Empowering multi-source SAR Flood mapping with unsupervised learning

Flood mapping plays a crucial role in effective disaster management, risk assessment, and mitigation planning, given the widespread and destructive nature of floods. However, current synthetic aperture radar (SAR)-based methods face challenges related to extensive labeled training data, compromised...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters Jg. 20; H. 1; S. 14006 - 14015
Hauptverfasser: Jiang, Xin, Zeng, Zhenzhong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.01.2025
Schlagworte:
ISSN:1748-9326, 1748-9326
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Flood mapping plays a crucial role in effective disaster management, risk assessment, and mitigation planning, given the widespread and destructive nature of floods. However, current synthetic aperture radar (SAR)-based methods face challenges related to extensive labeled training data, compromised classification accuracy, and limited applicability across different satellite systems and resolutions. In response to these challenges, our research introduces a pioneering unsupervised SAR-based flood mapping algorithm, inspired by artificial general intelligence principles. Notably, the innovative method demonstrates flexibility, performing effectively across various SAR satellites with differing resolutions and sensors, eliminating the need for satellite-specific algorithms. Our algorithm enhances processing speed and scalability by eliminating labor-intensive labeling of training data and manual intervention. To validate its performance, we conducted tests in three distinct regions using meter-level imagery from HISEA-1, Gaofen-3, and Sentinel-1 satellites. Consistently outperformed prevalent unsupervised techniques like Kmeans and Otsu, and even a Supervised-convolutional neural network segmentation algorithm by AI-Earth, with F1-scores exceeding 0.91. This outstanding performance showcases its accuracy, irrespective of the satellite systems or regions utilized. Furthermore, the seamless integration of our algorithm with high-performance cloud computing platforms such as Google Earth Engine enhances its adaptability and scalability, enabling continuous monitoring of global floods. This is crucial in understanding flood trends, assessing their impacts, and formulating effective disaster mitigation strategies.
AbstractList Flood mapping plays a crucial role in effective disaster management, risk assessment, and mitigation planning, given the widespread and destructive nature of floods. However, current synthetic aperture radar (SAR)-based methods face challenges related to extensive labeled training data, compromised classification accuracy, and limited applicability across different satellite systems and resolutions. In response to these challenges, our research introduces a pioneering unsupervised SAR-based flood mapping algorithm, inspired by artificial general intelligence principles. Notably, the innovative method demonstrates flexibility, performing effectively across various SAR satellites with differing resolutions and sensors, eliminating the need for satellite-specific algorithms. Our algorithm enhances processing speed and scalability by eliminating labor-intensive labeling of training data and manual intervention. To validate its performance, we conducted tests in three distinct regions using meter-level imagery from HISEA-1, Gaofen-3, and Sentinel-1 satellites. Consistently outperformed prevalent unsupervised techniques like Kmeans and Otsu, and even a Supervised-convolutional neural network segmentation algorithm by AI-Earth, with F1-scores exceeding 0.91. This outstanding performance showcases its accuracy, irrespective of the satellite systems or regions utilized. Furthermore, the seamless integration of our algorithm with high-performance cloud computing platforms such as Google Earth Engine enhances its adaptability and scalability, enabling continuous monitoring of global floods. This is crucial in understanding flood trends, assessing their impacts, and formulating effective disaster mitigation strategies.
Author Jiang, Xin
Zeng, Zhenzhong
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0003-4141-1538
  surname: Jiang
  fullname: Jiang, Xin
  organization: Southern University of Science and Technology School of Environmental Science and Engineering, Shenzhen 518055, People’s Republic of China
– sequence: 2
  givenname: Zhenzhong
  orcidid: 0000-0001-6851-2756
  surname: Zeng
  fullname: Zeng, Zhenzhong
  organization: Eastern Institute of Technology Ningbo Institute of Digital Twin, Ningbo 315200, People’s Republic of China
BookMark eNp9UMlO5TAQtEYgDdudYyQOXMjQTvzi5IjYBgkJiZk5W17a4Ke8ONgJiL_HIcMiBJy6VV1Vqq5Nstb5DgnZpfCLQl0fUs7qvCmL6lCahjX0B9l4hdbe7T_JZoxLgAVb8HqDnJyuev-AwXU32WpsB5dHPwaN2Z-j6-ys9d5kK9n30_nBDbfZ2MWxx3DvIpqsRRm6dNom61a2EXf-zy3y7-z07_Hv_PLq_OL46DLXjNVDblVh7YIrkGVlqWVKmxorwzmtjGJ6QSW3poFCUVuWEo3CCkxFkSLXQBO4RS5mX-PlUvTBrWR4FF468Qz4cCNkGJxuUSiopeI1cFUqVlKrbGGZ1mnTjQWOyWtv9uqDvxsxDmKZHu9SfFFSRhtgDFhiVTNLBx9jQCu0G-TgfDcE6VpBQUzti6leMdUr5vaTED4IX-J-I9mfJc73b2EwtKJIEgGUAVSiN1MPB58wvzR-AvXJpO0
CODEN ERLNAL
CitedBy_id crossref_primary_10_1109_JSTARS_2025_3579062
crossref_primary_10_1016_j_jag_2025_104787
Cites_doi 10.1371/journal.pone.0237324
10.3390/rs15051305
10.1109/TGRS.2020.3011209
10.1109/TGRS.2022.3160874
10.1016/j.rse.2023.113498
10.1109/LGRS.2013.2275738
10.1016/j.rse.2021.112648
10.1038/s41586-019-0912-1
10.1016/j.rse.2021.112586
10.1038/s41467-022-30761-2
10.1109/TGRS.2018.2797536
10.1007/s10661-024-13444-x
10.1038/s41586-022-04917-5
10.1016/j.rse.2017.06.031
10.3390/rs13224511
10.1016/j.jag.2024.103662
10.1016/j.jhydrol.2022.128758
10.1038/nature20584
10.1109/LGRS.2016.2540809
10.1016/j.rse.2019.111582
10.1016/j.jag.2022.103010
10.3390/rs14215504
10.1016/j.rse.2017.03.015
10.1029/2017WR022205
10.1080/01431161.2016.1192304
10.1080/09640568.2021.2001317
10.1016/j.rse.2023.113452
10.1080/07038992.2019.1612236
10.1016/j.isprsjprs.2021.05.019
10.1023/B:VISI.0000022288.19776.77
10.1016/j.isprsjprs.2021.08.016
10.1038/s41893-020-0521-x
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
– notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
DOA
DOI 10.1088/1748-9326/ad9491
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1748-9326
ExternalDocumentID oai_doaj_org_article_b08ab7807b3b431fbf2f4cc31fc9f07e
10_1088_1748_9326_ad9491
erlad9491
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515240070
– fundername: Shenzhen Science and Technology Project for Sustainable Development in Special Innovation
  grantid: KCXFZ20230731093403008
– fundername: Natural Science Foundation of China - United Nations Environment Programme (NSFC-UNEP)
  grantid: 42361144001
– fundername: National Natural Science Foundation of China
  grantid: 42071022
– fundername: Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks
  grantid: ZDSYS20220606100604008
– fundername: start-up and high-level special funds provided by the Southern University of Science and Technology
  grantid: no. 29/Y01296602; 29/Y01296122; 29/Y01296222; G030290001
GroupedDBID 1JI
29G
2WC
5B3
5GY
5PX
5VS
7.Q
AAFWJ
AAHBH
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEINN
AEJGL
AENEX
AEUYN
AFKRA
AFPKN
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATCPS
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
BHPHI
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KQ8
LAP
M7S
M~E
N5L
N9A
O3W
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PJBAE
PQGLB
PTHSS
PYCSY
RIN
RNS
RO9
SY9
T37
TR2
TSCCA
W28
~02
AAYXX
AFFHD
CITATION
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c448t-fb2ff57b0a36f1f4bcd8e6d7716db4c51a7fd902b1f33aedbe60d61e1e7c011f3
IEDL.DBID O3W
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001371265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-9326
IngestDate Fri Oct 03 12:52:04 EDT 2025
Tue Sep 30 19:05:40 EDT 2025
Sat Nov 29 07:22:54 EST 2025
Tue Nov 18 19:54:06 EST 2025
Sat Oct 18 23:06:12 EDT 2025
Tue Dec 10 22:55:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-fb2ff57b0a36f1f4bcd8e6d7716db4c51a7fd902b1f33aedbe60d61e1e7c011f3
Notes ERL-117691.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4141-1538
0000-0001-6851-2756
OpenAccessLink https://iopscience.iop.org/article/10.1088/1748-9326/ad9491
PQID 3141904404
PQPubID 4998671
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b08ab7807b3b431fbf2f4cc31fc9f07e
proquest_journals_3141904404
crossref_primary_10_1088_1748_9326_ad9491
iop_journals_10_1088_1748_9326_ad9491
crossref_citationtrail_10_1088_1748_9326_ad9491
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Environmental research letters
PublicationTitleAbbrev ERL
PublicationTitleAlternate Environ. Res. Lett
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Vanderhoof (erlad9491bib27) 2023; 288
Xia (erlad9491bib29) 2024; 196
Wieland (erlad9491bib28) 2023; 287
Amitrano (erlad9491bib1) 2018; 56
Jiang (erlad9491bib12) 2021; 178
Chen (erlad9491bib3) 2021; 265
Jamali (erlad9491bib11) 2024; 127
Felzenszwalb (erlad9491bib7) 2004; 59
Grimaldi (erlad9491bib9) 2020; 237
Brisco (erlad9491bib2) 2019; 45
Chen (erlad9491bib4) 2022; 113
Zheng (erlad9491bib32) 2013; 11
Pekel (erlad9491bib21) 2016; 540
Lewis (erlad9491bib15) 2017; 202
Pappas (erlad9491bib20) 2020; 59
Konapala (erlad9491bib13) 2021; 180
Miao (erlad9491bib19) 2023; 15
Sakar (erlad9491bib24) 2022; 60
Liu (erlad9491bib17) 2020; 3
Feizizadeh (erlad9491bib6) 2023; 66
Hostache (erlad9491bib10) 2018; 54
Gorelick (erlad9491bib8) 2017; 202
Twele (erlad9491bib26) 2016; 37
Reichstein (erlad9491bib22) 2019; 566
Tiwari (erlad9491bib25) 2020; 15
Zhang (erlad9491bib31) 2021; 13
Lv (erlad9491bib18) 2022; 14
Fei (erlad9491bib5) 2022; 13
Lin (erlad9491bib16) 2023; 617
Roy (erlad9491bib23) 2021; 264
Yu (erlad9491bib30) 2016; 13
Kreibich (erlad9491bib14) 2022; 608
References_xml – volume: 15
  year: 2020
  ident: erlad9491bib25
  article-title: Flood inundation mapping-Kerala 2018; Harnessing the power of SAR, automatic threshold detection method and Google Earth Engine
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0237324
– volume: 15
  start-page: 1305
  year: 2023
  ident: erlad9491bib19
  article-title: A comprehensive evaluation of flooding’s effect on crops using satellite time series data
  publication-title: Remote Sens.
  doi: 10.3390/rs15051305
– volume: 59
  start-page: 3942
  year: 2020
  ident: erlad9491bib20
  article-title: River planform extraction from high-resolution SAR images via generalized gamma distribution superpixel classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3011209
– volume: 60
  start-page: 1
  year: 2022
  ident: erlad9491bib24
  article-title: Sampling analysis and processing approach for distributed SAR constellations with along-track baselines
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3160874
– volume: 288
  year: 2023
  ident: erlad9491bib27
  article-title: High-frequency time series comparison of Sentinel-1 and Sentinel-2 satellites for mapping open and vegetated water across the United States (2017–2021)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113498
– volume: 11
  start-page: 691
  year: 2013
  ident: erlad9491bib32
  article-title: Using combined difference image and k-means clustering for SAR image change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2275738
– volume: 265
  year: 2021
  ident: erlad9491bib3
  article-title: Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112648
– volume: 566
  start-page: 195
  year: 2019
  ident: erlad9491bib22
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 264
  year: 2021
  ident: erlad9491bib23
  article-title: A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112586
– volume: 13
  start-page: 3094
  year: 2022
  ident: erlad9491bib5
  article-title: Towards artificial general intelligence via a multimodal foundation model
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30761-2
– volume: 56
  start-page: 3290
  year: 2018
  ident: erlad9491bib1
  article-title: Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2797536
– volume: 196
  start-page: 1248
  year: 2024
  ident: erlad9491bib29
  article-title: A study for the distribution characteristics of surface temperature and the protection of grotto temples in China
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-024-13444-x
– volume: 608
  start-page: 80
  year: 2022
  ident: erlad9491bib14
  article-title: The challenge of unprecedented floods and droughts in risk management
  publication-title: Nature
  doi: 10.1038/s41586-022-04917-5
– volume: 202
  start-page: 18
  year: 2017
  ident: erlad9491bib8
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 13
  start-page: 4511
  year: 2021
  ident: erlad9491bib31
  article-title: An urban flooding index for unsupervised inundated urban area detection using Sentinel-1 polarimetric SAR images
  publication-title: Remote Sens.
  doi: 10.3390/rs13224511
– volume: 127
  year: 2024
  ident: erlad9491bib11
  article-title: Residual wave vision U-Net for flood mapping using dual polarization Sentinel-1 SAR imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2024.103662
– volume: 617
  year: 2023
  ident: erlad9491bib16
  article-title: Rapid urban flood risk mapping for data-scarce environments using social sensing and region-stable deep neural network
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128758
– volume: 540
  start-page: 418
  year: 2016
  ident: erlad9491bib21
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– volume: 13
  start-page: 730
  year: 2016
  ident: erlad9491bib30
  article-title: Superpixel-based CFAR target detection for high-resolution SAR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2540809
– volume: 237
  year: 2020
  ident: erlad9491bib9
  article-title: Flood mapping under vegetation using single SAR acquisitions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111582
– volume: 113
  year: 2022
  ident: erlad9491bib4
  article-title: Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2022.103010
– volume: 14
  start-page: 5504
  year: 2022
  ident: erlad9491bib18
  article-title: High-performance segmentation for flood mapping of HISEA-1 SAR remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs14215504
– volume: 202
  start-page: 276
  year: 2017
  ident: erlad9491bib15
  article-title: The Australian geoscience data cube—foundations and lessons learned
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.015
– volume: 54
  start-page: 5516
  year: 2018
  ident: erlad9491bib10
  article-title: Near‐real‐time assimilation of SAR‐derived flood maps for improving flood forecasts
  publication-title: Water Resour. Res.
  doi: 10.1029/2017WR022205
– volume: 37
  start-page: 2990
  year: 2016
  ident: erlad9491bib26
  article-title: Sentinel-1-based flood mapping: a fully automated processing chain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1192304
– volume: 66
  start-page: 665
  year: 2023
  ident: erlad9491bib6
  article-title: Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine
  publication-title: J. Environ. Plan. Manage.
  doi: 10.1080/09640568.2021.2001317
– volume: 287
  year: 2023
  ident: erlad9491bib28
  article-title: Semantic segmentation of water bodies in very high-resolution satellite and aerial images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113452
– volume: 45
  start-page: 73
  year: 2019
  ident: erlad9491bib2
  article-title: Evaluation of C-band SAR for identification of flooded vegetation in emergency response products
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2019.1612236
– volume: 178
  start-page: 36
  year: 2021
  ident: erlad9491bib12
  article-title: Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.019
– volume: 59
  start-page: 167
  year: 2004
  ident: erlad9491bib7
  article-title: Efficient graph-based image segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000022288.19776.77
– volume: 180
  start-page: 163
  year: 2021
  ident: erlad9491bib13
  article-title: Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.016
– volume: 3
  start-page: 564
  year: 2020
  ident: erlad9491bib17
  article-title: High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0521-x
SSID ssj0054578
Score 2.4305391
Snippet Flood mapping plays a crucial role in effective disaster management, risk assessment, and mitigation planning, given the widespread and destructive nature of...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14006
SubjectTerms Adaptability
adaptability and scalability
Algorithms
Artificial intelligence
Artificial neural networks
Cloud computing
Disaster management
Emergency preparedness
Flood management
Flood mapping
Floods
global floods
high-performance cloud computing
Machine learning
Mapping
Mitigation
Neural networks
Risk assessment
SAR-based flood mapping
Satellites
Synthetic aperture radar
unsupervised algorithm
Unsupervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ODIN)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl5NBLSNKGbF7o0B56MCvbsiUd89glhxBK20BuQqNHCCQbs97t7--M7d00FLaX3Iw9xmLG89ToG8a-OOFKBz5mNbovOpIjMwOY80gQVQqV8UXoQFxv1O2tvr833_8a9UU9YT08cM-4MQjtQGmhoAR0dglSkaT3eOVNEiqS9RXKrJKp3gZjWKD0sCmJajTGsBvVGiOVsQtGmvyNE-qw-tG1PL40_xjkzstMd9nOEB7y835Ze-xDnO2zg8nraTR8OKhj-4ldTZ4bmnKG7od3nYFZX4vnP89_8Cm1pPNnRwAMD5zqrXw5a5cNGYc2Bj7Mi3j4zO6mk1-X19kwFiHzmEstsgRFSpUC5HKd8iTBBx3roDDzCSB9lTuVghEF5KksXQwQaxHqPOZRedTmVB6wrdnLLB4yDlIkbbTUde1Qk6VLUFUldZZqiEaWIzZe8cn6ATOcRlc82W7vWmtLnLXEWdtzdsS-rd9oeryMDbQXxPo1HSFddzdQ_naQv_2f_EfsKwrODprXbvgYf0MX50-2QFpLKaaobRPSiJ2spP9KV-YSYyZCUTx6j-Ues48FTRDuijgnbGsxX8ZTtu1_Lx7b-Vn3E_8BK6L1SQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5ByoEL76qBgvYABw6W1_bau3uq2pIIJKgiHlI5rfYZVWoTEyf8_s7Ym0YVUk7cLO9Ytjzv2dlvCHlvmKmMdSFrwH3hkRyeKQs5D7esjr5WrvQ9iOtXcXEhLy_VLB2P7lJb5dYm9oZ6QHvGvm0wwrlfOqyY51XBwZMhtt1J-yfDGVK415oGajwkBwi8xUbkYPbl2-z31jJDsCBk2qoE5cohGAdlh_glN15xVdxzTT2CPzicq2X7j5nufc_06f_96mfkSYpB6ekgNM_Jg7B4QQ4nuyNvsJh0vntJPk1uWhylBj6O9u2H2VDwpz9Ov9Mp9r3TG4MoD3OKRV26WXSbFi1QFzxNQynmr8iv6eTn-ecszV7IHCRs6yzaMsZaWGBlE4vIrfMyNF5AeuUtd3VhRPSKlbaIVWWCt6FhvilCEYQDkxGrQzJaLBfhiFDLWZRKctk0BswFN9HWdYXtq9IGxasxybe_XbsETI7zMa51v0EupUZGaWSUHhg1Jh_vnmgHUI49tGfIyTs6hNPubyxXc520U1smjRWSCVtZiKiijWXkzsGVU5GJMCYfQA50Uu9uz8voPbqwutYl0GrMY1mjWx_H5HgrKTu6nWC83r_8hjwucQBxXwM6JqP1ahPekkfu7_qqW71L8n4LDxgPCA
  priority: 102
  providerName: ProQuest
Title Empowering multi-source SAR Flood mapping with unsupervised learning
URI https://iopscience.iop.org/article/10.1088/1748-9326/ad9491
https://www.proquest.com/docview/3141904404
https://doaj.org/article/b08ab7807b3b431fbf2f4cc31fc9f07e
Volume 20
WOSCitedRecordID wos001371265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: O3W
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: M7S
  dateStart: 20061101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: PATMY
  dateStart: 20061101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: BENPR
  dateStart: 20061101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1748-9326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054578
  issn: 1748-9326
  databaseCode: PIMPY
  dateStart: 20061101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KpaDlx4VyyUlQ9w4BDWiZ3YEacWsgIJllULopwsP6tK7Tba7HLk25lJvFtVoAqJS2TFEzmasefleRDy0jDDjXUhq0B8YUqOyGoLNo-wrIy-rF3h-yKun-Rspk5P6_kOebvNhblqE-t_A8OhUPCAwhQQpyagQ8MZBbVjYnwtMHN9j6uyxHi-L_z7hg2DZiBVupf821c35FBfrh-kCyz5B0_uBc30_n_94gNyL-mX9HAAfUh2wuIR2W-u09lgMp3n7jF531y22CYN5BftQwuzwZlPTw6P6RRj2umlwQoOZxQdtnS96NYtcpcueJoaTpw9Id-mzdd3H7LUVyFzYIytsmiLGEtpgUxVzKOwzqtQeQmmk7fClbmR0dessHnk3ARvQ8V8lYc8SAfsIPJ9sru4WoSnhFrBoqqVUFVlgBUIE21ZcgxNVTbUgo_IZINl7VLRcex9caH7y2-lNKJKI6r0gKoReb39oh0KbtwCe4SE28Jhqez-BdBEJ5poy5SxUjFpuQVtKdpYROEcjFwdmQwj8grIqNPR7W5ZjN6AC8sLXQCsRhuVVbr1cUQONnvnGo7nApQuLMP47B9Xek7uFthluHf0HJDd1XIdXpA77ufqvFuOyd5RM5sfj3vvwRhjVU_w-asZ9_sf5ucfP89__AandwKb
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuvCsCBfZADxysrO21vT6gqo9EjZpGERSpnJZ9RpXaxMQJiD_V38isH40qpNx64GZ5x8_99puZnd0ZgI-SylgqbYMU1ZffksOCXKHPwxRNnElyHZkqiesoG4_5xUU-2YKbdi-MX1bZcmJF1Gau_Rx5Lw4Z6i6fzW6_-Bn4qlE-utqW0KhhcWr__EaXrfw8PMb-3YuiQf_86CRoqgoEGl2RZeBU5FySKXzJ1IWOKW24TU2GjoNRTCehzJzJaaRCF8fSGmVTatLQhjbTOBhcjPd9ANsMwU47sD0Znk2-t9yP5kjGm2AoDt8emvtIJ2gh9aTJWR7eUX5VjQBUaZfz4h9FUGm3wdP_7b88gyeNHU0OauA_hy07ewE7_fW2PWxseKt8Ccf968KXg0M9TaollEEdtCBfD76QgV-7T66lz1QxJX5imqxm5arwLFpaQ5rCGtNX8O1evmgHOrP5zL4Gohh1POeMp6lEymPSqSSJ_RJcrmzO4i702o4Vukmu7mt8XIkqyM-58FAQHgqihkIXPt1eUdSJRTbIHnqs3Mr5lODVifliKhqGEYpyqTJOMxUrtAqdcpFjWuORzh3NbBf2EGmioahyw8PIHTm7uBIRygrvi9NUFMZ1YbfF4lpuDcQ3m5s_wKOT87ORGA3Hp2_hceQLKldzWrvQWS5W9h081L-Wl-XifTO6CPy4b-D-BXA3Y_Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYhLy6tioQUf4MAhrBM7sXMs7a5AVEvFQ_Rm-VlVarfRZpff37HjbVVRVUjcLGcsRzP2POzxNwDvNNVMG-uLBs1XfJLDi9ZgzMMNrYOrW1u5BOJ6KGYzeXzcHuU6p-ktzEWXVf9HbA5AwQMLc0KcHKMPjXsU3Y6xdi1vy3Hnwn14EHFKYgmDb-z3WhWjdyBkvpu8beQNW5Qg-9HC4LR_6eVkbKZb__2bT2Az-5lkbyB_Cvf8_BlsT66fteHHvK_753AwOe9iuTS0YySlGBbDoT75sfedTGNuOznXEcnhhMSDW7Ka96suapneO5ILT5y8gF_Tyc_9z0Wur1BYDMqWRTBVCLUwKK4mlIEb66RvnMAQyhlu61KL4FpamTIwpr0zvqGuKX3phUW1ENg2bMwv5v4lEMNpkK3ksmk0qgSug6lrFlNUpfEtZyMYrzmtbAYfjzUwzlS6BJdSRXapyC41sGsEH65GdAPwxh20n6LwrugiZHbqQLmoLBdlqNRGSCoMM-g1BROqwK3Flm0DFX4E71GUKm_h_o7JyA06vzhTFdKqGKvSRqGYR7CzXj_XdKzk6HxFOMZX_zjTW3h0dDBVh19mX1_D4yoWHk5nPzuwsVys_C48tH-Wp_3iTVr0l9P1AZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empowering+multi-source+SAR+Flood+mapping+with+unsupervised+learning&rft.jtitle=Environmental+research+letters&rft.au=Jiang%2C+Xin&rft.au=Zeng%2C+Zhenzhong&rft.date=2025-01-01&rft.pub=IOP+Publishing&rft.eissn=1748-9326&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1088%2F1748-9326%2Fad9491&rft.externalDocID=erlad9491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon