Robust estimation in generalized linear models: the density power divergence approach
The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significa...
Uložené v:
| Vydané v: | Test (Madrid, Spain) Ročník 25; číslo 2; s. 269 - 290 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2016
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1133-0686, 1863-8260 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significant number of outliers in relation to the standard parametric model used in the analysis; in such cases inference based on the maximum likelihood estimator could be unreliable. In this paper, we develop a robust estimation procedure for the generalized linear models that can generate robust estimators with little loss in efficiency. We will also explore two particular special cases in detail—Poisson regression for count data and logistic regression for binary data. We will also illustrate the performance of the proposed estimators through some real-life examples. |
|---|---|
| AbstractList | The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significant number of outliers in relation to the standard parametric model used in the analysis; in such cases inference based on the maximum likelihood estimator could be unreliable. In this paper, we develop a robust estimation procedure for the generalized linear models that can generate robust estimators with little loss in efficiency. We will also explore two particular special cases in detail—Poisson regression for count data and logistic regression for binary data. We will also illustrate the performance of the proposed estimators through some real-life examples. |
| Author | Basu, Ayanendranath Ghosh, Abhik |
| Author_xml | – sequence: 1 givenname: Abhik surname: Ghosh fullname: Ghosh, Abhik organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute – sequence: 2 givenname: Ayanendranath surname: Basu fullname: Basu, Ayanendranath email: ayanbasu@isical.ac.in organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute |
| BookMark | eNp9kE1LAzEQQIMoqNUf4C3gxctqZpPNZr1J8QsEQew5ZLPTGtkmNdkq9debWg9S0FNyeC8zeYdk1wePhJwAOwfG6osEUIumYFAVTIiq4DvkAJTkhSol28134LxgUsl9cpjSK2NSyBIOyOQptMs0UEyDm5vBBU-dpzP0GE3vPrGjvfNoIp2HDvt0SYcXpB365IYVXYQPjLRz7xizYZGaxSIGY1-OyN7U9AmPf84RmdxcP4_viofH2_vx1UNhhVBDMa1V3bUWyqYTbSNaZjkXFYNatYjMdtZyJdA2jeVNiyAq2VplwKLkVpWm5CNytnk3j31b5j_ouUsW-954DMukQYFkZVVVKqOnW-hrWEaft9N5npRc8AYyVW8oG0NKEafauuE7yxCN6zUwvc6tN7l1zq3XuTXPJmyZi5iLxtW_TrlxUmb9DOOvnf6UvgDMUZSX |
| CitedBy_id | crossref_primary_10_1093_biomet_asad031 crossref_primary_10_1007_s42519_022_00295_3 crossref_primary_10_1002_sim_10157 crossref_primary_10_1111_biom_12726 crossref_primary_10_1111_sjos_12628 crossref_primary_10_1007_s11634_022_00533_3 crossref_primary_10_1016_j_learninstruc_2024_101898 crossref_primary_10_1016_j_cam_2023_115452 crossref_primary_10_1016_j_cam_2025_116502 crossref_primary_10_1007_s10182_023_00473_z crossref_primary_10_1016_j_spl_2018_12_002 crossref_primary_10_1080_03610926_2019_1615093 crossref_primary_10_1080_02331888_2017_1318139 crossref_primary_10_1007_s11634_020_00430_7 crossref_primary_10_1007_s00184_018_0653_4 crossref_primary_10_1111_biom_12890 crossref_primary_10_1109_TGRS_2021_3105694 crossref_primary_10_1002_wics_1363 crossref_primary_10_1177_0962280217738142 crossref_primary_10_1007_s00362_015_0701_3 crossref_primary_10_1007_s10886_022_01348_4 crossref_primary_10_1007_s00362_022_01389_7 crossref_primary_10_1007_s10260_020_00544_4 crossref_primary_10_1080_00949655_2023_2262669 crossref_primary_10_1080_00949655_2020_1787410 crossref_primary_10_1007_s00184_024_00952_6 crossref_primary_10_3390_stats4010008 crossref_primary_10_1080_01621459_2022_2140054 crossref_primary_10_1002_bimj_202000157 crossref_primary_10_1007_s13198_025_02925_y crossref_primary_10_1002_cpe_7594 crossref_primary_10_1007_s10260_024_00760_2 crossref_primary_10_1007_s10463_020_00764_1 crossref_primary_10_1007_s11749_023_00866_x crossref_primary_10_3390_e24010123 crossref_primary_10_1007_s11749_018_0624_0 crossref_primary_10_1109_TIT_2020_3013015 crossref_primary_10_1007_s00184_022_00874_1 crossref_primary_10_1016_j_csda_2022_107564 crossref_primary_10_1080_00949655_2025_2495716 crossref_primary_10_1080_03610926_2022_2155788 crossref_primary_10_1007_s10463_024_00922_9 crossref_primary_10_1080_03610926_2021_1887240 |
| Cites_doi | 10.1016/S0167-9473(03)00042-2 10.2307/2532086 10.1007/978-1-4899-3242-6 10.1007/978-1-4612-2380-1_2 10.1111/biom.12212 10.1214/13-EJS847 10.2307/3315940 10.1093/biomet/79.4.747 10.1214/aoms/1177703732 10.1212/WNL.35.2.285 10.1080/00949650412331299120 10.2307/2347550 10.1002/9780470740538 10.1093/biomet/85.3.549 10.1080/01621459.1983.10477928 10.1016/j.jmva.2012.08.008 10.1111/j.0006-341X.1999.00574.x 10.1198/016214501753209004 10.1080/02664763.2015.1016901 10.1007/978-1-4612-5771-4_15 |
| ContentType | Journal Article |
| Copyright | Sociedad de Estadística e Investigación Operativa 2015 Sociedad de Estadística e Investigación Operativa 2016 |
| Copyright_xml | – notice: Sociedad de Estadística e Investigación Operativa 2015 – notice: Sociedad de Estadística e Investigación Operativa 2016 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88C 8AO 8C1 8FD 8FE 8FG 8FI 8FJ 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ H8D HCIFZ JQ2 K60 K6~ L.- L6V L7M L~C L~D M0C M0T M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1007/s11749-015-0445-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Healthcare Administration Database (Alumni) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Healthcare Administration Database Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced Aerospace Database ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Aerospace Database ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Statistics Mathematics |
| EISSN | 1863-8260 |
| EndPage | 290 |
| ExternalDocumentID | 4044029041 10_1007_s11749_015_0445_3 |
| Genre | Feature |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5VS 67Z 6NX 7WY 8AO 8C1 8FE 8FG 8FI 8FJ 8FL 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQUVI ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K60 K6~ KDC KOV L6V LLZTM M0C M0T M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7R Z81 Z83 Z8U ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA AZQEC CITATION GNUQQ M2P PHGZM PHGZT PJZUB PPXIY PQGLB 7SC 7XB 8FD 8FK H8D JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c448t-f787dbc129d4b94b0c33450178bee0cdcc384ec99c39be1456bc8a1ce63c82a23 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375792600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1133-0686 |
| IngestDate | Mon Sep 29 06:30:28 EDT 2025 Thu Sep 25 00:38:40 EDT 2025 Tue Nov 18 22:24:43 EST 2025 Sat Nov 29 06:06:50 EST 2025 Fri Feb 21 02:28:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Logistic regression Generalized linear model Density power divergence Robustness 62F35 Poisson regression 62J12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-f787dbc129d4b94b0c33450178bee0cdcc384ec99c39be1456bc8a1ce63c82a23 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1786634391 |
| PQPubID | 1486339 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1816025558 proquest_journals_1786634391 crossref_citationtrail_10_1007_s11749_015_0445_3 crossref_primary_10_1007_s11749_015_0445_3 springer_journals_10_1007_s11749_015_0445_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-01 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | An Official Journal of the Spanish Society of Statistics and Operations Research |
| PublicationTitle | Test (Madrid, Spain) |
| PublicationTitleAbbrev | TEST |
| PublicationYear | 2016 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Morgenthaler (CR18) 1992; 79 Basu, Harris, Hjort, Jones (CR2) 1998; 85 Heritier, Cantoni, Copt, Victoria-Feser (CR11) 2009 Preisser, Qaqish (CR20) 1999; 55 CR6 CR19 Aeberhard, Cantoni, Heritier (CR1) 2014; 70 Cantoni (CR5) 2004; 32 Croux, Haesbroeck (CR7) 2003; 44 CR9 Huber (CR15) 1983; 78 CR13 Bianco, Yohai, Rieder (CR4) 1996 Hong, Kim (CR12) 2001; 30 Huber (CR14) 1964; 35 Hampel, Ronchetti, Rousseeuw, Stahel (CR10) 1986 Bianco, Boente, Rodrigues (CR3) 2013; 114 McCullagh, Nelder (CR17) 1989 Williams (CR23) 1987; 36 Warwick, Jones (CR22) 2005; 75 Thall, Vail (CR21) 1990; 46 Ghosh, Basu (CR8) 2013; 7 Leppik (CR16) 1985; 35 C Hong (445_CR12) 2001; 30 DA Williams (445_CR23) 1987; 36 FR Hampel (445_CR10) 1986 IE Leppik (445_CR16) 1985; 35 445_CR6 A Ghosh (445_CR8) 2013; 7 PF Thall (445_CR21) 1990; 46 S Heritier (445_CR11) 2009 445_CR19 PJ Huber (445_CR14) 1964; 35 J Warwick (445_CR22) 2005; 75 PJ Huber (445_CR15) 1983; 78 P McCullagh (445_CR17) 1989 WH Aeberhard (445_CR1) 2014; 70 C Croux (445_CR7) 2003; 44 445_CR9 445_CR13 JS Preisser (445_CR20) 1999; 55 AM Bianco (445_CR3) 2013; 114 A Basu (445_CR2) 1998; 85 AM Bianco (445_CR4) 1996 E Cantoni (445_CR5) 2004; 32 S Morgenthaler (445_CR18) 1992; 79 |
| References_xml | – volume: 44 start-page: 273 issue: 1–2 year: 2003 end-page: 295 ident: CR7 article-title: Implementing the Bianco and Yohai estimator for logistic regression publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(03)00042-2 – volume: 46 start-page: 657 issue: 3 year: 1990 end-page: 671 ident: CR21 article-title: Some covariance models for longitudinal count data with overdispersion publication-title: Biometrics doi: 10.2307/2532086 – year: 1989 ident: CR17 publication-title: Generalized linear models doi: 10.1007/978-1-4899-3242-6 – ident: CR19 – start-page: 17 year: 1996 end-page: 34 ident: CR4 article-title: Robust estimation in the logistic regression model publication-title: Robust statistics, data analysis, and computer intensive methods doi: 10.1007/978-1-4612-2380-1_2 – volume: 70 start-page: 920 issue: 4 year: 2014 end-page: 931 ident: CR1 article-title: Robust inference in the negative binomial regression model with an application to falls data publication-title: Biometrics doi: 10.1111/biom.12212 – volume: 7 start-page: 2420 year: 2013 end-page: 2456 ident: CR8 article-title: Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression publication-title: Electron J Stat doi: 10.1214/13-EJS847 – volume: 32 start-page: 169 issue: 2 year: 2004 end-page: 180 ident: CR5 article-title: A robust approach to longitudinal data analysis publication-title: Can J Stat doi: 10.2307/3315940 – year: 1986 ident: CR10 publication-title: Robust statistics: the approach based on influence functions – volume: 30 start-page: 453 year: 2001 end-page: 465 ident: CR12 article-title: Automatic selection of the tuning parameter in the minimum density power divergence estimation publication-title: J Korean Stat Soc – volume: 79 start-page: 747 issue: 4 year: 1992 end-page: 754 ident: CR18 article-title: Least-absolute-deviations fits for generalized linear models publication-title: Biometrika doi: 10.1093/biomet/79.4.747 – ident: CR13 – ident: CR9 – volume: 35 start-page: 73 issue: 1 year: 1964 end-page: 101 ident: CR14 article-title: Robust estimation of a location parameter publication-title: Ann Math Stat doi: 10.1214/aoms/1177703732 – volume: 35 start-page: 285 year: 1985 ident: CR16 article-title: A double-blind crossover evaluation of progabide in partial seizures publication-title: Neurology doi: 10.1212/WNL.35.2.285 – ident: CR6 – volume: 75 start-page: 581 year: 2005 end-page: 588 ident: CR22 article-title: Choosing a robustness tuning parameter publication-title: J Stat Comput Simul doi: 10.1080/00949650412331299120 – volume: 36 start-page: 181 year: 1987 end-page: 191 ident: CR23 article-title: Generalised linear model diagnostics using the deviance and single case deletions publication-title: Appl Stat doi: 10.2307/2347550 – year: 2009 ident: CR11 publication-title: Robust methods in biostatistics doi: 10.1002/9780470740538 – volume: 85 start-page: 549 issue: 3 year: 1998 end-page: 559 ident: CR2 article-title: Robust and efficient estimation by minimizing a density power divergence publication-title: Biometrika doi: 10.1093/biomet/85.3.549 – volume: 78 start-page: 66 year: 1983 end-page: 80 ident: CR15 article-title: Minimax aspects of bounded-influence regression (with discussion) publication-title: J Am Stat Assoc doi: 10.1080/01621459.1983.10477928 – volume: 114 start-page: 209 year: 2013 end-page: 226 ident: CR3 article-title: Resistant estimators in Poisson and Gamma models with missing responses and an application to outlier detection publication-title: J Multivar Anal doi: 10.1016/j.jmva.2012.08.008 – volume: 55 start-page: 574 year: 1999 end-page: 579 ident: CR20 article-title: Robust regression for clustered data with applications to binary regression publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00574.x – volume: 7 start-page: 2420 year: 2013 ident: 445_CR8 publication-title: Electron J Stat doi: 10.1214/13-EJS847 – volume: 70 start-page: 920 issue: 4 year: 2014 ident: 445_CR1 publication-title: Biometrics doi: 10.1111/biom.12212 – start-page: 17 volume-title: Robust statistics, data analysis, and computer intensive methods year: 1996 ident: 445_CR4 doi: 10.1007/978-1-4612-2380-1_2 – ident: 445_CR6 doi: 10.1198/016214501753209004 – volume: 114 start-page: 209 year: 2013 ident: 445_CR3 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2012.08.008 – volume: 35 start-page: 73 issue: 1 year: 1964 ident: 445_CR14 publication-title: Ann Math Stat doi: 10.1214/aoms/1177703732 – volume: 35 start-page: 285 year: 1985 ident: 445_CR16 publication-title: Neurology doi: 10.1212/WNL.35.2.285 – ident: 445_CR9 doi: 10.1080/02664763.2015.1016901 – volume-title: Robust statistics: the approach based on influence functions year: 1986 ident: 445_CR10 – volume: 30 start-page: 453 year: 2001 ident: 445_CR12 publication-title: J Korean Stat Soc – ident: 445_CR13 – volume: 75 start-page: 581 year: 2005 ident: 445_CR22 publication-title: J Stat Comput Simul doi: 10.1080/00949650412331299120 – volume: 44 start-page: 273 issue: 1–2 year: 2003 ident: 445_CR7 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(03)00042-2 – volume: 32 start-page: 169 issue: 2 year: 2004 ident: 445_CR5 publication-title: Can J Stat doi: 10.2307/3315940 – volume: 36 start-page: 181 year: 1987 ident: 445_CR23 publication-title: Appl Stat doi: 10.2307/2347550 – volume: 79 start-page: 747 issue: 4 year: 1992 ident: 445_CR18 publication-title: Biometrika doi: 10.1093/biomet/79.4.747 – volume-title: Generalized linear models year: 1989 ident: 445_CR17 doi: 10.1007/978-1-4899-3242-6 – ident: 445_CR19 doi: 10.1007/978-1-4612-5771-4_15 – volume: 78 start-page: 66 year: 1983 ident: 445_CR15 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1983.10477928 – volume: 85 start-page: 549 issue: 3 year: 1998 ident: 445_CR2 publication-title: Biometrika doi: 10.1093/biomet/85.3.549 – volume: 46 start-page: 657 issue: 3 year: 1990 ident: 445_CR21 publication-title: Biometrics doi: 10.2307/2532086 – volume-title: Robust methods in biostatistics year: 2009 ident: 445_CR11 doi: 10.1002/9780470740538 – volume: 55 start-page: 574 year: 1999 ident: 445_CR20 publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00574.x |
| SSID | ssj0064621 |
| Score | 2.3734448 |
| Snippet | The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 269 |
| SubjectTerms | Cases (containers) Counting Data analysis Density Economics Estimators Finance Generalized linear models Insurance Logistics Management Mathematical models Mathematics and Statistics Original Paper Poisson distribution Regression Regression analysis Statistical Theory and Methods Statistics Statistics for Business Studies |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NMonyMKADEdYhI-0JZCmpHcfhDSGqPWwVKhT1LYrP3jRpSqumnTR-Peckbhkak-Axiu0kZ1_8WXffdwAn-Uih1knJVYbIZRIbrlOteJo5NdJOUreGKHyWTSZ6Ps-_djzuOmS7h5Bk86fekd0IPPvcnpTHUqZcPILHtNtp743Tbz_C71dJ1ZKt6PDlK6qoEMq8b4i7m9EOYf4RFG32mvGz_3rL53DQQUv2qV0LL2DPVQN4EpjH9QCenm81Wumq73FmK9N8CLPpwmzqNfOaGy2ZkV1V7LLVpL766SzzcLRcsaZyTv2R0UDM-uT39S1b-kprzPoMj0bakwWh8pcwG3_5_vmUdxUXONIxbc0vyH2tQcIAVppcmhiFkCk5rTbOxWgRhZYO8xxFblxC4MugLhN0SqAelSPxCnrVonKvgVmvjaZkWjqTSWu1EYrAYkzurzEVuYsgDqYvsJMj91UxroudkLI3ZUGmLLwpCxHB-22XZavF8VDjYZjPonPLuqAPIYTlycYRvNveJofyUZKycosNtdGJ8getVEfwIczxb0P87YFv_qn1EfQJeqk26WwIvfVq445hH29o4ldvmxX9C7aK70w priority: 102 providerName: Springer Nature |
| Title | Robust estimation in generalized linear models: the density power divergence approach |
| URI | https://link.springer.com/article/10.1007/s11749-015-0445-3 https://www.proquest.com/docview/1786634391 https://www.proquest.com/docview/1816025558 |
| Volume | 25 |
| WOSCitedRecordID | wos000375792600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1863-8260 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0064621 issn: 1133-0686 databaseCode: M0C dateStart: 19970601 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1863-8260 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0064621 issn: 1133-0686 databaseCode: M7S dateStart: 19970601 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Healthcare Administration Database customDbUrl: eissn: 1863-8260 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0064621 issn: 1133-0686 databaseCode: M0T dateStart: 19970601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthmanagement providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1863-8260 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0064621 issn: 1133-0686 databaseCode: 7WY dateStart: 19970601 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1863-8260 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0064621 issn: 1133-0686 databaseCode: BENPR dateStart: 19970601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1863-8260 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0064621 issn: 1133-0686 databaseCode: 8C1 dateStart: 19970601 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1863-8260 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0064621 issn: 1133-0686 databaseCode: M2P dateStart: 19970601 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1863-8260 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064621 issn: 1133-0686 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLYdyKFBALJTKSJxAFknsOA6XqqxacaCr1baFcorisYsqoeyy2UUqv56ZPHYBiV64jBTFjyjjx2fPzDcAr_LEoLVxKU2GKHUcOWlTa2SaBZPYoKlaEyj8MRuP7eVlPuku3OrOrbJfE5uF2s-Q78jfxpmlzZHjRA_n3yVnjWLrapdCYwu2malMD2D7_fF4Mu3XYqNNG3lFJzFOr2J6u2YTPEdgnH2FUhlpnUr15860gZt_WUibjefk_v9-8gPY7SCnOGrHyEO4E6o9uHe65mut92CHMWdL2fwILqYzt6qXgvk32sBGcV2Jry0_9fXP4AVD03Ihmiw69TtBDQnPjvDLGzHnrGvCs7dHQ_MpetLyx3Bxcnw--iC77AsS6ci2lFc0lb1DwgNeu1y7CJXSKU1g60KI0CMqqwPmOarchZiAmENbxhiMQpuUiXoCg2pWhacgPPOkGZ2WwWXae-uUIeAY0VJgMVV5GELU__kCO2pyzpDxrdiQKrOyClJWwcoq1BBer6vMW16O2wrv9woquilaFxvtDOHl-jVNLraYlFWYraiMjQ0fulI7hDf9MPitiX91-Oz2Dp_DDuEu03qc7cNguViFF3AXf5CmFwewlX3-QtKO4oNuPNPTaTRq5DnLZMIyOyM5Pfv0Cw6s_jU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3da9RAEB9KK9g-VK2Kp1VX0BdlaT42m40gImpp6d0hcoW-xezsKoWSOy93Sv2j-jd2Jrm9U8G-9cHn7AfJ_nY-MjO_AXheJBqNiSupc0Sp4shKkxkts9zrxHhF09pC4X4-HJqTk-LTGlyEWhhOqwwysRXUboz8j3wvzg0pR64TfTv5LrlrFEdXQwuNDhZH_vwnuWzNm8MPdL4vkmT_4-j9gVx0FZBIrshMfiWIOouk55yyhbIRpqnKuEu99T5Ch5ga5bEoMC2sj8nAsGiqGL1O0SQVEx2QyN9gXj1OIRxEoyD5tdJdnRf5fdzMRYcoaluqR6Y_ZyZlMlIqk-mfenBl3P4Vj23V3P6t_-0D3YbthUEt3nU34A6s-XoHtgZLNtpmBzbZou4Iqe_C8eexnTczwewiXdmmOK3Ft459-_SXd4IN72oq2h5BzWtBCwnHaf6zczHhnnLCcS5LS2IqAiX7PTi-lpe8D-v1uPYPQDhmgdMqq7zNlXPGpprM4ogEncEsLXwPonDSJS6I17n_x1m5ooxmcJQEjpLBUaY9eLmcMulYR64avBsAUS4EUFOu0NCDZ8vHJDo4HlTVfjynMSbW7FJmpgevAux-W-JfGz68esOncPNgNOiX_cPh0SPYJAtTd7l1u7A-m879Y7iBP-jUp0_a2yPgy3Wj8RKp7FSa |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BmNh4ALaBKAzwpD2BrCW14zq8IaACMappbGhvUXz20KQprZoUCX49d0ncjgmQEI9RbCexfc53urvvA9jPhwatTUtpRohSp4mTNrNGZqNghjZo6tYWCh-OJhN7dpYf9Tqndcx2jyHJrqaBWZqq5mDmzw9WhW8EpDnPJ5OJ1plUN-GWZs0gdtc_f4lHsdGmK7wiR4zVVUwMa_5uiF9_TCu0eS1A2v53xvf--43vw90ecorX3R7Zghuh2oaNWJFcb8OdT0vuVrraZPzZ0TfvwOnx1C3qRjAXR1fkKC4q8bXjqr74EbxgmFrORauoU78SNJDwnBTffBczVmATnjM_WspPEQnMH8Dp-N3Jm_eyV2KQSO5bI8_JrL1DwgZeu1y7BJXSGRmzdSEk6BGV1QHzHFXuQkqgzKEtUwxGoR2WQ_UQ1qppFR6B8MyZZnRWBjfS3lunDIHIhI4Fi5nKwwCSuAwF9jTlrJZxWawIlnkqC5rKgqeyUAN4sewy6zg6_tZ4N65t0ZtrXdCHEPLiIuQB7C1vk6Fx9KSswnRBbWxq2AHL7ABexvW-MsSfHvj4n1o_h9tHb8fF4YfJxyewSejMdHlpu7DWzBfhKazjN9oD82ftRv8JQuj7FA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+estimation+in+generalized+linear+models%3A+the+density+power+divergence+approach&rft.jtitle=Test+%28Madrid%2C+Spain%29&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.date=2016-06-01&rft.issn=1133-0686&rft.eissn=1863-8260&rft.volume=25&rft.issue=2&rft.spage=269&rft.epage=290&rft_id=info:doi/10.1007%2Fs11749-015-0445-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1133-0686&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1133-0686&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1133-0686&client=summon |