volume: 14 start-page: 457 year: 2012 ident: 2022010902031667200_stem2453-bib-0012 article-title: Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming publication-title: Nat Cell Biol doi: 10.1038/ncb2483 – volume: 8 start-page: e1002486 year: 2012 ident: 2022010902031667200_stem2453-bib-0040 article-title: Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells publication-title: PLoS Comp Biol doi: 10.1371/journal.pcbi.1002486 – volume: 151 start-page: 994 year: 2012 ident: 2022010902031667200_stem2453-bib-0003 article-title: Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome publication-title: Cell doi: 10.1016/j.cell.2012.09.045 – volume: 5 start-page: 1 year: 2015 ident: 2022010902031667200_stem2453-bib-0013 article-title: Reprogramming roadblocks are system dependent publication-title: Stem Cell Rep doi: 10.1016/j.stemcr.2015.07.007 – volume: 285 start-page: 25516 year: 2010 ident: 2022010902031667200_stem2453-bib-0006 article-title: Butyrate promotes induced pluripotent stem cell generation publication-title: J Biol Chem doi: 10.1074/jbc.M110.142059 – volume: 41 start-page: 675 year: 1999 ident: 2022010902031667200_stem2453-bib-0020 article-title: Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice publication-title: Dev Growth Differ doi: 10.1046/j.1440-169x.1999.00474.x – start-page: 713 year: 2010 ident: 2022010902031667200_stem2453-bib-0005 article-title: Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes – volume: 163 start-page: 17 year: 2015 ident: 2022010902031667200_stem2453-bib-0033 article-title: Systematic identification of factors for provirus silencing in embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.08.037 – volume: 278 start-page: 11731 year: 2003 ident: 2022010902031667200_stem2453-bib-0021 article-title: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53 publication-title: J Biol Chem doi: 10.1074/jbc.C300023200 – volume: 16 start-page: 919 year: 2002 ident: 2022010902031667200_stem2453-bib-0030 article-title: SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins publication-title: Genes Dev doi: 10.1101/gad.973302 – volume: 9 start-page: 575 year: 2011 ident: 2022010902031667200_stem2453-bib-0011 article-title: The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.10.005 – volume: 159 start-page: 884 year: 2014 ident: 2022010902031667200_stem2453-bib-0039 article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation publication-title: Cell doi: 10.1016/j.cell.2014.09.055 – volume: 126 start-page: 663 year: 2006 ident: 2022010902031667200_stem2453-bib-0001 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 463 start-page: 237 year: 2010 ident: 2022010902031667200_stem2453-bib-0017 article-title: KAP1 controls endogenous retroviruses in embryonicstem cells publication-title: Nature doi: 10.1038/nature08674 – volume: 106 start-page: 157 year: 2009 ident: 2022010902031667200_stem2453-bib-0022 article-title: Reprogramming of murine and human somatic cells using a single polycistronic vector publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0811426106 – volume: 15 start-page: 583 year: 2014 ident: 2022010902031667200_stem2453-bib-0025 article-title: Transcriptional landscape of repetitive elements in normal and cancer human cells publication-title: BMC Genomics doi: 10.1186/1471-2164-15-583 – volume: 483 start-page: 598 year: 2012 ident: 2022010902031667200_stem2453-bib-0008 article-title: Chromatin-modifying enzymes as modulators of reprogramming publication-title: Nature doi: 10.1038/nature10953 – volume: 502 start-page: 65 year: 2013 ident: 2022010902031667200_stem2453-bib-0009 article-title: Deterministic direct reprogramming of somatic cells to pluripotency publication-title: Nature doi: 10.1038/nature12587 |
| SSID | ssj0014588 |
| Score | 2.4075484 |
| Snippet | Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 147 |
| SubjectTerms | Animals Cell Proliferation Cellular Reprogramming - genetics Chromatin Chromatin - metabolism Domains Endogenous retroviruses Endogenous Retroviruses - metabolism Epigenesis, Genetic Epigenetics Gene expression Gene Knockdown Techniques Genomes Histone-Lysine N-Methyltransferase Histones - metabolism Induced pluripotent stem cells Lysine - metabolism Methylation Mice, Transgenic Models, Biological Pluripotency Pluripotent Stem Cells - cytology Pluripotent Stem Cells - metabolism Reprogramming Retroviridae RNA, Small Interfering - metabolism Somatic cells Stem cells Trim28 Tripartite Motif-Containing Protein 28 - metabolism Up-Regulation - genetics |
| Title | TRIM28 Is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2453 https://www.ncbi.nlm.nih.gov/pubmed/27350605 https://www.proquest.com/docview/1853470999 https://www.proquest.com/docview/2131128050 https://www.proquest.com/docview/1826710735 https://www.proquest.com/docview/1859500499 |
| Volume | 35 |
| WOSCitedRecordID | wos000391966700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1549-4918 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0014588 issn: 1066-5099 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED91aJP2MrYxWBkgg3jgJZA4dmxrTxsqWiVaIehY3yLbcSWkklb9mLT_fndJmwkB06S9RfI58ced72c79zuAY6-EcKNREsngskhYriM3EiESRepUEri3VVTa7aXq9_VwaK5a8HkdC1PzQzQHbmQZ1XpNBm7d_OwPaSjxHJ9yIYnpMxEJZS_40e03NwgUgVnddGZZhE7RrFmFYn7W1Hzoix4BzId4tXI4F5v_1dS38GaFM9mXWjHeQSuU7-FVnXny1xb0B9fdHtesO2e2ZJ0pcXJSOCP7ameUw44tJoyyevhQsKvxEleWCYLrBbvBb7DzMB4zRO71r1336Pw-wPeLzuD8W7RKrRB5IUwaGe2MFpQ6MqAqKWNjLwWau1OFyaxCVOSlzBzxrXtZxNYLGTROp0ZpY41Kt2GjnJThIzBvRIGgUtlRSHGzVhjc8IXMI-4M3iWpbsPJepBzv-Idp_QX47xmTOY5DU9Ow9OGo0Z0WpNtPCW0t56pfGVv85xQh1CEdp8s5kQqxHUs4zYcNsVoSHQ7YsswWdIreIZwS6XybzLSyGqX2IadWkmahiIOJLJGrH1S6cLzPchvBp0ePez-u-gneM0JUFSHP3uwsZgtwz689D8Xd_PZAbxQQ31QGcBvjjEGVw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED91sAleYB-wlY_Nm_bASyB17NiWeAHUimpthEa38RY5jitN6lLUDyT-e-6SNhOCoUm8RfI58ced72c79zuAr04JkQ2HrUD6LA6E5TrIhsIHIo8y1fLc2TIq7WdPJYm-ujIXDThexsJU_BD1gRtZRrlek4HTgfTRX9ZQIjo-5EJGL2BVINCgxA2_ukl9h0AxmOVdZxwH6BbNklco5Ed11fve6AHEvI9YS5fT2XxeY1_DxgJqspNKN95Awxdv4VWVfPL2HSSD790-16w7ZbZg7Wui5aSIRnZqJ5TGjs3GjBJ7OJ-zi9EcF5cx4usZu8RvsDM_GjEE79XfXX_Q_23Bj057cHYeLLIrBE4IEwVGZ0YLyh7pUZuUsaGTAi0-U7mJrUJg5KSMM6JcdzIPrRPSa5xRjdLGGhVtw0oxLvwHYM6IHHGlskMf4X4tN7jn87FD6Old1op0Ew6Wo5y6BfU4ZcAYpRVpMk9peFIaniZ8qUWvK76Nx4T2llOVLkxumhLwEIoA76PFnHiFuA5l2ITPdTHaEl2Q2MKP5_QKHiPiUpF8SkYaWW4Um_C-0pK6oQgFia8Rax-UyvDvHqSXg3afHnb-X_QTrJ0P-r20102-7cI6J3xRngXtwcpsMvf78NLdzH5PJx9LO7gDwYEJjQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tA9BeNthgKxtg0B72ki117NiW9jJGKyq2qGJl6lvkOI6E1KVVP5D477lL2qCJgZD2FsnnfNh3vt_Zud8BHDslRFYU7UD6LA6E5TrICuEDkUeZanvubJWVdnulkkQPh6a_BuerXJiaH6LZcCPLqNZrMnA_yYuz36yhRHR8yoWM1mFTxBiPUz5JL2nOECgHszrrjOMA3aJZ8QqF_Kzpet8b_QEx7yPWyuV0dx73ss9hewk12UWtGy9gzZe78LQuPvlzD5LB194116w3Y7ZknQnRclJGI_top1TGjs3HjAp7OJ-z_miBi8sY8fWc3eAz2KUfjRiC9_rvrjv0fy_hW7czuPwcLKsrBE4IEwVGZ0YLqh7pUZuUsaGTAi0-U7mJrUJg5KSMM6JcdzIPrRPSa5xRjdLGGhW9go1yXPoDYM6IHHGlsoWPMF7LDcZ8PnYIPb3L2pFuwclqlFO3pB6nChijtCZN5ikNT0rD04IPjeik5tt4SOhoNVXp0uRmKQEPoQjwPtjMiVeI61CGLXjfNKMt0QGJLf14QbfgMSIuFcl_yUgjq0CxBfu1ljQvilCQ-Bqx90mlDH__gvRm0Lmmi9f_L_oOnvU_ddOrXvLlELY4wYtqK-gINubThX8DT9yP-ffZ9G1lBr8AWf0JEQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIM28+is+an+Epigenetic+Barrier+to+Induced+Pluripotent+Stem+Cell+Reprogramming&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Miles%2C+Denise+Catherine&rft.au=de+Vries%2C+Nienke+Alexandra&rft.au=Gisler%2C+Santiago&rft.au=Lieftink%2C+Cor&rft.date=2017-01-01&rft.eissn=1549-4918&rft.volume=35&rft.issue=1&rft.spage=147&rft_id=info:doi/10.1002%2Fstem.2453&rft_id=info%3Apmid%2F27350605&rft.externalDocID=27350605 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |