TRIM28 Is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming

Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their geno...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Stem cells (Dayton, Ohio) Ročník 35; číslo 1; s. 147 - 157
Hlavní autoři: Miles, Denise Catherine, de Vries, Nienke Alexandra, Gisler, Santiago, Lieftink, Cor, Akhtar, Waseem, Gogola, Ewa, Pawlitzky, Inka, Hulsman, Danielle, Tanger, Ellen, Koppens, Martijn, Beijersbergen, Roderick Leonardus, van Lohuizen, Maarten
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Oxford University Press 01.01.2017
Témata:
ISSN:1066-5099, 1549-4918, 1549-4918
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large‐scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147–157 Model of TRIM28 function during reprogramming A) Ectopic expression of Oct4, Sox2, Klf4 and c‐Myc (OSKM) induces the reprogramming of somatic cells into induced pluripotent stem cells at a low efficiency B) Ectopic expression of OSKM along with knock down of TRIM28 increases the expression of genes nearby H3K9me3, and induces the expression of endogenous retroviruses. This decondensed chromatin state increases the reprogramming efficiency.
AbstractList Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157.Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157.
Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large‐scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147–157
Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157.
Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming.
Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large‐scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147–157 Model of TRIM28 function during reprogramming A) Ectopic expression of Oct4, Sox2, Klf4 and c‐Myc (OSKM) induces the reprogramming of somatic cells into induced pluripotent stem cells at a low efficiency B) Ectopic expression of OSKM along with knock down of TRIM28 increases the expression of genes nearby H3K9me3, and induces the expression of endogenous retroviruses. This decondensed chromatin state increases the reprogramming efficiency.
Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017; 35:147-157 Model of TRIM28 function during reprogramming A) Ectopic expression of Oct4, Sox2, Klf4 and c-Myc (OSKM) induces the reprogramming of somatic cells into induced pluripotent stem cells at a low efficiency B) Ectopic expression of OSKM along with knock down of TRIM28 increases the expression of genes nearby H3K9me3, and induces the expression of endogenous retroviruses. This decondensed chromatin state increases the reprogramming efficiency.
Author van Lohuizen, Maarten
de Vries, Nienke Alexandra
Koppens, Martijn
Akhtar, Waseem
Gogola, Ewa
Hulsman, Danielle
Beijersbergen, Roderick Leonardus
Pawlitzky, Inka
Tanger, Ellen
Miles, Denise Catherine
Gisler, Santiago
Lieftink, Cor
Author_xml – sequence: 1
  givenname: Denise Catherine
  surname: Miles
  fullname: Miles, Denise Catherine
  email: miles.d@wehi.edu.au
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 2
  givenname: Nienke Alexandra
  surname: de Vries
  fullname: de Vries, Nienke Alexandra
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 3
  givenname: Santiago
  surname: Gisler
  fullname: Gisler, Santiago
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 4
  givenname: Cor
  surname: Lieftink
  fullname: Lieftink, Cor
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 5
  givenname: Waseem
  surname: Akhtar
  fullname: Akhtar, Waseem
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 6
  givenname: Ewa
  surname: Gogola
  fullname: Gogola, Ewa
  organization: The Netherlands Cancer Institute
– sequence: 7
  givenname: Inka
  surname: Pawlitzky
  fullname: Pawlitzky, Inka
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 8
  givenname: Danielle
  surname: Hulsman
  fullname: Hulsman, Danielle
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 9
  givenname: Ellen
  surname: Tanger
  fullname: Tanger, Ellen
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 10
  givenname: Martijn
  surname: Koppens
  fullname: Koppens, Martijn
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 11
  givenname: Roderick Leonardus
  surname: Beijersbergen
  fullname: Beijersbergen, Roderick Leonardus
  organization: NKI Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 12
  givenname: Maarten
  surname: van Lohuizen
  fullname: van Lohuizen, Maarten
  email: m.v.lohuizen@nki.nl
  organization: Cancer Genomics Centre (CGC.nl)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27350605$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1P3DAQBmCrAvF96B-oLPXSHgLjxE7sY1ltYSWgFSxny3GGlVHibG1HFf--3vJxQAJxsg_PzGvP7JMtP3ok5DODYwZQnsSEw3HJRfWJ7DHBVcEVk1v5DnVdCFBql-zHeA_AuJByh-yWTSWgBrFHrpbXi8tS0kWkxtP52q3QY3KWnpoQHAaaRrrw3WSxo7_7Kbj1mNAnepMj6Qz7nl7jOoyrYIbB-dUh2b4zfcSjp_OA3P6cL2fnxcWvs8Xsx0VhOVdVoWSrJJdKKkTTNcqAFbyCpm06VZsGRG2FqFvgorSiA2O5QCmwlVkro5rqgHx77Juz_0wYkx5ctPk5xuM4Rc2kUAKAK_UBWtYNgzyRTL--ovfjFHz-iC5ZxVgpQcB7KsdWvMkD38R-eVJTO2Cn18ENJjzo59Fn8P0R2DDGGPDuhTDQm7XqzVr1Zq3Znryy1iWT3OhTMK5_r-Kv6_Hh7db6Zjm__F_xD_kGsAk
CitedBy_id crossref_primary_10_4252_wjsc_v12_i12_1553
crossref_primary_10_3389_fonc_2023_1100134
crossref_primary_10_1186_s12967_018_1465_z
crossref_primary_10_1155_2017_5619472
crossref_primary_10_1063_5_0004611
crossref_primary_10_1111_febs_15628
crossref_primary_10_3390_cancers13071528
crossref_primary_10_1016_j_molcel_2020_04_024
crossref_primary_10_1371_journal_pcbi_1007351
crossref_primary_10_3389_fmolb_2022_1095142
crossref_primary_10_3389_fcell_2023_1328522
crossref_primary_10_3389_fnmol_2023_1287257
crossref_primary_10_1016_j_tibs_2023_02_007
crossref_primary_10_1186_s12977_021_00584_y
crossref_primary_10_1242_dev_200755
crossref_primary_10_1093_nar_gkad247
crossref_primary_10_1089_scd_2019_0152
crossref_primary_10_3389_fonc_2021_638363
crossref_primary_10_3389_fcell_2021_637309
crossref_primary_10_1007_s00109_024_02430_y
crossref_primary_10_15252_embr_202254944
crossref_primary_10_3390_v9060130
crossref_primary_10_1002_mco2_790
crossref_primary_10_1186_s12929_017_0374_4
crossref_primary_10_1096_fj_201600988RR
crossref_primary_10_1017_S0967199418000424
crossref_primary_10_1186_s13567_021_00911_3
crossref_primary_10_3390_cells10081933
crossref_primary_10_3389_fimmu_2018_02229
crossref_primary_10_3390_ijms22041603
crossref_primary_10_1186_s13578_021_00660_y
crossref_primary_10_1016_j_canlet_2025_217695
crossref_primary_10_1093_nar_gkx884
crossref_primary_10_3389_fcell_2023_1097780
crossref_primary_10_3390_cancers14184536
crossref_primary_10_1093_nar_gky210
crossref_primary_10_1007_s12015_019_09931_1
crossref_primary_10_1002_mrd_23559
crossref_primary_10_3390_cancers13051065
crossref_primary_10_1038_s41419_021_04384_2
Cites_doi 10.1016/j.celrep.2014.12.028
10.1101/gr.147678.112
10.1038/nature08287
10.1016/j.stem.2010.12.001
10.1038/ng.2491
10.1038/nature10868
10.1038/nature15749
10.1101/gr.172809.114
10.1038/nature13992
10.1186/gb-2008-9-9-r137
10.1016/j.cell.2012.11.039
10.1016/j.stem.2008.08.014
10.1016/j.celrep.2014.12.004
10.1038/nature06008
10.1038/nature11244
10.1128/MCB.00487-06
10.1073/pnas.1413299111
10.1128/MCB.00864-13
10.1038/nature08290
10.1016/j.stem.2015.01.005
10.1038/nbt1418
10.1038/ncb2483
10.1371/journal.pcbi.1002486
10.1016/j.cell.2012.09.045
10.1016/j.stemcr.2015.07.007
10.1074/jbc.M110.142059
10.1046/j.1440-169x.1999.00474.x
10.1016/j.cell.2015.08.037
10.1074/jbc.C300023200
10.1101/gad.973302
10.1016/j.stem.2011.10.005
10.1016/j.cell.2014.09.055
10.1016/j.cell.2006.07.024
10.1038/nature08674
10.1073/pnas.0811426106
10.1186/1471-2164-15-583
10.1038/nature10953
10.1038/nature12587
ContentType Journal Article
Copyright 2016 AlphaMed Press
2016 AlphaMed Press.
2017 AlphaMed Press
Copyright_xml – notice: 2016 AlphaMed Press
– notice: 2016 AlphaMed Press.
– notice: 2017 AlphaMed Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/stem.2453
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
MEDLINE
CrossRef

Engineering Research Database
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1549-4918
EndPage 157
ExternalDocumentID 4288339921
27350605
10_1002_stem_2453
STEM2453
Genre article
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council Early Career Fellowship
  funderid: 1052195
GroupedDBID ---
.GJ
05W
0R~
123
18M
1OB
1OC
24P
2WC
31~
3WU
4.4
53G
5RE
5WD
8-0
8-1
A00
AABZA
AACZT
AAESR
AAIHA
AAONW
AAPGJ
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAZKR
ABCUV
ABDFA
ABEJV
ABHFT
ABLJU
ABMNT
ABNHQ
ABPTD
ABXVV
ACFRR
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACUFI
ACUTJ
ACXQS
ACZBC
ADBBV
ADGKP
ADIPN
ADKYN
ADQBN
ADVEK
ADXAS
ADZMN
AENEX
AEUQT
AFBPY
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGMDO
AHMBA
AHMMS
AIURR
AJAOE
AJEEA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYDB
APJGH
ATGXG
AVNTJ
AZBYB
AZVAB
BAWUL
BCRHZ
BEYMZ
BMXJE
BRXPI
CS3
DCZOG
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
FD6
G-S
GODZA
GX1
H13
HHY
HZ~
IH2
KOP
KSI
KSN
LATKE
LEEKS
LH4
LITHE
LMP
LOXES
LUTES
LW6
LYRES
MY~
N9A
NNB
NOMLY
NU-
O66
O9-
OBOKY
OCZFY
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P4E
PALCI
PQQKQ
RAO
RIWAO
RJQFR
ROL
ROX
RWI
SUPJJ
SV3
TEORI
TMA
TR2
WBKPD
WOHZO
WOQ
WYB
WYJ
XV2
ZGI
ZXP
ZZTAW
~S-
AAMMB
AAYXX
ABGNP
ABJNI
ABVGC
ABXZS
AEFGJ
AGXDD
AIDQK
AIDYY
AJNCP
ALUQN
ALXQX
CITATION
NTU
WIN
AFFQV
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TK
7TM
8FD
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4493-98b9848989eead79a0c54307b7d96a7056c556b0452c5d0ac45e85eb8ead9a973
IEDL.DBID WIN
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000391966700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-5099
1549-4918
IngestDate Tue Oct 07 09:43:02 EDT 2025
Sun Nov 09 09:56:18 EST 2025
Sat Nov 29 14:30:07 EST 2025
Sat Nov 29 14:43:49 EST 2025
Wed Feb 19 02:43:06 EST 2025
Tue Nov 18 21:25:43 EST 2025
Sat Nov 29 01:35:09 EST 2025
Wed Jan 22 16:25:07 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epigenetics
Reprogramming
Induced pluripotent stem cells
Trim28
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2016 AlphaMed Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4493-98b9848989eead79a0c54307b7d96a7056c556b0452c5d0ac45e85eb8ead9a973
Notes This article was published online on 06 July 2016. An error was subsequently identified in the coding of the author line and running head. This notice is included in the online and print versions to indicate that both have been corrected 25 July 2016.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/stem.2453
PMID 27350605
PQID 1853470999
PQPubID 1046343
PageCount 12
ParticipantIDs proquest_miscellaneous_1859500499
proquest_miscellaneous_1826710735
proquest_journals_2131128050
proquest_journals_1853470999
pubmed_primary_27350605
crossref_primary_10_1002_stem_2453
crossref_citationtrail_10_1002_stem_2453
wiley_primary_10_1002_stem_2453_STEM2453
PublicationCentury 2000
PublicationDate January 2017
2017-01-01
2017-Jan
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Stem cells (Dayton, Ohio)
PublicationTitleAlternate Stem Cells
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2002; 16
2014; 515
2015; 163
2012; 483
2007; 448
2015; 5
2015; 16
2013; 45
2013; 23
2013; 502
2015; 10
2008; 9
2010; 463
2010; 285
2015; 528
2014; 24
2013; 487
1999; 41
2008; 3
2012; 14
2014; 111
2003; 278
2011; 8
2014; 159
2011; 9
2012; 151
2010; 28
2006; 26
2008; 26
2014; 15
2009; 460
2006; 126
2014; 34
2010; 7
2012; 8
2009; 106
Marión (2022010902031667200_stem2453-bib-0035) 2009; 460
Soufi (2022010902031667200_stem2453-bib-0003) 2012; 151
Friedli (2022010902031667200_stem2453-bib-0019) 2014; 24
Li (2022010902031667200_stem2453-bib-0031) 2010
Huangfu (2022010902031667200_stem2453-bib-0007) 2008; 26
Yue (2022010902031667200_stem2453-bib-0026) 2014; 515
Macfarlan (2022010902031667200_stem2453-bib-0038) 2013; 487
Matoba (2022010902031667200_stem2453-bib-0039) 2014; 159
Carey (2022010902031667200_stem2453-bib-0022) 2009; 106
Liang (2022010902031667200_stem2453-bib-0006) 2010; 285
Dirac (2022010902031667200_stem2453-bib-0021) 2003; 278
Rowe (2022010902031667200_stem2453-bib-0036) 2013; 23
Prahallad (2022010902031667200_stem2453-bib-0024) 2012; 483
Li (2022010902031667200_stem2453-bib-0034) 2009; 460
Vries (2022010902031667200_stem2453-bib-0029) 2015; 10
Mikkelsen (2022010902031667200_stem2453-bib-0032) 2007; 448
Onder (2022010902031667200_stem2453-bib-0008) 2012; 483
Takahashi (2022010902031667200_stem2453-bib-0001) 2006; 126
Zhang (2022010902031667200_stem2453-bib-0028) 2008; 9
Liang (2022010902031667200_stem2453-bib-0012) 2012; 14
Pedersen (2022010902031667200_stem2453-bib-0027) 2014; 34
Yang (2022010902031667200_stem2453-bib-0033) 2015; 163
Göke (2022010902031667200_stem2453-bib-0037) 2015; 16
Cheloufi (2022010902031667200_stem2453-bib-0014) 2015; 528
Sripathy (2022010902031667200_stem2453-bib-0016) 2006; 26
Rowe (2022010902031667200_stem2453-bib-0017) 2010; 463
Schultz (2022010902031667200_stem2453-bib-0030) 2002; 16
Chen (2022010902031667200_stem2453-bib-0010) 2013; 45
Koche (2022010902031667200_stem2453-bib-0002) 2011; 8
Rais (2022010902031667200_stem2453-bib-0009) 2013; 502
Chantzoura (2022010902031667200_stem2453-bib-0013) 2015; 5
Fasching (2022010902031667200_stem2453-bib-0018) 2015; 10
Wang (2022010902031667200_stem2453-bib-0011) 2011; 9
Yoshimizu (2022010902031667200_stem2453-bib-0020) 1999; 41
Polo (2022010902031667200_stem2453-bib-0004) 2012; 151
Ohnuki (2022010902031667200_stem2453-bib-0015) 2014; 111
Reichmann (2022010902031667200_stem2453-bib-0040) 2012; 8
Mali (2022010902031667200_stem2453-bib-0005) 2010
Hockemeyer (2022010902031667200_stem2453-bib-0023) 2008; 3
Criscione (2022010902031667200_stem2453-bib-0025) 2014; 15
References_xml – volume: 28
  start-page: 713
  year: 2010
  end-page: 720
– volume: 10
  start-page: 383
  year: 2015
  end-page: 397
  article-title: Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression
  publication-title: Cell Rep
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells
  publication-title: Nature
– volume: 151
  start-page: 994
  year: 2012
  end-page: 1004
  article-title: Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome
  publication-title: Cell
– volume: 34
  start-page: 1031
  year: 2014
  end-page: 1045
  article-title: The demethylase JMJD2C localizes to H3K4me3‐positive transcription start sites and is dispensable for embryonic development
  publication-title: Mol Cell Biol
– volume: 23
  start-page: 452
  year: 2013
  end-page: 461
  article-title: TRIM28 repression of retrotransposon‐based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells
  publication-title: Genome Res
– volume: 5
  start-page: 1
  year: 2015
  end-page: 15
  article-title: Reprogramming roadblocks are system dependent
  publication-title: Stem Cell Rep
– volume: 111
  start-page: 12426
  year: 2014
  end-page: 12431
  article-title: Dynamic regulation of human endogenous retroviruses mediates factor‐induced reprogramming and differentiation potential
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: e1002486
  year: 2012
  article-title: Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells
  publication-title: PLoS Comp Biol
– volume: 16
  start-page: 135
  year: 2015
  end-page: 141
  article-title: Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells
  publication-title: Cell Stem Cell
– volume: 528
  start-page: 218
  year: 2015
  end-page: 224
  article-title: The histone chaperone CAF‐1 safeguards somatic cell identity
  publication-title: Nature
– volume: 15
  start-page: 583
  year: 2014
  article-title: Transcriptional landscape of repetitive elements in normal and cancer human cells
  publication-title: BMC Genomics
– volume: 41
  start-page: 675
  year: 1999
  end-page: 684
  article-title: Germline‐specific expression of the Oct‐4/green fluorescent protein (GFP) transgene in mice
  publication-title: Dev Growth Differ
– volume: 16
  start-page: 919
  year: 2002
  end-page: 932
  article-title: SETDB1: A novel KAP‐1‐associated histone H3, lysine 9‐specific methyltransferase that contributes to HP1‐mediated silencing of euchromatic genes by KRAB zinc‐finger proteins
  publication-title: Genes Dev
– volume: 9
  start-page: R137
  year: 2008
  article-title: Model‐based analysis of ChIP‐seq (MACS)
  publication-title: Genome Biol
– volume: 460
  start-page: 1136
  year: 2009
  end-page: 1139
  article-title: The Ink4/Arf locus is a barrier for iPS cell reprogramming
  publication-title: Nature
– volume: 285
  start-page: 25516
  year: 2010
  end-page: 25521
  article-title: Butyrate promotes induced pluripotent stem cell generation
  publication-title: J Biol Chem
– volume: 106
  start-page: 157
  year: 2009
  end-page: 162
  article-title: Reprogramming of murine and human somatic cells using a single polycistronic vector
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  start-page: 575
  year: 2011
  end-page: 587
  article-title: The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin‐C‐dependent manner
  publication-title: Cell Stem Cell
– volume: 163
  start-page: 17
  year: 2015
  article-title: Systematic identification of factors for provirus silencing in embryonic stem cells
  publication-title: Cell
– volume: 502
  start-page: 65
  year: 2013
  end-page: 70
  article-title: Deterministic direct reprogramming of somatic cells to pluripotency
  publication-title: Nature
– volume: 463
  start-page: 237
  year: 2010
  end-page: 240
  article-title: KAP1 controls endogenous retroviruses in embryonicstem cells
  publication-title: Nature
– volume: 151
  start-page: 1617
  year: 2012
  end-page: 1632
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
– volume: 515
  start-page: 355
  year: 2014
  end-page: 364
  article-title: A comparative encyclopedia of DNA elements in the mouse genome
  publication-title: Nature
– volume: 460
  start-page: 1149
  year: 2009
  end-page: 1153
  article-title: A p53‐mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity
  publication-title: Nature
– volume: 8
  start-page: 96
  year: 2011
  end-page: 105
  article-title: Reprogramming factor expression initiates widespread targeted chromatin remodeling
  publication-title: Cell Stem Cell
– volume: 159
  start-page: 884
  year: 2014
  end-page: 895
  article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation
  publication-title: Cell
– volume: 483
  start-page: 100
  year: 2012
  end-page: 103
  article-title: Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR
  publication-title: Nature
– volume: 483
  start-page: 598
  year: 2012
  end-page: 602
  article-title: Chromatin‐modifying enzymes as modulators of reprogramming
  publication-title: Nature
– volume: 10
  start-page: 20
  year: 2015
  end-page: 28
  article-title: TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells
  publication-title: Cell Rep
– volume: 487
  start-page: 57
  year: 2013
  end-page: 63
  article-title: Embryonic stem cell potency fluctuates with endogenous retrovirus activity
  publication-title: Nature
– volume: 278
  start-page: 11731
  year: 2003
  end-page: 11734
  article-title: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53
  publication-title: J Biol Chem
– volume: 45
  start-page: 34
  year: 2013
  end-page: 42
  article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
  publication-title: Nat Genet
– volume: 26
  start-page: 8623
  year: 2006
  end-page: 8638
  article-title: The KAP1 corepressor functions to coordinate the assembly of de novo HP1‐demarcated microenvironments of heterochromatin required for KRAB zinc finger protein‐mediated transcriptional Repression
  publication-title: Mol Cell Biol
– volume: 14
  start-page: 457
  year: 2012
  end-page: 466
  article-title: Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming
  publication-title: Nat Cell Biol
– volume: 7
  start-page: 51
  year: 2010
  end-page: 63
– volume: 24
  start-page: 1251
  year: 2014
  end-page: 1259
  article-title: Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency
  publication-title: Genome Res
– volume: 26
  start-page: 795
  year: 2008
  end-page: 797
  article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small‐molecule compounds
  publication-title: Nat Biotechnol
– volume: 3
  start-page: 346
  year: 2008
  end-page: 353
  article-title: A drug‐inducible system for direct reprogramming of human somatic cells to pluripotency
  publication-title: Cell Stem Cell
– volume: 10
  start-page: 383
  year: 2015
  ident: 2022010902031667200_stem2453-bib-0029
  article-title: Prolonged Ezh2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumor progression
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.12.028
– start-page: 51
  year: 2010
  ident: 2022010902031667200_stem2453-bib-0031
  article-title: A Mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts
– volume: 23
  start-page: 452
  year: 2013
  ident: 2022010902031667200_stem2453-bib-0036
  article-title: TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells
  publication-title: Genome Res
  doi: 10.1101/gr.147678.112
– volume: 460
  start-page: 1149
  year: 2009
  ident: 2022010902031667200_stem2453-bib-0035
  article-title: A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity
  publication-title: Nature
  doi: 10.1038/nature08287
– volume: 8
  start-page: 96
  year: 2011
  ident: 2022010902031667200_stem2453-bib-0002
  article-title: Reprogramming factor expression initiates widespread targeted chromatin remodeling
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.12.001
– volume: 45
  start-page: 34
  year: 2013
  ident: 2022010902031667200_stem2453-bib-0010
  article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
  publication-title: Nat Genet
  doi: 10.1038/ng.2491
– volume: 483
  start-page: 100
  year: 2012
  ident: 2022010902031667200_stem2453-bib-0024
  article-title: Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR
  publication-title: Nature
  doi: 10.1038/nature10868
– volume: 528
  start-page: 218
  year: 2015
  ident: 2022010902031667200_stem2453-bib-0014
  article-title: The histone chaperone CAF-1 safeguards somatic cell identity
  publication-title: Nature
  doi: 10.1038/nature15749
– volume: 24
  start-page: 1251
  year: 2014
  ident: 2022010902031667200_stem2453-bib-0019
  article-title: Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency
  publication-title: Genome Res
  doi: 10.1101/gr.172809.114
– volume: 515
  start-page: 355
  year: 2014
  ident: 2022010902031667200_stem2453-bib-0026
  article-title: A comparative encyclopedia of DNA elements in the mouse genome
  publication-title: Nature
  doi: 10.1038/nature13992
– volume: 9
  start-page: R137
  year: 2008
  ident: 2022010902031667200_stem2453-bib-0028
  article-title: Model-based analysis of ChIP-seq (MACS)
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-9-r137
– volume: 151
  start-page: 1617
  year: 2012
  ident: 2022010902031667200_stem2453-bib-0004
  article-title: A molecular roadmap of reprogramming somatic cells into iPS cells
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.039
– volume: 3
  start-page: 346
  year: 2008
  ident: 2022010902031667200_stem2453-bib-0023
  article-title: A drug-inducible system for direct reprogramming of human somatic cells to pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.08.014
– volume: 10
  start-page: 20
  year: 2015
  ident: 2022010902031667200_stem2453-bib-0018
  article-title: TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.12.004
– volume: 448
  start-page: 553
  year: 2007
  ident: 2022010902031667200_stem2453-bib-0032
  article-title: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells
  publication-title: Nature
  doi: 10.1038/nature06008
– volume: 487
  start-page: 57
  year: 2013
  ident: 2022010902031667200_stem2453-bib-0038
  article-title: Embryonic stem cell potency fluctuates with endogenous retrovirus activity
  publication-title: Nature
  doi: 10.1038/nature11244
– volume: 26
  start-page: 8623
  year: 2006
  ident: 2022010902031667200_stem2453-bib-0016
  article-title: The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional Repression
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00487-06
– volume: 111
  start-page: 12426
  year: 2014
  ident: 2022010902031667200_stem2453-bib-0015
  article-title: Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1413299111
– volume: 34
  start-page: 1031
  year: 2014
  ident: 2022010902031667200_stem2453-bib-0027
  article-title: The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00864-13
– volume: 460
  start-page: 1136
  year: 2009
  ident: 2022010902031667200_stem2453-bib-0034
  article-title: The Ink4/Arf locus is a barrier for iPS cell reprogramming
  publication-title: Nature
  doi: 10.1038/nature08290
– volume: 16
  start-page: 135
  year: 2015
  ident: 2022010902031667200_stem2453-bib-0037
  article-title: Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.005
– volume: 26
  start-page: 795
  year: 2008
  ident: 2022010902031667200_stem2453-bib-0007
  article-title: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1418
– volume: 14
  start-page: 457
  year: 2012
  ident: 2022010902031667200_stem2453-bib-0012
  article-title: Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2483
– volume: 8
  start-page: e1002486
  year: 2012
  ident: 2022010902031667200_stem2453-bib-0040
  article-title: Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells
  publication-title: PLoS Comp Biol
  doi: 10.1371/journal.pcbi.1002486
– volume: 151
  start-page: 994
  year: 2012
  ident: 2022010902031667200_stem2453-bib-0003
  article-title: Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.045
– volume: 5
  start-page: 1
  year: 2015
  ident: 2022010902031667200_stem2453-bib-0013
  article-title: Reprogramming roadblocks are system dependent
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2015.07.007
– volume: 285
  start-page: 25516
  year: 2010
  ident: 2022010902031667200_stem2453-bib-0006
  article-title: Butyrate promotes induced pluripotent stem cell generation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.142059
– volume: 41
  start-page: 675
  year: 1999
  ident: 2022010902031667200_stem2453-bib-0020
  article-title: Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice
  publication-title: Dev Growth Differ
  doi: 10.1046/j.1440-169x.1999.00474.x
– start-page: 713
  year: 2010
  ident: 2022010902031667200_stem2453-bib-0005
  article-title: Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes
– volume: 163
  start-page: 17
  year: 2015
  ident: 2022010902031667200_stem2453-bib-0033
  article-title: Systematic identification of factors for provirus silencing in embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.037
– volume: 278
  start-page: 11731
  year: 2003
  ident: 2022010902031667200_stem2453-bib-0021
  article-title: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C300023200
– volume: 16
  start-page: 919
  year: 2002
  ident: 2022010902031667200_stem2453-bib-0030
  article-title: SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins
  publication-title: Genes Dev
  doi: 10.1101/gad.973302
– volume: 9
  start-page: 575
  year: 2011
  ident: 2022010902031667200_stem2453-bib-0011
  article-title: The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.10.005
– volume: 159
  start-page: 884
  year: 2014
  ident: 2022010902031667200_stem2453-bib-0039
  article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.055
– volume: 126
  start-page: 663
  year: 2006
  ident: 2022010902031667200_stem2453-bib-0001
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 463
  start-page: 237
  year: 2010
  ident: 2022010902031667200_stem2453-bib-0017
  article-title: KAP1 controls endogenous retroviruses in embryonicstem cells
  publication-title: Nature
  doi: 10.1038/nature08674
– volume: 106
  start-page: 157
  year: 2009
  ident: 2022010902031667200_stem2453-bib-0022
  article-title: Reprogramming of murine and human somatic cells using a single polycistronic vector
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0811426106
– volume: 15
  start-page: 583
  year: 2014
  ident: 2022010902031667200_stem2453-bib-0025
  article-title: Transcriptional landscape of repetitive elements in normal and cancer human cells
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-583
– volume: 483
  start-page: 598
  year: 2012
  ident: 2022010902031667200_stem2453-bib-0008
  article-title: Chromatin-modifying enzymes as modulators of reprogramming
  publication-title: Nature
  doi: 10.1038/nature10953
– volume: 502
  start-page: 65
  year: 2013
  ident: 2022010902031667200_stem2453-bib-0009
  article-title: Deterministic direct reprogramming of somatic cells to pluripotency
  publication-title: Nature
  doi: 10.1038/nature12587
SSID ssj0014588
Score 2.4075484
Snippet Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Animals
Cell Proliferation
Cellular Reprogramming - genetics
Chromatin
Chromatin - metabolism
Domains
Endogenous retroviruses
Endogenous Retroviruses - metabolism
Epigenesis, Genetic
Epigenetics
Gene expression
Gene Knockdown Techniques
Genomes
Histone-Lysine N-Methyltransferase
Histones - metabolism
Induced pluripotent stem cells
Lysine - metabolism
Methylation
Mice, Transgenic
Models, Biological
Pluripotency
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - metabolism
Reprogramming
Retroviridae
RNA, Small Interfering - metabolism
Somatic cells
Stem cells
Trim28
Tripartite Motif-Containing Protein 28 - metabolism
Up-Regulation - genetics
Title TRIM28 Is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.2453
https://www.ncbi.nlm.nih.gov/pubmed/27350605
https://www.proquest.com/docview/1853470999
https://www.proquest.com/docview/2131128050
https://www.proquest.com/docview/1826710735
https://www.proquest.com/docview/1859500499
Volume 35
WOSCitedRecordID wos000391966700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1549-4918
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0014588
  issn: 1066-5099
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4FVCQuQCmF8JKpeuCyZR_22lZPBQU1EolQCSW3le11JKSwifJA4t8zs5ssQtCqUm8rebwP73yebz3rbwC-isglLhJ5YHIbBjxxCCluXYBUwwywS2TLRPvvK9ntqn5fXzfg-3IvTKUPUS-4ETLK-ZoAbuz07EU0lHSOv8VckNJnxCOqXnDX7tYZBNqBWWY60zTAoKiXqkJhfFb3fB2L3hDM13y1DDiXm_91q1uwseCZ7EflGB-h4YttWKsqTz59gm7vV7sTK9aeMlOw1pg0OWk7Izs3E6phx2YjRlU9nM_Z9XCOM8sIyfWM3eA12IUfDhky9-rXrgcMfjtwe9nqXfwMFqUVAse5TgKtrFacSkd6dCWpTegER7hbmevUSGRFTojUkt66E3loHBdeCW8VWmujZfIZVotR4feAydRznBSiAZIHnnCnB5Gx3kuPaLcyUU04XQ5y5ha641T-YphVislxRsOT0fA04UttOq7ENt4zOly-qWyBt2lGrINLYrvvNsckKhSrUIRNOKmbEUiUHTGFH83pFHGKdEsm4m82QovyK7EJu5WT1DeKPJDEGrH3aekLf36C7KbX6tDB_r-bHsB6TISiXPw5hNXZZO6P4IN7nN1PJ8ewIvvquATAMxP2BhI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BLYILLa92ebQu4sAlkIcdxxIXihax6m6EYGm5RbbjlSpts2gfSPx7ZpLdIARUSNwieZyHM5_niyf-BmBfBDaygcg9nRvf45FFSHFjPaQauoddAlMm2n-3ZZomNzfqYg6OZ3thKn2IesGNkFHO1wRwWpA-elQNJaHjw5CLaB4-cCQaVLjhTyutcwi0B7PMdcaxh2FRzXSF_PCo7vo0Gj2jmE8Zaxlyzj6972Y_w8qUarKTyjdWYc4Va7BYFZ-8X4e0e9nqhAlrjZguWPOWZDlpRyP7qYdUxo6NB4wKe1iXs4v-BCeXAfLrMbvCa7BT1-8zJO_V313_MP5twPVZs3t67k2rK3iWcxV5KjEq4VQ90qE3SaV9Kzgi3shcxVoiMbJCxIYk163IfW25cIlwJkFrpZWMNmGhGBTuKzAZO47zQtBD_sAjblUv0MY56RDwRkZJAw5mo5zZqfQ4VcDoZ5VocpjR8GQ0PA3Yq01vK72Nl4x2Zq8qm0JulBHx4JII74vNIekKhYkv_Ab8qJsRS5Qg0YUbTOgUYYyMS0bifzZCifJDsQFfKi-pbxSpIOk1Yu-D0hlef4Lsqtvs0MHW202_w9J5t9PO2q301zYsh8QvyrWgHVgYDyduFz7au_Hf0fBbiYMHRZkJSA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RoIgLjz5gy8ugHrgE8rDjWOJC6a5YAdEKthW3yHa8EtKSXe0DiX_fmWQ3CJVWlXqL5HHiODOez57MNwBfRWAjG4jc07nxPR5ZNClurIdQQ_ewS2DKQPvPa5mmyf296izA2TwXpuKHqA_cyDLK9ZoM3A3z3ukLaygRHZ-EXETvYInHuB-nfJJ2WscQKAezjHXGsYduUc15hfzwtO762hv9BjFfI9bS5bTW_2-wG7A2g5rsvNKNTVhwxQd4XxWffP4Iafe2fRMmrD1mumDNIdFyUkYj-6ZHVMaOTQaMCntYl7NOf4qLywDx9YTd4TPYhev3GYL36u-uR_R_n-BHq9m9uPRm1RU8y7mKPJUYlXCqHulQm6TSvhUcLd7IXMVaIjCyQsSGKNetyH1tuXCJcCZBaaWVjD7DYjEo3DYwGTuO60LQQ_zAI25VL9DGOenQ4I2MkgYcz2c5szPqcaqA0c8q0uQwo-nJaHoacFSLDiu-jbeEduefKpuZ3Dgj4MElAd43m0PiFQoTX_gNOKyb0ZYoQKILN5jSLcIYEZeMxN9khBLlRrEBW5WW1ANFKEh8jdj7uFSGP79Bdtdt3tDFl38XPYCVzvdWdt1Or3ZgNSR4UR4F7cLiZDR1e7BsnyYP49F-aQa_AN5LCMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIM28+Is+an+Epigenetic+Barrier+to+Induced+Pluripotent+Stem+Cell+Reprogramming&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Miles%2C+Denise+Catherine&rft.au=de+Vries%2C+Nienke+Alexandra&rft.au=Gisler%2C+Santiago&rft.au=Lieftink%2C+Cor&rft.date=2017-01-01&rft.pub=Oxford+University+Press&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=35&rft.issue=1&rft.spage=147&rft_id=info:doi/10.1002%2Fstem.2453&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4288339921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon