Empowering multi-source SAR Flood mapping with unsupervised learning
Flood mapping plays a crucial role in effective disaster management, risk assessment, and mitigation planning, given the widespread and destructive nature of floods. However, current synthetic aperture radar (SAR)-based methods face challenges related to extensive labeled training data, compromised...
Gespeichert in:
| Veröffentlicht in: | Environmental research letters Jg. 20; H. 1; S. 14006 - 14015 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bristol
IOP Publishing
01.01.2025
|
| Schlagworte: | |
| ISSN: | 1748-9326, 1748-9326 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Flood mapping plays a crucial role in effective disaster management, risk assessment, and mitigation planning, given the widespread and destructive nature of floods. However, current synthetic aperture radar (SAR)-based methods face challenges related to extensive labeled training data, compromised classification accuracy, and limited applicability across different satellite systems and resolutions. In response to these challenges, our research introduces a pioneering unsupervised SAR-based flood mapping algorithm, inspired by artificial general intelligence principles. Notably, the innovative method demonstrates flexibility, performing effectively across various SAR satellites with differing resolutions and sensors, eliminating the need for satellite-specific algorithms. Our algorithm enhances processing speed and scalability by eliminating labor-intensive labeling of training data and manual intervention. To validate its performance, we conducted tests in three distinct regions using meter-level imagery from HISEA-1, Gaofen-3, and Sentinel-1 satellites. Consistently outperformed prevalent unsupervised techniques like Kmeans and Otsu, and even a Supervised-convolutional neural network segmentation algorithm by AI-Earth, with F1-scores exceeding 0.91. This outstanding performance showcases its accuracy, irrespective of the satellite systems or regions utilized. Furthermore, the seamless integration of our algorithm with high-performance cloud computing platforms such as Google Earth Engine enhances its adaptability and scalability, enabling continuous monitoring of global floods. This is crucial in understanding flood trends, assessing their impacts, and formulating effective disaster mitigation strategies. |
|---|---|
| AbstractList | Flood mapping plays a crucial role in effective disaster management, risk assessment, and mitigation planning, given the widespread and destructive nature of floods. However, current synthetic aperture radar (SAR)-based methods face challenges related to extensive labeled training data, compromised classification accuracy, and limited applicability across different satellite systems and resolutions. In response to these challenges, our research introduces a pioneering unsupervised SAR-based flood mapping algorithm, inspired by artificial general intelligence principles. Notably, the innovative method demonstrates flexibility, performing effectively across various SAR satellites with differing resolutions and sensors, eliminating the need for satellite-specific algorithms. Our algorithm enhances processing speed and scalability by eliminating labor-intensive labeling of training data and manual intervention. To validate its performance, we conducted tests in three distinct regions using meter-level imagery from HISEA-1, Gaofen-3, and Sentinel-1 satellites. Consistently outperformed prevalent unsupervised techniques like Kmeans and Otsu, and even a Supervised-convolutional neural network segmentation algorithm by AI-Earth, with F1-scores exceeding 0.91. This outstanding performance showcases its accuracy, irrespective of the satellite systems or regions utilized. Furthermore, the seamless integration of our algorithm with high-performance cloud computing platforms such as Google Earth Engine enhances its adaptability and scalability, enabling continuous monitoring of global floods. This is crucial in understanding flood trends, assessing their impacts, and formulating effective disaster mitigation strategies. |
| Author | Jiang, Xin Zeng, Zhenzhong |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0003-4141-1538 surname: Jiang fullname: Jiang, Xin organization: Southern University of Science and Technology School of Environmental Science and Engineering, Shenzhen 518055, People’s Republic of China – sequence: 2 givenname: Zhenzhong orcidid: 0000-0001-6851-2756 surname: Zeng fullname: Zeng, Zhenzhong organization: Eastern Institute of Technology Ningbo Institute of Digital Twin, Ningbo 315200, People’s Republic of China |
| BookMark | eNp9UMlO5TAQtEYgDdudYyQOXMjQTvzi5IjYBgkJiZk5W17a4Ke8ONgJiL_HIcMiBJy6VV1Vqq5Nstb5DgnZpfCLQl0fUs7qvCmL6lCahjX0B9l4hdbe7T_JZoxLgAVb8HqDnJyuev-AwXU32WpsB5dHPwaN2Z-j6-ys9d5kK9n30_nBDbfZ2MWxx3DvIpqsRRm6dNom61a2EXf-zy3y7-z07_Hv_PLq_OL46DLXjNVDblVh7YIrkGVlqWVKmxorwzmtjGJ6QSW3poFCUVuWEo3CCkxFkSLXQBO4RS5mX-PlUvTBrWR4FF468Qz4cCNkGJxuUSiopeI1cFUqVlKrbGGZ1mnTjQWOyWtv9uqDvxsxDmKZHu9SfFFSRhtgDFhiVTNLBx9jQCu0G-TgfDcE6VpBQUzti6leMdUr5vaTED4IX-J-I9mfJc73b2EwtKJIEgGUAVSiN1MPB58wvzR-AvXJpO0 |
| CODEN | ERLNAL |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2025_3579062 crossref_primary_10_1016_j_jag_2025_104787 |
| Cites_doi | 10.1371/journal.pone.0237324 10.3390/rs15051305 10.1109/TGRS.2020.3011209 10.1109/TGRS.2022.3160874 10.1016/j.rse.2023.113498 10.1109/LGRS.2013.2275738 10.1016/j.rse.2021.112648 10.1038/s41586-019-0912-1 10.1016/j.rse.2021.112586 10.1038/s41467-022-30761-2 10.1109/TGRS.2018.2797536 10.1007/s10661-024-13444-x 10.1038/s41586-022-04917-5 10.1016/j.rse.2017.06.031 10.3390/rs13224511 10.1016/j.jag.2024.103662 10.1016/j.jhydrol.2022.128758 10.1038/nature20584 10.1109/LGRS.2016.2540809 10.1016/j.rse.2019.111582 10.1016/j.jag.2022.103010 10.3390/rs14215504 10.1016/j.rse.2017.03.015 10.1029/2017WR022205 10.1080/01431161.2016.1192304 10.1080/09640568.2021.2001317 10.1016/j.rse.2023.113452 10.1080/07038992.2019.1612236 10.1016/j.isprsjprs.2021.05.019 10.1023/B:VISI.0000022288.19776.77 10.1016/j.isprsjprs.2021.08.016 10.1038/s41893-020-0521-x |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Published by IOP Publishing Ltd 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd – notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY DOA |
| DOI | 10.1088/1748-9326/ad9491 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals (ODIN) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1748-9326 |
| ExternalDocumentID | oai_doaj_org_article_b08ab7807b3b431fbf2f4cc31fc9f07e 10_1088_1748_9326_ad9491 erlad9491 |
| GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2022A1515240070 – fundername: Shenzhen Science and Technology Project for Sustainable Development in Special Innovation grantid: KCXFZ20230731093403008 – fundername: Natural Science Foundation of China - United Nations Environment Programme (NSFC-UNEP) grantid: 42361144001 – fundername: National Natural Science Foundation of China grantid: 42071022 – fundername: Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks grantid: ZDSYS20220606100604008 – fundername: start-up and high-level special funds provided by the Southern University of Science and Technology grantid: no. 29/Y01296602; 29/Y01296122; 29/Y01296222; G030290001 |
| GroupedDBID | 1JI 29G 2WC 5B3 5GY 5PX 5VS 7.Q AAFWJ AAHBH AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ADBBV AEFHF AEINN AEJGL AENEX AEUYN AFKRA AFPKN AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATCPS ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ BHPHI CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KQ8 LAP M7S M~E N5L N9A O3W OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PJBAE PQGLB PTHSS PYCSY RIN RNS RO9 SY9 T37 TR2 TSCCA W28 ~02 AAYXX AFFHD CITATION 8FE 8FG ABUWG AZQEC DWQXO GNUQQ L6V PKEHL PQEST PQQKQ PQUKI PUEGO |
| ID | FETCH-LOGICAL-c448t-fb2ff57b0a36f1f4bcd8e6d7716db4c51a7fd902b1f33aedbe60d61e1e7c011f3 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001371265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1748-9326 |
| IngestDate | Fri Oct 03 12:52:04 EDT 2025 Tue Sep 30 19:05:40 EDT 2025 Sat Nov 29 07:22:54 EST 2025 Tue Nov 18 19:54:06 EST 2025 Sat Oct 18 23:06:12 EDT 2025 Tue Dec 10 22:55:21 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-fb2ff57b0a36f1f4bcd8e6d7716db4c51a7fd902b1f33aedbe60d61e1e7c011f3 |
| Notes | ERL-117691.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4141-1538 0000-0001-6851-2756 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1748-9326/ad9491 |
| PQID | 3141904404 |
| PQPubID | 4998671 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b08ab7807b3b431fbf2f4cc31fc9f07e proquest_journals_3141904404 crossref_primary_10_1088_1748_9326_ad9491 iop_journals_10_1088_1748_9326_ad9491 crossref_citationtrail_10_1088_1748_9326_ad9491 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Environmental research letters |
| PublicationTitleAbbrev | ERL |
| PublicationTitleAlternate | Environ. Res. Lett |
| PublicationYear | 2025 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Vanderhoof (erlad9491bib27) 2023; 288 Xia (erlad9491bib29) 2024; 196 Wieland (erlad9491bib28) 2023; 287 Amitrano (erlad9491bib1) 2018; 56 Jiang (erlad9491bib12) 2021; 178 Chen (erlad9491bib3) 2021; 265 Jamali (erlad9491bib11) 2024; 127 Felzenszwalb (erlad9491bib7) 2004; 59 Grimaldi (erlad9491bib9) 2020; 237 Brisco (erlad9491bib2) 2019; 45 Chen (erlad9491bib4) 2022; 113 Zheng (erlad9491bib32) 2013; 11 Pekel (erlad9491bib21) 2016; 540 Lewis (erlad9491bib15) 2017; 202 Pappas (erlad9491bib20) 2020; 59 Konapala (erlad9491bib13) 2021; 180 Miao (erlad9491bib19) 2023; 15 Sakar (erlad9491bib24) 2022; 60 Liu (erlad9491bib17) 2020; 3 Feizizadeh (erlad9491bib6) 2023; 66 Hostache (erlad9491bib10) 2018; 54 Gorelick (erlad9491bib8) 2017; 202 Twele (erlad9491bib26) 2016; 37 Reichstein (erlad9491bib22) 2019; 566 Tiwari (erlad9491bib25) 2020; 15 Zhang (erlad9491bib31) 2021; 13 Lv (erlad9491bib18) 2022; 14 Fei (erlad9491bib5) 2022; 13 Lin (erlad9491bib16) 2023; 617 Roy (erlad9491bib23) 2021; 264 Yu (erlad9491bib30) 2016; 13 Kreibich (erlad9491bib14) 2022; 608 |
| References_xml | – volume: 15 year: 2020 ident: erlad9491bib25 article-title: Flood inundation mapping-Kerala 2018; Harnessing the power of SAR, automatic threshold detection method and Google Earth Engine publication-title: PLoS One doi: 10.1371/journal.pone.0237324 – volume: 15 start-page: 1305 year: 2023 ident: erlad9491bib19 article-title: A comprehensive evaluation of flooding’s effect on crops using satellite time series data publication-title: Remote Sens. doi: 10.3390/rs15051305 – volume: 59 start-page: 3942 year: 2020 ident: erlad9491bib20 article-title: River planform extraction from high-resolution SAR images via generalized gamma distribution superpixel classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3011209 – volume: 60 start-page: 1 year: 2022 ident: erlad9491bib24 article-title: Sampling analysis and processing approach for distributed SAR constellations with along-track baselines publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3160874 – volume: 288 year: 2023 ident: erlad9491bib27 article-title: High-frequency time series comparison of Sentinel-1 and Sentinel-2 satellites for mapping open and vegetated water across the United States (2017–2021) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113498 – volume: 11 start-page: 691 year: 2013 ident: erlad9491bib32 article-title: Using combined difference image and k-means clustering for SAR image change detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2275738 – volume: 265 year: 2021 ident: erlad9491bib3 article-title: Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112648 – volume: 566 start-page: 195 year: 2019 ident: erlad9491bib22 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 264 year: 2021 ident: erlad9491bib23 article-title: A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112586 – volume: 13 start-page: 3094 year: 2022 ident: erlad9491bib5 article-title: Towards artificial general intelligence via a multimodal foundation model publication-title: Nat. Commun. doi: 10.1038/s41467-022-30761-2 – volume: 56 start-page: 3290 year: 2018 ident: erlad9491bib1 article-title: Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2797536 – volume: 196 start-page: 1248 year: 2024 ident: erlad9491bib29 article-title: A study for the distribution characteristics of surface temperature and the protection of grotto temples in China publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-024-13444-x – volume: 608 start-page: 80 year: 2022 ident: erlad9491bib14 article-title: The challenge of unprecedented floods and droughts in risk management publication-title: Nature doi: 10.1038/s41586-022-04917-5 – volume: 202 start-page: 18 year: 2017 ident: erlad9491bib8 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 13 start-page: 4511 year: 2021 ident: erlad9491bib31 article-title: An urban flooding index for unsupervised inundated urban area detection using Sentinel-1 polarimetric SAR images publication-title: Remote Sens. doi: 10.3390/rs13224511 – volume: 127 year: 2024 ident: erlad9491bib11 article-title: Residual wave vision U-Net for flood mapping using dual polarization Sentinel-1 SAR imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2024.103662 – volume: 617 year: 2023 ident: erlad9491bib16 article-title: Rapid urban flood risk mapping for data-scarce environments using social sensing and region-stable deep neural network publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128758 – volume: 540 start-page: 418 year: 2016 ident: erlad9491bib21 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 13 start-page: 730 year: 2016 ident: erlad9491bib30 article-title: Superpixel-based CFAR target detection for high-resolution SAR images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2540809 – volume: 237 year: 2020 ident: erlad9491bib9 article-title: Flood mapping under vegetation using single SAR acquisitions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111582 – volume: 113 year: 2022 ident: erlad9491bib4 article-title: Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2022.103010 – volume: 14 start-page: 5504 year: 2022 ident: erlad9491bib18 article-title: High-performance segmentation for flood mapping of HISEA-1 SAR remote sensing images publication-title: Remote Sens. doi: 10.3390/rs14215504 – volume: 202 start-page: 276 year: 2017 ident: erlad9491bib15 article-title: The Australian geoscience data cube—foundations and lessons learned publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.015 – volume: 54 start-page: 5516 year: 2018 ident: erlad9491bib10 article-title: Near‐real‐time assimilation of SAR‐derived flood maps for improving flood forecasts publication-title: Water Resour. Res. doi: 10.1029/2017WR022205 – volume: 37 start-page: 2990 year: 2016 ident: erlad9491bib26 article-title: Sentinel-1-based flood mapping: a fully automated processing chain publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1192304 – volume: 66 start-page: 665 year: 2023 ident: erlad9491bib6 article-title: Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine publication-title: J. Environ. Plan. Manage. doi: 10.1080/09640568.2021.2001317 – volume: 287 year: 2023 ident: erlad9491bib28 article-title: Semantic segmentation of water bodies in very high-resolution satellite and aerial images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113452 – volume: 45 start-page: 73 year: 2019 ident: erlad9491bib2 article-title: Evaluation of C-band SAR for identification of flooded vegetation in emergency response products publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2019.1612236 – volume: 178 start-page: 36 year: 2021 ident: erlad9491bib12 article-title: Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.019 – volume: 59 start-page: 167 year: 2004 ident: erlad9491bib7 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000022288.19776.77 – volume: 180 start-page: 163 year: 2021 ident: erlad9491bib13 article-title: Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.016 – volume: 3 start-page: 564 year: 2020 ident: erlad9491bib17 article-title: High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015 publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0521-x |
| SSID | ssj0054578 |
| Score | 2.4305391 |
| Snippet | Flood mapping plays a crucial role in effective disaster management, risk assessment, and mitigation planning, given the widespread and destructive nature of... |
| SourceID | doaj proquest crossref iop |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14006 |
| SubjectTerms | Adaptability adaptability and scalability Algorithms Artificial intelligence Artificial neural networks Cloud computing Disaster management Emergency preparedness Flood management Flood mapping Floods global floods high-performance cloud computing Machine learning Mapping Mitigation Neural networks Risk assessment SAR-based flood mapping Satellites Synthetic aperture radar unsupervised algorithm Unsupervised learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ODIN) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl5NBLSNKGbF7o0B56MCvbsiUd89glhxBK20BuQqNHCCQbs97t7--M7d00FLaX3Iw9xmLG89ToG8a-OOFKBz5mNbovOpIjMwOY80gQVQqV8UXoQFxv1O2tvr833_8a9UU9YT08cM-4MQjtQGmhoAR0dglSkaT3eOVNEiqS9RXKrJKp3gZjWKD0sCmJajTGsBvVGiOVsQtGmvyNE-qw-tG1PL40_xjkzstMd9nOEB7y835Ze-xDnO2zg8nraTR8OKhj-4ldTZ4bmnKG7od3nYFZX4vnP89_8Cm1pPNnRwAMD5zqrXw5a5cNGYc2Bj7Mi3j4zO6mk1-X19kwFiHzmEstsgRFSpUC5HKd8iTBBx3roDDzCSB9lTuVghEF5KksXQwQaxHqPOZRedTmVB6wrdnLLB4yDlIkbbTUde1Qk6VLUFUldZZqiEaWIzZe8cn6ATOcRlc82W7vWmtLnLXEWdtzdsS-rd9oeryMDbQXxPo1HSFddzdQ_naQv_2f_EfsKwrODprXbvgYf0MX50-2QFpLKaaobRPSiJ2spP9KV-YSYyZCUTx6j-Ues48FTRDuijgnbGsxX8ZTtu1_Lx7b-Vn3E_8BK6L1SQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5ByoEL76qBgvYABw6W1_bau3uq2pIIJKgiHlI5rfYZVWoTEyf8_s7Ym0YVUk7cLO9Ytjzv2dlvCHlvmKmMdSFrwH3hkRyeKQs5D7esjr5WrvQ9iOtXcXEhLy_VLB2P7lJb5dYm9oZ6QHvGvm0wwrlfOqyY51XBwZMhtt1J-yfDGVK415oGajwkBwi8xUbkYPbl2-z31jJDsCBk2qoE5cohGAdlh_glN15xVdxzTT2CPzicq2X7j5nufc_06f_96mfkSYpB6ekgNM_Jg7B4QQ4nuyNvsJh0vntJPk1uWhylBj6O9u2H2VDwpz9Ov9Mp9r3TG4MoD3OKRV26WXSbFi1QFzxNQynmr8iv6eTn-ecszV7IHCRs6yzaMsZaWGBlE4vIrfMyNF5AeuUtd3VhRPSKlbaIVWWCt6FhvilCEYQDkxGrQzJaLBfhiFDLWZRKctk0BswFN9HWdYXtq9IGxasxybe_XbsETI7zMa51v0EupUZGaWSUHhg1Jh_vnmgHUI49tGfIyTs6hNPubyxXc520U1smjRWSCVtZiKiijWXkzsGVU5GJMCYfQA50Uu9uz8voPbqwutYl0GrMY1mjWx_H5HgrKTu6nWC83r_8hjwucQBxXwM6JqP1ahPekkfu7_qqW71L8n4LDxgPCA priority: 102 providerName: ProQuest |
| Title | Empowering multi-source SAR Flood mapping with unsupervised learning |
| URI | https://iopscience.iop.org/article/10.1088/1748-9326/ad9491 https://www.proquest.com/docview/3141904404 https://doaj.org/article/b08ab7807b3b431fbf2f4cc31fc9f07e |
| Volume | 20 |
| WOSCitedRecordID | wos001371265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1748-9326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054578 issn: 1748-9326 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1748-9326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054578 issn: 1748-9326 databaseCode: O3W dateStart: 20061001 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1748-9326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054578 issn: 1748-9326 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1748-9326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054578 issn: 1748-9326 databaseCode: M7S dateStart: 20061101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1748-9326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054578 issn: 1748-9326 databaseCode: PATMY dateStart: 20061101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1748-9326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054578 issn: 1748-9326 databaseCode: BENPR dateStart: 20061101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1748-9326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054578 issn: 1748-9326 databaseCode: PIMPY dateStart: 20061101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KpaDlx4VyyUlQ9w4BDWiZ3YEacWsgIJllULopwsP6tK7Tba7HLk25lJvFtVoAqJS2TFEzmasefleRDy0jDDjXUhq0B8YUqOyGoLNo-wrIy-rF3h-yKun-Rspk5P6_kOebvNhblqE-t_A8OhUPCAwhQQpyagQ8MZBbVjYnwtMHN9j6uyxHi-L_z7hg2DZiBVupf821c35FBfrh-kCyz5B0_uBc30_n_94gNyL-mX9HAAfUh2wuIR2W-u09lgMp3n7jF531y22CYN5BftQwuzwZlPTw6P6RRj2umlwQoOZxQdtnS96NYtcpcueJoaTpw9Id-mzdd3H7LUVyFzYIytsmiLGEtpgUxVzKOwzqtQeQmmk7fClbmR0dessHnk3ARvQ8V8lYc8SAfsIPJ9sru4WoSnhFrBoqqVUFVlgBUIE21ZcgxNVTbUgo_IZINl7VLRcex9caH7y2-lNKJKI6r0gKoReb39oh0KbtwCe4SE28Jhqez-BdBEJ5poy5SxUjFpuQVtKdpYROEcjFwdmQwj8grIqNPR7W5ZjN6AC8sLXQCsRhuVVbr1cUQONnvnGo7nApQuLMP47B9Xek7uFthluHf0HJDd1XIdXpA77ufqvFuOyd5RM5sfj3vvwRhjVU_w-asZ9_sf5ucfP89__AandwKb |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuvCsCBfZADxysrO21vT6gqo9EjZpGERSpnJZ9RpXaxMQJiD_V38isH40qpNx64GZ5x8_99puZnd0ZgI-SylgqbYMU1ZffksOCXKHPwxRNnElyHZkqiesoG4_5xUU-2YKbdi-MX1bZcmJF1Gau_Rx5Lw4Z6i6fzW6_-Bn4qlE-utqW0KhhcWr__EaXrfw8PMb-3YuiQf_86CRoqgoEGl2RZeBU5FySKXzJ1IWOKW24TU2GjoNRTCehzJzJaaRCF8fSGmVTatLQhjbTOBhcjPd9ANsMwU47sD0Znk2-t9yP5kjGm2AoDt8emvtIJ2gh9aTJWR7eUX5VjQBUaZfz4h9FUGm3wdP_7b88gyeNHU0OauA_hy07ewE7_fW2PWxseKt8Ccf968KXg0M9TaollEEdtCBfD76QgV-7T66lz1QxJX5imqxm5arwLFpaQ5rCGtNX8O1evmgHOrP5zL4Gohh1POeMp6lEymPSqSSJ_RJcrmzO4i702o4Vukmu7mt8XIkqyM-58FAQHgqihkIXPt1eUdSJRTbIHnqs3Mr5lODVifliKhqGEYpyqTJOMxUrtAqdcpFjWuORzh3NbBf2EGmioahyw8PIHTm7uBIRygrvi9NUFMZ1YbfF4lpuDcQ3m5s_wKOT87ORGA3Hp2_hceQLKldzWrvQWS5W9h081L-Wl-XifTO6CPy4b-D-BXA3Y_Y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQYhLy6tioQUf4MAhrBM7sXMs7a5AVEvFQ_Rm-VlVarfRZpff37HjbVVRVUjcLGcsRzP2POzxNwDvNNVMG-uLBs1XfJLDi9ZgzMMNrYOrW1u5BOJ6KGYzeXzcHuU6p-ktzEWXVf9HbA5AwQMLc0KcHKMPjXsU3Y6xdi1vy3Hnwn14EHFKYgmDb-z3WhWjdyBkvpu8beQNW5Qg-9HC4LR_6eVkbKZb__2bT2Az-5lkbyB_Cvf8_BlsT66fteHHvK_753AwOe9iuTS0YySlGBbDoT75sfedTGNuOznXEcnhhMSDW7Ka96suapneO5ILT5y8gF_Tyc_9z0Wur1BYDMqWRTBVCLUwKK4mlIEb66RvnMAQyhlu61KL4FpamTIwpr0zvqGuKX3phUW1ENg2bMwv5v4lEMNpkK3ksmk0qgSug6lrFlNUpfEtZyMYrzmtbAYfjzUwzlS6BJdSRXapyC41sGsEH65GdAPwxh20n6LwrugiZHbqQLmoLBdlqNRGSCoMM-g1BROqwK3Flm0DFX4E71GUKm_h_o7JyA06vzhTFdKqGKvSRqGYR7CzXj_XdKzk6HxFOMZX_zjTW3h0dDBVh19mX1_D4yoWHk5nPzuwsVys_C48tH-Wp_3iTVr0l9P1AZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empowering+multi-source+SAR+Flood+mapping+with+unsupervised+learning&rft.jtitle=Environmental+research+letters&rft.au=Jiang%2C+Xin&rft.au=Zeng%2C+Zhenzhong&rft.date=2025-01-01&rft.pub=IOP+Publishing&rft.eissn=1748-9326&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1088%2F1748-9326%2Fad9491&rft.externalDocID=erlad9491 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon |