Robust estimation in generalized linear models: the density power divergence approach

The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Test (Madrid, Spain) Ročník 25; číslo 2; s. 269 - 290
Hlavní autori: Ghosh, Abhik, Basu, Ayanendranath
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Springer Nature B.V
Predmet:
ISSN:1133-0686, 1863-8260
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significant number of outliers in relation to the standard parametric model used in the analysis; in such cases inference based on the maximum likelihood estimator could be unreliable. In this paper, we develop a robust estimation procedure for the generalized linear models that can generate robust estimators with little loss in efficiency. We will also explore two particular special cases in detail—Poisson regression for count data and logistic regression for binary data. We will also illustrate the performance of the proposed estimators through some real-life examples.
AbstractList The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significant number of outliers in relation to the standard parametric model used in the analysis; in such cases inference based on the maximum likelihood estimator could be unreliable. In this paper, we develop a robust estimation procedure for the generalized linear models that can generate robust estimators with little loss in efficiency. We will also explore two particular special cases in detail—Poisson regression for count data and logistic regression for binary data. We will also illustrate the performance of the proposed estimators through some real-life examples.
Author Basu, Ayanendranath
Ghosh, Abhik
Author_xml – sequence: 1
  givenname: Abhik
  surname: Ghosh
  fullname: Ghosh, Abhik
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
– sequence: 2
  givenname: Ayanendranath
  surname: Basu
  fullname: Basu, Ayanendranath
  email: ayanbasu@isical.ac.in
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
BookMark eNp9kE1LAzEQQIMoqNUf4C3gxctqZpPNZr1J8QsEQew5ZLPTGtkmNdkq9debWg9S0FNyeC8zeYdk1wePhJwAOwfG6osEUIumYFAVTIiq4DvkAJTkhSol28134LxgUsl9cpjSK2NSyBIOyOQptMs0UEyDm5vBBU-dpzP0GE3vPrGjvfNoIp2HDvt0SYcXpB365IYVXYQPjLRz7xizYZGaxSIGY1-OyN7U9AmPf84RmdxcP4_viofH2_vx1UNhhVBDMa1V3bUWyqYTbSNaZjkXFYNatYjMdtZyJdA2jeVNiyAq2VplwKLkVpWm5CNytnk3j31b5j_ouUsW-954DMukQYFkZVVVKqOnW-hrWEaft9N5npRc8AYyVW8oG0NKEafauuE7yxCN6zUwvc6tN7l1zq3XuTXPJmyZi5iLxtW_TrlxUmb9DOOvnf6UvgDMUZSX
CitedBy_id crossref_primary_10_1093_biomet_asad031
crossref_primary_10_1007_s42519_022_00295_3
crossref_primary_10_1002_sim_10157
crossref_primary_10_1111_biom_12726
crossref_primary_10_1111_sjos_12628
crossref_primary_10_1007_s11634_022_00533_3
crossref_primary_10_1016_j_learninstruc_2024_101898
crossref_primary_10_1016_j_cam_2023_115452
crossref_primary_10_1016_j_cam_2025_116502
crossref_primary_10_1007_s10182_023_00473_z
crossref_primary_10_1016_j_spl_2018_12_002
crossref_primary_10_1080_03610926_2019_1615093
crossref_primary_10_1080_02331888_2017_1318139
crossref_primary_10_1007_s11634_020_00430_7
crossref_primary_10_1007_s00184_018_0653_4
crossref_primary_10_1111_biom_12890
crossref_primary_10_1109_TGRS_2021_3105694
crossref_primary_10_1002_wics_1363
crossref_primary_10_1177_0962280217738142
crossref_primary_10_1007_s00362_015_0701_3
crossref_primary_10_1007_s10886_022_01348_4
crossref_primary_10_1007_s00362_022_01389_7
crossref_primary_10_1007_s10260_020_00544_4
crossref_primary_10_1080_00949655_2023_2262669
crossref_primary_10_1080_00949655_2020_1787410
crossref_primary_10_1007_s00184_024_00952_6
crossref_primary_10_3390_stats4010008
crossref_primary_10_1080_01621459_2022_2140054
crossref_primary_10_1002_bimj_202000157
crossref_primary_10_1007_s13198_025_02925_y
crossref_primary_10_1002_cpe_7594
crossref_primary_10_1007_s10260_024_00760_2
crossref_primary_10_1007_s10463_020_00764_1
crossref_primary_10_1007_s11749_023_00866_x
crossref_primary_10_3390_e24010123
crossref_primary_10_1007_s11749_018_0624_0
crossref_primary_10_1109_TIT_2020_3013015
crossref_primary_10_1007_s00184_022_00874_1
crossref_primary_10_1016_j_csda_2022_107564
crossref_primary_10_1080_00949655_2025_2495716
crossref_primary_10_1080_03610926_2022_2155788
crossref_primary_10_1007_s10463_024_00922_9
crossref_primary_10_1080_03610926_2021_1887240
Cites_doi 10.1016/S0167-9473(03)00042-2
10.2307/2532086
10.1007/978-1-4899-3242-6
10.1007/978-1-4612-2380-1_2
10.1111/biom.12212
10.1214/13-EJS847
10.2307/3315940
10.1093/biomet/79.4.747
10.1214/aoms/1177703732
10.1212/WNL.35.2.285
10.1080/00949650412331299120
10.2307/2347550
10.1002/9780470740538
10.1093/biomet/85.3.549
10.1080/01621459.1983.10477928
10.1016/j.jmva.2012.08.008
10.1111/j.0006-341X.1999.00574.x
10.1198/016214501753209004
10.1080/02664763.2015.1016901
10.1007/978-1-4612-5771-4_15
ContentType Journal Article
Copyright Sociedad de Estadística e Investigación Operativa 2015
Sociedad de Estadística e Investigación Operativa 2016
Copyright_xml – notice: Sociedad de Estadística e Investigación Operativa 2015
– notice: Sociedad de Estadística e Investigación Operativa 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88C
8AO
8C1
8FD
8FE
8FG
8FI
8FJ
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
H8D
HCIFZ
JQ2
K60
K6~
L.-
L6V
L7M
L~C
L~D
M0C
M0T
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1007/s11749-015-0445-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Healthcare Administration Database (Alumni)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Healthcare Administration Database
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Aerospace Database
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1863-8260
EndPage 290
ExternalDocumentID 4044029041
10_1007_s11749_015_0445_3
Genre Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5VS
67Z
6NX
7WY
8AO
8C1
8FE
8FG
8FI
8FJ
8FL
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KDC
KOV
L6V
LLZTM
M0C
M0T
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7R
Z81
Z83
Z8U
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
CITATION
GNUQQ
M2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7SC
7XB
8FD
8FK
H8D
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c448t-f787dbc129d4b94b0c33450178bee0cdcc384ec99c39be1456bc8a1ce63c82a23
IEDL.DBID BENPR
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375792600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1133-0686
IngestDate Mon Sep 29 06:30:28 EDT 2025
Thu Sep 25 00:38:40 EDT 2025
Tue Nov 18 22:24:43 EST 2025
Sat Nov 29 06:06:50 EST 2025
Fri Feb 21 02:28:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Logistic regression
Generalized linear model
Density power divergence
Robustness
62F35
Poisson regression
62J12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-f787dbc129d4b94b0c33450178bee0cdcc384ec99c39be1456bc8a1ce63c82a23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1786634391
PQPubID 1486339
PageCount 22
ParticipantIDs proquest_miscellaneous_1816025558
proquest_journals_1786634391
crossref_citationtrail_10_1007_s11749_015_0445_3
crossref_primary_10_1007_s11749_015_0445_3
springer_journals_10_1007_s11749_015_0445_3
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle An Official Journal of the Spanish Society of Statistics and Operations Research
PublicationTitle Test (Madrid, Spain)
PublicationTitleAbbrev TEST
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Morgenthaler (CR18) 1992; 79
Basu, Harris, Hjort, Jones (CR2) 1998; 85
Heritier, Cantoni, Copt, Victoria-Feser (CR11) 2009
Preisser, Qaqish (CR20) 1999; 55
CR6
CR19
Aeberhard, Cantoni, Heritier (CR1) 2014; 70
Cantoni (CR5) 2004; 32
Croux, Haesbroeck (CR7) 2003; 44
CR9
Huber (CR15) 1983; 78
CR13
Bianco, Yohai, Rieder (CR4) 1996
Hong, Kim (CR12) 2001; 30
Huber (CR14) 1964; 35
Hampel, Ronchetti, Rousseeuw, Stahel (CR10) 1986
Bianco, Boente, Rodrigues (CR3) 2013; 114
McCullagh, Nelder (CR17) 1989
Williams (CR23) 1987; 36
Warwick, Jones (CR22) 2005; 75
Thall, Vail (CR21) 1990; 46
Ghosh, Basu (CR8) 2013; 7
Leppik (CR16) 1985; 35
C Hong (445_CR12) 2001; 30
DA Williams (445_CR23) 1987; 36
FR Hampel (445_CR10) 1986
IE Leppik (445_CR16) 1985; 35
445_CR6
A Ghosh (445_CR8) 2013; 7
PF Thall (445_CR21) 1990; 46
S Heritier (445_CR11) 2009
445_CR19
PJ Huber (445_CR14) 1964; 35
J Warwick (445_CR22) 2005; 75
PJ Huber (445_CR15) 1983; 78
P McCullagh (445_CR17) 1989
WH Aeberhard (445_CR1) 2014; 70
C Croux (445_CR7) 2003; 44
445_CR9
445_CR13
JS Preisser (445_CR20) 1999; 55
AM Bianco (445_CR3) 2013; 114
A Basu (445_CR2) 1998; 85
AM Bianco (445_CR4) 1996
E Cantoni (445_CR5) 2004; 32
S Morgenthaler (445_CR18) 1992; 79
References_xml – volume: 44
  start-page: 273
  issue: 1–2
  year: 2003
  end-page: 295
  ident: CR7
  article-title: Implementing the Bianco and Yohai estimator for logistic regression
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(03)00042-2
– volume: 46
  start-page: 657
  issue: 3
  year: 1990
  end-page: 671
  ident: CR21
  article-title: Some covariance models for longitudinal count data with overdispersion
  publication-title: Biometrics
  doi: 10.2307/2532086
– year: 1989
  ident: CR17
  publication-title: Generalized linear models
  doi: 10.1007/978-1-4899-3242-6
– ident: CR19
– start-page: 17
  year: 1996
  end-page: 34
  ident: CR4
  article-title: Robust estimation in the logistic regression model
  publication-title: Robust statistics, data analysis, and computer intensive methods
  doi: 10.1007/978-1-4612-2380-1_2
– volume: 70
  start-page: 920
  issue: 4
  year: 2014
  end-page: 931
  ident: CR1
  article-title: Robust inference in the negative binomial regression model with an application to falls data
  publication-title: Biometrics
  doi: 10.1111/biom.12212
– volume: 7
  start-page: 2420
  year: 2013
  end-page: 2456
  ident: CR8
  article-title: Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression
  publication-title: Electron J Stat
  doi: 10.1214/13-EJS847
– volume: 32
  start-page: 169
  issue: 2
  year: 2004
  end-page: 180
  ident: CR5
  article-title: A robust approach to longitudinal data analysis
  publication-title: Can J Stat
  doi: 10.2307/3315940
– year: 1986
  ident: CR10
  publication-title: Robust statistics: the approach based on influence functions
– volume: 30
  start-page: 453
  year: 2001
  end-page: 465
  ident: CR12
  article-title: Automatic selection of the tuning parameter in the minimum density power divergence estimation
  publication-title: J Korean Stat Soc
– volume: 79
  start-page: 747
  issue: 4
  year: 1992
  end-page: 754
  ident: CR18
  article-title: Least-absolute-deviations fits for generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/79.4.747
– ident: CR13
– ident: CR9
– volume: 35
  start-page: 73
  issue: 1
  year: 1964
  end-page: 101
  ident: CR14
  article-title: Robust estimation of a location parameter
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177703732
– volume: 35
  start-page: 285
  year: 1985
  ident: CR16
  article-title: A double-blind crossover evaluation of progabide in partial seizures
  publication-title: Neurology
  doi: 10.1212/WNL.35.2.285
– ident: CR6
– volume: 75
  start-page: 581
  year: 2005
  end-page: 588
  ident: CR22
  article-title: Choosing a robustness tuning parameter
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949650412331299120
– volume: 36
  start-page: 181
  year: 1987
  end-page: 191
  ident: CR23
  article-title: Generalised linear model diagnostics using the deviance and single case deletions
  publication-title: Appl Stat
  doi: 10.2307/2347550
– year: 2009
  ident: CR11
  publication-title: Robust methods in biostatistics
  doi: 10.1002/9780470740538
– volume: 85
  start-page: 549
  issue: 3
  year: 1998
  end-page: 559
  ident: CR2
  article-title: Robust and efficient estimation by minimizing a density power divergence
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.549
– volume: 78
  start-page: 66
  year: 1983
  end-page: 80
  ident: CR15
  article-title: Minimax aspects of bounded-influence regression (with discussion)
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1983.10477928
– volume: 114
  start-page: 209
  year: 2013
  end-page: 226
  ident: CR3
  article-title: Resistant estimators in Poisson and Gamma models with missing responses and an application to outlier detection
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2012.08.008
– volume: 55
  start-page: 574
  year: 1999
  end-page: 579
  ident: CR20
  article-title: Robust regression for clustered data with applications to binary regression
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00574.x
– volume: 7
  start-page: 2420
  year: 2013
  ident: 445_CR8
  publication-title: Electron J Stat
  doi: 10.1214/13-EJS847
– volume: 70
  start-page: 920
  issue: 4
  year: 2014
  ident: 445_CR1
  publication-title: Biometrics
  doi: 10.1111/biom.12212
– start-page: 17
  volume-title: Robust statistics, data analysis, and computer intensive methods
  year: 1996
  ident: 445_CR4
  doi: 10.1007/978-1-4612-2380-1_2
– ident: 445_CR6
  doi: 10.1198/016214501753209004
– volume: 114
  start-page: 209
  year: 2013
  ident: 445_CR3
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2012.08.008
– volume: 35
  start-page: 73
  issue: 1
  year: 1964
  ident: 445_CR14
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177703732
– volume: 35
  start-page: 285
  year: 1985
  ident: 445_CR16
  publication-title: Neurology
  doi: 10.1212/WNL.35.2.285
– ident: 445_CR9
  doi: 10.1080/02664763.2015.1016901
– volume-title: Robust statistics: the approach based on influence functions
  year: 1986
  ident: 445_CR10
– volume: 30
  start-page: 453
  year: 2001
  ident: 445_CR12
  publication-title: J Korean Stat Soc
– ident: 445_CR13
– volume: 75
  start-page: 581
  year: 2005
  ident: 445_CR22
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949650412331299120
– volume: 44
  start-page: 273
  issue: 1–2
  year: 2003
  ident: 445_CR7
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(03)00042-2
– volume: 32
  start-page: 169
  issue: 2
  year: 2004
  ident: 445_CR5
  publication-title: Can J Stat
  doi: 10.2307/3315940
– volume: 36
  start-page: 181
  year: 1987
  ident: 445_CR23
  publication-title: Appl Stat
  doi: 10.2307/2347550
– volume: 79
  start-page: 747
  issue: 4
  year: 1992
  ident: 445_CR18
  publication-title: Biometrika
  doi: 10.1093/biomet/79.4.747
– volume-title: Generalized linear models
  year: 1989
  ident: 445_CR17
  doi: 10.1007/978-1-4899-3242-6
– ident: 445_CR19
  doi: 10.1007/978-1-4612-5771-4_15
– volume: 78
  start-page: 66
  year: 1983
  ident: 445_CR15
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1983.10477928
– volume: 85
  start-page: 549
  issue: 3
  year: 1998
  ident: 445_CR2
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.549
– volume: 46
  start-page: 657
  issue: 3
  year: 1990
  ident: 445_CR21
  publication-title: Biometrics
  doi: 10.2307/2532086
– volume-title: Robust methods in biostatistics
  year: 2009
  ident: 445_CR11
  doi: 10.1002/9780470740538
– volume: 55
  start-page: 574
  year: 1999
  ident: 445_CR20
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00574.x
SSID ssj0064621
Score 2.3734448
Snippet The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Cases (containers)
Counting
Data analysis
Density
Economics
Estimators
Finance
Generalized linear models
Insurance
Logistics
Management
Mathematical models
Mathematics and Statistics
Original Paper
Poisson distribution
Regression
Regression analysis
Statistical Theory and Methods
Statistics
Statistics for Business
Studies
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NMonyMKADEdYhI-0JZCmpHcfhDSGqPWwVKhT1LYrP3jRpSqumnTR-Peckbhkak-Axiu0kZ1_8WXffdwAn-Uih1knJVYbIZRIbrlOteJo5NdJOUreGKHyWTSZ6Ps-_djzuOmS7h5Bk86fekd0IPPvcnpTHUqZcPILHtNtp743Tbz_C71dJ1ZKt6PDlK6qoEMq8b4i7m9EOYf4RFG32mvGz_3rL53DQQUv2qV0LL2DPVQN4EpjH9QCenm81Wumq73FmK9N8CLPpwmzqNfOaGy2ZkV1V7LLVpL766SzzcLRcsaZyTv2R0UDM-uT39S1b-kprzPoMj0bakwWh8pcwG3_5_vmUdxUXONIxbc0vyH2tQcIAVppcmhiFkCk5rTbOxWgRhZYO8xxFblxC4MugLhN0SqAelSPxCnrVonKvgVmvjaZkWjqTSWu1EYrAYkzurzEVuYsgDqYvsJMj91UxroudkLI3ZUGmLLwpCxHB-22XZavF8VDjYZjPonPLuqAPIYTlycYRvNveJofyUZKycosNtdGJ8getVEfwIczxb0P87YFv_qn1EfQJeqk26WwIvfVq445hH29o4ldvmxX9C7aK70w
  priority: 102
  providerName: Springer Nature
Title Robust estimation in generalized linear models: the density power divergence approach
URI https://link.springer.com/article/10.1007/s11749-015-0445-3
https://www.proquest.com/docview/1786634391
https://www.proquest.com/docview/1816025558
Volume 25
WOSCitedRecordID wos000375792600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1863-8260
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0064621
  issn: 1133-0686
  databaseCode: M0C
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1863-8260
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0064621
  issn: 1133-0686
  databaseCode: M7S
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 1863-8260
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0064621
  issn: 1133-0686
  databaseCode: M0T
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1863-8260
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0064621
  issn: 1133-0686
  databaseCode: 7WY
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-8260
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0064621
  issn: 1133-0686
  databaseCode: BENPR
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1863-8260
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0064621
  issn: 1133-0686
  databaseCode: 8C1
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1863-8260
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0064621
  issn: 1133-0686
  databaseCode: M2P
  dateStart: 19970601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-8260
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064621
  issn: 1133-0686
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLYdyKFBALJTKSJxAFknsOA6XqqxacaCr1baFcorisYsqoeyy2UUqv56ZPHYBiV64jBTFjyjjx2fPzDcAr_LEoLVxKU2GKHUcOWlTa2SaBZPYoKlaEyj8MRuP7eVlPuku3OrOrbJfE5uF2s-Q78jfxpmlzZHjRA_n3yVnjWLrapdCYwu2malMD2D7_fF4Mu3XYqNNG3lFJzFOr2J6u2YTPEdgnH2FUhlpnUr15860gZt_WUibjefk_v9-8gPY7SCnOGrHyEO4E6o9uHe65mut92CHMWdL2fwILqYzt6qXgvk32sBGcV2Jry0_9fXP4AVD03Ihmiw69TtBDQnPjvDLGzHnrGvCs7dHQ_MpetLyx3Bxcnw--iC77AsS6ci2lFc0lb1DwgNeu1y7CJXSKU1g60KI0CMqqwPmOarchZiAmENbxhiMQpuUiXoCg2pWhacgPPOkGZ2WwWXae-uUIeAY0VJgMVV5GELU__kCO2pyzpDxrdiQKrOyClJWwcoq1BBer6vMW16O2wrv9woquilaFxvtDOHl-jVNLraYlFWYraiMjQ0fulI7hDf9MPitiX91-Oz2Dp_DDuEu03qc7cNguViFF3AXf5CmFwewlX3-QtKO4oNuPNPTaTRq5DnLZMIyOyM5Pfv0Cw6s_jU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3da9RAEB9KK9g-VK2Kp1VX0BdlaT42m40gImpp6d0hcoW-xezsKoWSOy93Sv2j-jd2Jrm9U8G-9cHn7AfJ_nY-MjO_AXheJBqNiSupc0Sp4shKkxkts9zrxHhF09pC4X4-HJqTk-LTGlyEWhhOqwwysRXUboz8j3wvzg0pR64TfTv5LrlrFEdXQwuNDhZH_vwnuWzNm8MPdL4vkmT_4-j9gVx0FZBIrshMfiWIOouk55yyhbIRpqnKuEu99T5Ch5ga5bEoMC2sj8nAsGiqGL1O0SQVEx2QyN9gXj1OIRxEoyD5tdJdnRf5fdzMRYcoaluqR6Y_ZyZlMlIqk-mfenBl3P4Vj23V3P6t_-0D3YbthUEt3nU34A6s-XoHtgZLNtpmBzbZou4Iqe_C8eexnTczwewiXdmmOK3Ft459-_SXd4IN72oq2h5BzWtBCwnHaf6zczHhnnLCcS5LS2IqAiX7PTi-lpe8D-v1uPYPQDhmgdMqq7zNlXPGpprM4ogEncEsLXwPonDSJS6I17n_x1m5ooxmcJQEjpLBUaY9eLmcMulYR64avBsAUS4EUFOu0NCDZ8vHJDo4HlTVfjynMSbW7FJmpgevAux-W-JfGz68esOncPNgNOiX_cPh0SPYJAtTd7l1u7A-m879Y7iBP-jUp0_a2yPgy3Wj8RKp7FSa
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BmNh4ALaBKAzwpD2BrCW14zq8IaACMappbGhvUXz20KQprZoUCX49d0ncjgmQEI9RbCexfc53urvvA9jPhwatTUtpRohSp4mTNrNGZqNghjZo6tYWCh-OJhN7dpYf9Tqndcx2jyHJrqaBWZqq5mDmzw9WhW8EpDnPJ5OJ1plUN-GWZs0gdtc_f4lHsdGmK7wiR4zVVUwMa_5uiF9_TCu0eS1A2v53xvf--43vw90ecorX3R7Zghuh2oaNWJFcb8OdT0vuVrraZPzZ0TfvwOnx1C3qRjAXR1fkKC4q8bXjqr74EbxgmFrORauoU78SNJDwnBTffBczVmATnjM_WspPEQnMH8Dp-N3Jm_eyV2KQSO5bI8_JrL1DwgZeu1y7BJXSGRmzdSEk6BGV1QHzHFXuQkqgzKEtUwxGoR2WQ_UQ1qppFR6B8MyZZnRWBjfS3lunDIHIhI4Fi5nKwwCSuAwF9jTlrJZxWawIlnkqC5rKgqeyUAN4sewy6zg6_tZ4N65t0ZtrXdCHEPLiIuQB7C1vk6Fx9KSswnRBbWxq2AHL7ABexvW-MsSfHvj4n1o_h9tHb8fF4YfJxyewSejMdHlpu7DWzBfhKazjN9oD82ftRv8JQuj7FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+estimation+in+generalized+linear+models%3A+the+density+power+divergence+approach&rft.jtitle=Test+%28Madrid%2C+Spain%29&rft.au=Ghosh%2C+Abhik&rft.au=Basu%2C+Ayanendranath&rft.date=2016-06-01&rft.issn=1133-0686&rft.eissn=1863-8260&rft.volume=25&rft.issue=2&rft.spage=269&rft.epage=290&rft_id=info:doi/10.1007%2Fs11749-015-0445-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1133-0686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1133-0686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1133-0686&client=summon