Robust estimation in generalized linear models: the density power divergence approach

The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Test (Madrid, Spain) Ročník 25; číslo 2; s. 269 - 290
Hlavní autoři: Ghosh, Abhik, Basu, Ayanendranath
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Springer Nature B.V
Témata:
ISSN:1133-0686, 1863-8260
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The generalized linear model is a very important tool for analyzing real data in several application domains where the relationship between the response and explanatory variables may not be linear or the distributions may not be normal in all the cases. Quite often such real data contain a significant number of outliers in relation to the standard parametric model used in the analysis; in such cases inference based on the maximum likelihood estimator could be unreliable. In this paper, we develop a robust estimation procedure for the generalized linear models that can generate robust estimators with little loss in efficiency. We will also explore two particular special cases in detail—Poisson regression for count data and logistic regression for binary data. We will also illustrate the performance of the proposed estimators through some real-life examples.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1133-0686
1863-8260
DOI:10.1007/s11749-015-0445-3