A Muscle Synergy-Inspired Method of Detecting Human Movement Intentions Based on Wearable Sensor Fusion
Detecting human movement intentions is fundamental to neural control of robotic exoskeletons, as it is essential for achieving seamless transitions between different locomotion modes. In this study, we enhanced a muscle synergy-inspired method of locomotion mode identification by fusing the electrom...
Gespeichert in:
| Veröffentlicht in: | IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING Jg. 29; S. 1089 - 1098 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article Verlag |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Detecting human movement intentions is fundamental to neural control of robotic exoskeletons, as it is essential for achieving seamless transitions between different locomotion modes. In this study, we enhanced a muscle synergy-inspired method of locomotion mode identification by fusing the electromyography data with two types of data from wearable sensors (inertial measurement units), namely linear acceleration and angular velocity. From the finite state machine perspective, the enhanced method was used to systematically identify 2 static modes, 7 dynamic modes, and 27 transitions among them. In addition to the five broadly studied modes (level ground walking, ramps ascent/descent, stairs ascent/descent), we identified the transition between different walking speeds and modes of ramp walking at different inclination angles. Seven combinations of sensor fusion were conducted, on experimental data from 8 able-bodied adult subjects, and their classification accuracy and prediction time were compared. Prediction based on a fusion of electromyography and gyroscope (angular velocity) data predicted transitions earlier and with higher accuracy. All transitions and modes were identified with a total average classification accuracy of 94.5% with fused sensor data. For nearly all transitions, we were able to predict the next locomotion mode 300-500ms prior to the step into that mode. |
|---|---|
| AbstractList | Detecting human movement intentions is fundamental to neural control of robotic exoskeletons, as it is essential for achieving seamless transitions between different locomotion modes. In this study, we enhanced a muscle synergy-inspired method of locomotion mode identification by fusing the electromyography data with two types of data from wearable sensors (inertial measurement units), namely linear acceleration and angular velocity. From the finite state machine perspective, the enhanced method was used to systematically identify 2 static modes, 7 dynamic modes, and 27 transitions among them. In addition to the five broadly studied modes (level ground walking, ramps ascent/descent, stairs ascent/descent), we identified the transition between different walking speeds and modes of ramp walking at different inclination angles. Seven combinations of sensor fusion were conducted, on experimental data from 8 able-bodied adult subjects, and their classification accuracy and prediction time were compared. Prediction based on a fusion of electromyography and gyroscope (angular velocity) data predicted transitions earlier and with higher accuracy. All transitions and modes were identified with a total average classification accuracy of 94.5% with fused sensor data. For nearly all transitions, we were able to predict the next locomotion mode 300-500ms prior to the step into that mode.Detecting human movement intentions is fundamental to neural control of robotic exoskeletons, as it is essential for achieving seamless transitions between different locomotion modes. In this study, we enhanced a muscle synergy-inspired method of locomotion mode identification by fusing the electromyography data with two types of data from wearable sensors (inertial measurement units), namely linear acceleration and angular velocity. From the finite state machine perspective, the enhanced method was used to systematically identify 2 static modes, 7 dynamic modes, and 27 transitions among them. In addition to the five broadly studied modes (level ground walking, ramps ascent/descent, stairs ascent/descent), we identified the transition between different walking speeds and modes of ramp walking at different inclination angles. Seven combinations of sensor fusion were conducted, on experimental data from 8 able-bodied adult subjects, and their classification accuracy and prediction time were compared. Prediction based on a fusion of electromyography and gyroscope (angular velocity) data predicted transitions earlier and with higher accuracy. All transitions and modes were identified with a total average classification accuracy of 94.5% with fused sensor data. For nearly all transitions, we were able to predict the next locomotion mode 300-500ms prior to the step into that mode. Detecting human movement intentions is fundamental to neural control of robotic exoskeletons, as it is essential for achieving seamless transitions between different locomotion modes. In this study, we enhanced a muscle synergy-inspired method of locomotion mode identification by fusing the electromyography data with two types of data from wearable sensors (inertial measurement units), namely linear acceleration and angular velocity. From the finite state machine perspective, the enhanced method was used to systematically identify 2 static modes, 7 dynamic modes, and 27 transitions among them. In addition to the five broadly studied modes (level ground walking, ramps ascent/descent, stairs ascent/descent), we identified the transition between different walking speeds and modes of ramp walking at different inclination angles. Seven combinations of sensor fusion were conducted, on experimental data from 8 able-bodied adult subjects, and their classification accuracy and prediction time were compared. Prediction based on a fusion of electromyography and gyroscope (angular velocity) data predicted transitions earlier and with higher accuracy. All transitions and modes were identified with a total average classification accuracy of 94.5% with fused sensor data. For nearly all transitions, we were able to predict the next locomotion mode 300-500ms prior to the step into that mode. |
| Author | Liu, Yi-Xing Wang, Ruoli Gutierrez-Farewik, Elena M. |
| Author_xml | – sequence: 1 givenname: Yi-Xing orcidid: 0000-0002-4679-2934 surname: Liu fullname: Liu, Yi-Xing organization: Department of Engineering Mechanics, KTH MoveAbility Lab, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 2 givenname: Ruoli orcidid: 0000-0002-2232-5258 surname: Wang fullname: Wang, Ruoli organization: Department of Engineering Mechanics, KTH MoveAbility Lab, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 3 givenname: Elena M. orcidid: 0000-0001-5417-5939 surname: Gutierrez-Farewik fullname: Gutierrez-Farewik, Elena M. email: lanie@kth.se organization: Department of Engineering Mechanics, KTH MoveAbility Lab, KTH Royal Institute of Technology, Stockholm, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298904$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNp9kU1v1DAQhiNURD_gD8DFEhcuWfyZ2Melnyt1QaIrOFpOMtm6zdqL7YD239dhFw499DSj0fOOZt73tDhy3kFRvCd4RghWn1df775fziimZMawrAkTr4oTIoQs8wgfTT3jJWcUHxenMT5gTOpK1G-KY8axqisiTor1HC3H2A6A7nYOwnpXLlzc2gAdWkK69x3yPbqABG2ybo1uxo1xaOl_wwZcQguXcrHeRfTFxKzxDv0EE0wzLQQXfUBXY8zA2-J1b4YI7w71rFhdXa7Ob8rbb9eL8_lt2XIuU9krhrsWc8GhUkZVDSdNiwlVXVNRSmRnOOmF6Hmt6k4y2nIFFRay6uv8M2VnRblfG__Admz0NtiNCTvtjdWH0WPuQFdCMSVe5C_sj7n2Ya0f072mSirMM_9pz2-D_zVCTHpjYwvDYBz4MWoqmMrek7rO6Mdn6IMfg8vPZ4oTXgkqcabknmqDjzFAr1ubzGRpCsYOmmA9Za3_Zq2nrPUh6yylz6T_rn9R9GEvsgDwX6Cy-YRL9gTKZLSW |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1109_TNSRE_2022_3176410 crossref_primary_10_1088_1741_2552_adfab3 crossref_primary_10_1109_TNSRE_2023_3336360 crossref_primary_10_1007_s41315_024_00334_1 crossref_primary_10_1111_exsy_13659 crossref_primary_10_1109_JSEN_2023_3255255 crossref_primary_10_1007_s10489_022_03823_7 crossref_primary_10_1002_aisy_202300318 crossref_primary_10_1109_TNSRE_2025_3552530 crossref_primary_10_3390_s21227473 crossref_primary_10_1109_JBHI_2024_3441600 crossref_primary_10_1109_JBHI_2024_3462826 crossref_primary_10_3390_s23031643 crossref_primary_10_1097_WNO_0000000000001926 crossref_primary_10_1109_TFUZZ_2022_3158727 crossref_primary_10_1109_JBHI_2024_3497658 crossref_primary_10_1109_TBME_2022_3208381 crossref_primary_10_3390_biomimetics8060471 |
| Cites_doi | 10.3389/fnhum.2018.00004 10.1016/j.medengphy.2016.12.011 10.1007/s10439-015-1407-3 10.1186/s12984-015-0015-7 10.1109/TBME.2008.2003293 10.1109/TNSRE.2019.2950309 10.1109/TBME.2012.2208746 10.1109/TMECH.2017.2755048 10.1016/j.gaitpost.2012.07.013 10.1109/TBME.2009.2034734 10.1109/TBME.2012.2208641 10.1007/s13246-019-00767-0 10.1109/EMBC.2018.8513322 10.3390/s19204447 10.1186/s12984-017-0258-6 10.1109/TBME.2016.2538296 10.1109/TRO.2009.2019782 10.3390/sym9080147 10.1109/TBME.2011.2161671 10.1109/TNSRE.2010.2087360 10.1109/TNSRE.2016.2585962 10.1038/s41598-018-24332-z 10.1109/IROS.2015.7354261 10.1016/j.jbiomech.2017.05.010 10.1016/j.clinph.2010.07.010 10.1109/TMECH.2020.2990668 10.1109/EMBC.2014.6944518 10.3389/fnbot.2017.00015 10.1109/TNSRE.2015.2413393 10.1111/aor.13153 10.1088/1741-2560/11/5/056021 10.3389/fnhum.2015.00048 10.1109/TNSRE.2014.2346193 10.1016/j.neunet.2008.03.006 |
| ContentType | Journal Article Publication |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTPV AOWAS D8V BZJLE D8T STUKM |
| DOI | 10.1109/TNSRE.2021.3087135 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SwePub Other SWEPUB Freely available online SwePub Other full text |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 1098 |
| ExternalDocumentID | oai_swepub_ki_se_659395 oai_DiVA_org_kth_298904 10_1109_TNSRE_2021_3087135 9448148 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Promobilia Foundation grantid: 18200 funderid: 10.13039/100009389 – fundername: Swedish Research Council (ref 2018-00750 BADASS: BiomechAnics in motion Disorders and ASSistance) funderid: 10.13039/501100004359 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTPV AOWAS D8V BZJLE D8T STUKM |
| ID | FETCH-LOGICAL-c448t-f930dc0454e69a96b41bc0129db62218da41f55f4797d832c49e60586f702123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663505900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Tue Nov 25 03:34:05 EST 2025 Tue Nov 04 16:36:59 EST 2025 Fri Jul 11 09:18:09 EDT 2025 Mon Jul 14 10:32:59 EDT 2025 Sat Nov 29 01:47:12 EST 2025 Tue Nov 18 22:32:08 EST 2025 Wed Aug 27 02:50:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-f930dc0454e69a96b41bc0129db62218da41f55f4797d832c49e60586f702123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5417-5939 0000-0002-2232-5258 0000-0002-4679-2934 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9448148 |
| PMID | 34097615 |
| PQID | 2541465280 |
| PQPubID | 85423 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2539210177 swepub_primary_oai_DiVA_org_kth_298904 proquest_journals_2541465280 crossref_primary_10_1109_TNSRE_2021_3087135 crossref_citationtrail_10_1109_TNSRE_2021_3087135 ieee_primary_9448148 swepub_primary_oai_swepub_ki_se_659395 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING |
| PublicationTitleAbbrev | TNSRE |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 bu (ref15) 2009; 25 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 hermens (ref31) 1999 |
| References_xml | – ident: ref11 doi: 10.3389/fnhum.2018.00004 – ident: ref16 doi: 10.1016/j.medengphy.2016.12.011 – ident: ref22 doi: 10.1007/s10439-015-1407-3 – ident: ref21 doi: 10.1186/s12984-015-0015-7 – ident: ref7 doi: 10.1109/TBME.2008.2003293 – ident: ref25 doi: 10.1109/TNSRE.2019.2950309 – year: 1999 ident: ref31 publication-title: European Recommendations for Surface Electromyography Results of the Seniam Project – ident: ref8 doi: 10.1109/TBME.2012.2208746 – ident: ref26 doi: 10.1109/TMECH.2017.2755048 – ident: ref34 doi: 10.1016/j.gaitpost.2012.07.013 – ident: ref29 doi: 10.1109/TBME.2009.2034734 – ident: ref19 doi: 10.1109/TBME.2012.2208641 – ident: ref14 doi: 10.1007/s13246-019-00767-0 – ident: ref17 doi: 10.1109/EMBC.2018.8513322 – ident: ref18 doi: 10.3390/s19204447 – ident: ref1 doi: 10.1186/s12984-017-0258-6 – ident: ref3 doi: 10.1109/TBME.2016.2538296 – volume: 25 start-page: 502 year: 2009 ident: ref15 article-title: A hybrid motion classification approach for EMG-based human-robot interfaces using Bayesian and neural networks publication-title: IEEE Trans Robot doi: 10.1109/TRO.2009.2019782 – ident: ref23 doi: 10.3390/sym9080147 – ident: ref9 doi: 10.1109/TBME.2011.2161671 – ident: ref30 doi: 10.1109/TNSRE.2010.2087360 – ident: ref10 doi: 10.1109/TNSRE.2016.2585962 – ident: ref13 doi: 10.1038/s41598-018-24332-z – ident: ref33 doi: 10.1109/IROS.2015.7354261 – ident: ref35 doi: 10.1016/j.jbiomech.2017.05.010 – ident: ref4 doi: 10.1016/j.clinph.2010.07.010 – ident: ref27 doi: 10.1109/TMECH.2020.2990668 – ident: ref20 doi: 10.1109/EMBC.2014.6944518 – ident: ref28 doi: 10.3389/fnbot.2017.00015 – ident: ref6 doi: 10.1109/TNSRE.2015.2413393 – ident: ref24 doi: 10.1111/aor.13153 – ident: ref5 doi: 10.1088/1741-2560/11/5/056021 – ident: ref12 doi: 10.3389/fnhum.2015.00048 – ident: ref32 doi: 10.1109/TNSRE.2014.2346193 – ident: ref2 doi: 10.1016/j.neunet.2008.03.006 |
| SSID | ssj0017657 |
| Score | 2.4779906 |
| Snippet | Detecting human movement intentions is fundamental to neural control of robotic exoskeletons, as it is essential for achieving seamless transitions between... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1089 |
| SubjectTerms | Acceleration Accuracy Angular velocity Ascent Classification Electromyography Exoskeleton Exoskeletons Feature extraction Finite state machines Human motion Inclination angle Inertial platforms Inertial sensing devices Intent recognition Legged locomotion Locomotion locomotion modes identification Mechanical sensors Motion perception Multisensor fusion muscle synergies Muscles Robot control robotic exoskeletons sensor fusion Sensors Stairs Stairways Velocity Walking Wearable technology |
| Title | A Muscle Synergy-Inspired Method of Detecting Human Movement Intentions Based on Wearable Sensor Fusion |
| URI | https://ieeexplore.ieee.org/document/9448148 https://www.proquest.com/docview/2541465280 https://www.proquest.com/docview/2539210177 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298904 http://kipublications.ki.se/Default.aspx?queryparsed=id |
| Volume | 29 |
| WOSCitedRecordID | wos000663505900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2iQdeGNtAZIzKk2AvkC2OHTt-LNsqkGiF1gr6ZiX-GNNQgtoEif8en5NGnTQh8WYl5yjW3fnOd77fIfRWlqSg1OmYCF3ELMt5XJCExrokWqZGWGIDp7-I2SxfLuXXHfRhqIWx1obLZ_YchiGXb2rdQqjsQvqzhHffd9GuEKKr1RoyBoIHVE-vwCxmNE02BTKJvFjM5jfX_iiYknPAvyMU2tVQAHri0A13yx6FBisPfc1t_NBgcyb7__e3z9Gz3rfE404YDtCOrQ7Ru20cYbzoQATwGb55ANF9hG7HeNqu_Tw8_xPqAePPFWThrcHT0GUa1w5fWcg5eGuHQ_AfT-sAN97gcBM-iDD-6O2iJ67wd69EUJiF5_6oXK_wpIXI3Au0mFwvLj_FfReGWPsFNLGTNDEakPosl4XkJSOlhvCVKXnqHQRTMOKyzDEhhfH7g2bSQq6VOwHw8fQl2qvqyr5CuMwTQyjLC-YMc5YXwiSucE6X1uTW5REiG1Yo3S8fGmX8VOGkkkgVOKmAk6rnZITeD3N-dfgc_6Q-Aj4NlD2LInSy4bjqVXitUmiQzrM0TyJ0Orz2ygcZlaKydQs03r2ETU1E6KyTlOHbgNt9dfdtrLxQqPvmhwKs-4Q9Ttg_uvcjq3gmqcyOH__X1-gprKiLAp2gvWbV2jfoif7d3K1XI68Zy3wUAgujoB9_AboWC-o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQIIXvgaiMCBIsBfo1jTpRx4PttMm7k5oV8HeojYfMA216K5F4r8nTnvVTZqQeItap2pkO3bs-GeAt6KiJWNWhTRTZciTPA1LGrFQVVSJWGeGGs_pWbZY5BcX4ssOfBhrYYwx_vKZOcShz-XrRnUYKjsS7izh3PdbcDvhPKZ9tdaYM8hSj-vpVJiHnMXRpkQmEkfFYnl-4g6DMT1EBDzKsGENQ6inFPvhblkk32Llure5jSDqrc70wf_970O4P3iXZNKLwyPYMfVjeLeNJEyKHkaAHJDzayDde_B9Qubd2s0jyz--IjA8qzEPbzSZ-z7TpLHk2GDWwdk74sP_ZN54wPGW-LvwXojJR2cZHXFNvjk1wtIssnSH5WZFph3G5p5AMT0pPp2GQx-GULkFtKEVLNIKsfpMKkqRVpxWCgNYukpj5yLoklObJJZnItNuh1BcGMy2pjZDAHn2FHbrpjbPgFR5pCnjecmt5takZaYjW1qrKqNzY_MA6IYVUg3Lx1YZP6U_q0RCek5K5KQcOBnA-3HOrx6h45_Ue8inkXJgUQD7G47LQYnXMsYW6WkS51EAb8bXTv0wp1LWpumQxjmYuK1lARz0kjJ-G5G7jy-_TqQTCnnV_pCIdh_xmwmHR1duZGSaCCaS5zf_62u4e1rMZ3J2tvj8Au7h6vqY0D7stqvOvIQ76nd7uV698vrxFyoIDVQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Muscle+Synergy-Inspired+Method+of+Detecting+Human+Movement+Intentions+Based+on+Wearable+Sensor+Fusion&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Liu%2C+Yi-Xing&rft.au=Wang%2C+Ruoli&rft.au=Gutierrez-Farewik%2C+Elena+M.&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=1089&rft.epage=1098&rft_id=info:doi/10.1109%2FTNSRE.2021.3087135&rft_id=info%3Apmid%2F34097615&rft.externalDocID=9448148 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |