A faster horse on a safer trail: generalized inference for the efficient reconstruction of weighted networks

Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system, including the implied level of systemic risk, requires detailed information about the structure of the underlying network of dependencies. However, since data about financial linkage...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics Vol. 22; no. 5; pp. 53053 - 53071
Main Authors: Parisi, Federica, Squartini, Tiziano, Garlaschelli, Diego
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.05.2020
Subjects:
ISSN:1367-2630, 1367-2630
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system, including the implied level of systemic risk, requires detailed information about the structure of the underlying network of dependencies. However, since data about financial linkages are typically subject to confidentiality, network reconstruction techniques become necessary to infer both the presence of connections and their intensity. Recently, several 'horse races' have been conducted to compare the performance of the available financial network reconstruction methods. These comparisons were based on arbitrarily chosen metrics of similarity between the real network and its reconstructed versions. Here we establish a generalized maximum-likelihood approach to rigorously define and compare weighted reconstruction methods. Our generalization uses the maximization of a certain conditional entropy to solve the problem represented by the fact that the density-dependent constraints required to reliably reconstruct the network are typically unobserved and, therefore, cannot enter directly, as sufficient statistics, in the likelihood function. The resulting approach admits as input any reconstruction method for the purely binary topology and, conditionally on the latter, exploits the available partial information to infer link weights. We find that the most reliable method is obtained by 'dressing' the best-performing binary method with an exponential distribution of link weights having a properly density-corrected and link-specific mean value and propose two safe (i.e. unbiased in the sense of maximum conditional entropy) variants of it. While the one named CReMA is perfectly general (as a particular case, it can place optimal weights on a network if the bare topology is known), the one named CReMB is recommended both in case of full uncertainty about the network topology and if the existence of some links is certain. In these cases, the CReMB is faster and reproduces empirical networks with highest generalized likelihood among the considered competing models.
AbstractList Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system, including the implied level of systemic risk, requires detailed information about the structure of the underlying network of dependencies. However, since data about financial linkages are typically subject to confidentiality, network reconstruction techniques become necessary to infer both the presence of connections and their intensity. Recently, several ‘horse races’ have been conducted to compare the performance of the available financial network reconstruction methods. These comparisons were based on arbitrarily chosen metrics of similarity between the real network and its reconstructed versions. Here we establish a generalized maximum-likelihood approach to rigorously define and compare weighted reconstruction methods. Our generalization uses the maximization of a certain conditional entropy to solve the problem represented by the fact that the density-dependent constraints required to reliably reconstruct the network are typically unobserved and, therefore, cannot enter directly, as sufficient statistics, in the likelihood function. The resulting approach admits as input any reconstruction method for the purely binary topology and, conditionally on the latter, exploits the available partial information to infer link weights. We find that the most reliable method is obtained by ‘dressing’ the best-performing binary method with an exponential distribution of link weights having a properly density-corrected and link-specific mean value and propose two safe (i.e. unbiased in the sense of maximum conditional entropy) variants of it. While the one named CReM _A is perfectly general (as a particular case, it can place optimal weights on a network if the bare topology is known), the one named CReM _B is recommended both in case of full uncertainty about the network topology and if the existence of some links is certain. In these cases, the CReM _B is faster and reproduces empirical networks with highest generalized likelihood among the considered competing models.
Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system, including the implied level of systemic risk, requires detailed information about the structure of the underlying network of dependencies. However, since data about financial linkages are typically subject to confidentiality, network reconstruction techniques become necessary to infer both the presence of connections and their intensity. Recently, several 'horse races' have been conducted to compare the performance of the available financial network reconstruction methods. These comparisons were based on arbitrarily chosen metrics of similarity between the real network and its reconstructed versions. Here we establish a generalized maximum-likelihood approach to rigorously define and compare weighted reconstruction methods. Our generalization uses the maximization of a certain conditional entropy to solve the problem represented by the fact that the density-dependent constraints required to reliably reconstruct the network are typically unobserved and, therefore, cannot enter directly, as sufficient statistics, in the likelihood function. The resulting approach admits as input any reconstruction method for the purely binary topology and, conditionally on the latter, exploits the available partial information to infer link weights. We find that the most reliable method is obtained by 'dressing' the best-performing binary method with an exponential distribution of link weights having a properly density-corrected and link-specific mean value and propose two safe (i.e. unbiased in the sense of maximum conditional entropy) variants of it. While the one named CReMA is perfectly general (as a particular case, it can place optimal weights on a network if the bare topology is known), the one named CReMB is recommended both in case of full uncertainty about the network topology and if the existence of some links is certain. In these cases, the CReMB is faster and reproduces empirical networks with highest generalized likelihood among the considered competing models.
Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system, including the implied level of systemic risk, requires detailed information about the structure of the underlying network of dependencies. However, since data about financial linkages are typically subject to confidentiality, network reconstruction techniques become necessary to infer both the presence of connections and their intensity. Recently, several ‘horse races’ have been conducted to compare the performance of the available financial network reconstruction methods. These comparisons were based on arbitrarily chosen metrics of similarity between the real network and its reconstructed versions. Here we establish a generalized maximum-likelihood approach to rigorously define and compare weighted reconstruction methods. Our generalization uses the maximization of a certain conditional entropy to solve the problem represented by the fact that the density-dependent constraints required to reliably reconstruct the network are typically unobserved and, therefore, cannot enter directly, as sufficient statistics, in the likelihood function. The resulting approach admits as input any reconstruction method for the purely binary topology and, conditionally on the latter, exploits the available partial information to infer link weights. We find that the most reliable method is obtained by ‘dressing’ the best-performing binary method with an exponential distribution of link weights having a properly density-corrected and link-specific mean value and propose two safe (i.e. unbiased in the sense of maximum conditional entropy) variants of it. While the one named CReM A is perfectly general (as a particular case, it can place optimal weights on a network if the bare topology is known), the one named CReM B is recommended both in case of full uncertainty about the network topology and if the existence of some links is certain. In these cases, the CReM B is faster and reproduces empirical networks with highest generalized likelihood among the considered competing models.
Author Squartini, Tiziano
Parisi, Federica
Garlaschelli, Diego
Author_xml – sequence: 1
  givenname: Federica
  surname: Parisi
  fullname: Parisi, Federica
  organization: IMT School for Advanced Studies Lucca, Italy
– sequence: 2
  givenname: Tiziano
  orcidid: 0000-0001-9011-966X
  surname: Squartini
  fullname: Squartini, Tiziano
  email: tiziano.squartini@imtlucca.it
  organization: IMT School for Advanced Studies Lucca, Italy
– sequence: 3
  givenname: Diego
  orcidid: 0000-0001-6035-1783
  surname: Garlaschelli
  fullname: Garlaschelli, Diego
  organization: Leiden University Lorentz Institute for Theoretical Physics, The Netherlands
BookMark eNp9kc1rFTEUxYNUsK3uXQZcuPHZfM-Mu1L8KBTc6PqSydy8l-eYjEkepf715nX8QqQQSLg55_DjnjNyElNEQp5z9pqzvr_g0nQbYSS7sGOnbPeInP4enfz1fkLOStkzxnkvxCmZL6m3pWKmu5QL0hSppcX6NqjZhvkN3WLEbOfwHScaYvvA6JD61AQ7pOh9cAFjpRldiqXmg6uhpSRPbzFsd7XZItbblL-Up-Sxt3PBZz_vc_L53dtPVx82Nx_fX19d3mycUn3dTOM4ilE3PmmkGKRnQmvNpBiRWe68bHi97ozwcpgM4iA1N0p6YbVUjDt5Tq7X3CnZPSw5fLX5DpINcD9IeQs21-BmhJ4zZ9gw8c4rhVM_KNTSauc8aoFCt6wXa9aS07cDlgr7dMix4YNQrG9ggpmmMqvK5VRKRg8uVHtcxP0WgTM4tgTHGuBYA6wtNSP7x_gL9wHLq9US0vIH5gH5y__I434BIUAD07IdWCYvfwDjtLG1
CODEN NJOPFM
CitedBy_id crossref_primary_10_1038_s41598_024_53655_3
crossref_primary_10_1088_2632_072X_ad1411
crossref_primary_10_1088_2632_072X_ad30bf
crossref_primary_10_1016_j_chaos_2022_112620
crossref_primary_10_3390_e27090978
crossref_primary_10_1016_j_chaos_2022_113031
crossref_primary_10_1002_joc_7547
crossref_primary_10_1088_1742_5468_ad8748
crossref_primary_10_1038_s41598_022_13996_3
crossref_primary_10_1038_s42005_025_02182_2
crossref_primary_10_1038_s43588_024_00735_z
crossref_primary_10_3389_fmars_2025_1534786
crossref_primary_10_1016_j_chaos_2024_115279
crossref_primary_10_1111_2041_210X_13985
crossref_primary_10_1038_s41598_021_93830_4
crossref_primary_10_1103_PhysRevResearch_4_033105
crossref_primary_10_1016_j_chaos_2022_112958
crossref_primary_10_1103_PhysRevE_111_024312
Cites_doi 10.1007/978-3-319-47705-3_15
10.1103/PhysRevE.99.030301
10.1088/1367-2630/16/4/043022
10.1103/PhysRevE.84.046118
10.1177/0022002702046005006
10.1007/s10287-013-0168-4
10.1038/srep03357
10.1016/j.physrep.2018.06.008
10.1287/mnsc.2016.2546
10.1088/1367-2630/13/8/083001
10.2307/2525582
10.1038/s42254-018-0002-6
10.1016/j.jfi.2013.08.001
10.1007/s41109-017-0021-8
10.1109/TAC.1974.1100705
10.1080/14697688.2014.968195
10.2139/ssrn.641288
10.1016/j.jfs.2010.12.001
10.1088/1367-2630/17/2/023052
10.1142/S0129183116501485
10.2139/ssrn.3084543
10.1016/j.jfs.2017.05.012
10.1103/PhysRevE.78.015101
10.1088/1742-5468/2012/03/P03011
10.1016/j.jbankfin.2010.09.018
10.1016/j.jedc.2007.01.032
10.1080/14697688.2016.1178855
10.1038/srep15758
10.1103/PhysRevE.92.040802
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1088/1367-2630/ab74a7
DatabaseName Institute of Physics Journals Open Access
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A faster horse on a safer trail: generalized inference for the efficient reconstruction of weighted networks
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_810c609d17f44ed894e53a5ccfe52e25
10_1088_1367_2630_ab74a7
njpab74a7
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M45
M48
M~E
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c448t-dbbb2b5822363293f02555032be0a1cf3afe85762f39d6ee9351643f2a53401c3
IEDL.DBID BENPR
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538446300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-2630
IngestDate Tue Oct 14 19:04:47 EDT 2025
Fri Jun 27 07:41:35 EDT 2025
Tue Nov 18 21:19:18 EST 2025
Sat Nov 29 02:51:22 EST 2025
Wed Aug 21 03:34:52 EDT 2024
Thu Jan 07 15:21:03 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-dbbb2b5822363293f02555032be0a1cf3afe85762f39d6ee9351643f2a53401c3
Notes NJP-111207.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6035-1783
0000-0001-9011-966X
OpenAccessLink https://www.proquest.com/docview/2408555206?pq-origsite=%requestingapplication%
PQID 2408555206
PQPubID 4491272
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_810c609d17f44ed894e53a5ccfe52e25
proquest_journals_2408555206
iop_journals_10_1088_1367_2630_ab74a7
crossref_citationtrail_10_1088_1367_2630_ab74a7
crossref_primary_10_1088_1367_2630_ab74a7
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Garlaschelli (njpab74a7bib27) 2008; 78
Squartini (njpab74a7bib29) 2017
Cimini (njpab74a7bib2) 2019; 1
Montagna (njpab74a7bib16) 2017; 17
Akaike (njpab74a7bib34) 1974; 19
Mistrulli (njpab74a7bib12) 2011; 35
Cimini (njpab74a7bib5) 2015; 5
Hałaj (njpab74a7bib7) 2013; 10
Upper (njpab74a7bib11) 2011; 7
Cimini (njpab74a7bib4) 2015; 92
Andrecut (njpab74a7bib6) 2016; 27
Gandy (njpab74a7bib9) 2016; 63
Anand (njpab74a7bib13) 2015; 15
Gabrielli (njpab74a7bib24) 2019; 99
njpab74a7bib30
Mastrandrea (njpab74a7bib3) 2014; 16
Ramadiah (njpab74a7bib22) 2017; 84
Baral (njpab74a7bib14) 2012
Squartini (njpab74a7bib36) 2017; 2
Wells (njpab74a7bib10) 2005; 2004
Lebacher (njpab74a7bib23) 2019
Gleditsch (njpab74a7bib31) 2002; 46
Iori (njpab74a7bib32) 2006; 32
Drehmann (njpab74a7bib15) 2013; 22
Anand (njpab74a7bib20) 2018; 35
Mastromatteo (njpab74a7bib17) 2012
Squartini (njpab74a7bib33) 2011; 84
Squartini (njpab74a7bib25) 2015; 17
Cover (njpab74a7bib26) 2006
Squartini (njpab74a7bib35) 2013; 3
Bacharach (njpab74a7bib8) 1965; 6
Di Giangi (njpab74a7bib18) 2016
Moussa (njpab74a7bib19) 2016
Mazzarisi (njpab74a7bib21) 2017
Squartini (njpab74a7bib1) 2018; 757
Squartini (njpab74a7bib28) 2011; 13
References_xml – start-page: 201
  year: 2017
  ident: njpab74a7bib21
  article-title: Methods for reconstructing interbank networks from limited information: a comparisons
  doi: 10.1007/978-3-319-47705-3_15
– volume: 99
  year: 2019
  ident: njpab74a7bib24
  article-title: The grand canonical ensemble of weighted networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.030301
– volume: 16
  year: 2014
  ident: njpab74a7bib3
  article-title: Enhanced reconstruction of weighted networks from strengths and degrees
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/4/043022
– year: 2016
  ident: njpab74a7bib18
  article-title: Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction
– year: 2019
  ident: njpab74a7bib23
  article-title: In search of lost edges: a case study on reconstructing financial networks
– volume: 84
  year: 2011
  ident: njpab74a7bib33
  article-title: Randomizing world trade: II. A weighted network analysis
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.046118
– volume: 46
  start-page: 712
  year: 2002
  ident: njpab74a7bib31
  article-title: Expanded trade and GDP data
  publication-title: J. Conflicts Resolution
  doi: 10.1177/0022002702046005006
– volume: 10
  start-page: 157
  year: 2013
  ident: njpab74a7bib7
  article-title: Assessing interbank contagion using simulated networks
  publication-title: Comput. Manage. Sci.
  doi: 10.1007/s10287-013-0168-4
– year: 2016
  ident: njpab74a7bib19
  article-title: Contagion and systemic risk in financial networks
– volume: 3
  start-page: 3357
  year: 2013
  ident: njpab74a7bib35
  article-title: Early-warning signals of topological collapse in interbank networks
  publication-title: Sci. Rep.
  doi: 10.1038/srep03357
– volume: 757
  start-page: 1
  year: 2018
  ident: njpab74a7bib1
  article-title: Reconstruction methods for networks: the case of economic and financial systems
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2018.06.008
– volume: 63
  start-page: 12
  year: 2016
  ident: njpab74a7bib9
  article-title: A Bayesian methodology for systemic risk assessment in financial networks
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.2016.2546
– year: 2012
  ident: njpab74a7bib14
  article-title: Estimation of bilateral exposures
– year: 2006
  ident: njpab74a7bib26
– volume: 13
  year: 2011
  ident: njpab74a7bib28
  article-title: Analytical maximum-likelihood method to detect patterns in real networks
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/8/083001
– volume: 6
  start-page: 294
  year: 1965
  ident: njpab74a7bib8
  article-title: Estimating nonnegative matrices from marginal data
  publication-title: Int. Econ. Rev.
  doi: 10.2307/2525582
– volume: 1
  start-page: 58
  year: 2019
  ident: njpab74a7bib2
  article-title: The statistical physics of real-world networks
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0002-6
– volume: 22
  start-page: 586
  year: 2013
  ident: njpab74a7bib15
  article-title: Measuring the systemic importance of interconnected banks
  publication-title: J. Financ. Intermediation
  doi: 10.1016/j.jfi.2013.08.001
– volume: 2
  start-page: 3
  year: 2017
  ident: njpab74a7bib36
  article-title: Network reconstruction via density sampling
  publication-title: Appl. Netw. Sci.
  doi: 10.1007/s41109-017-0021-8
– volume: 19
  start-page: 716
  year: 1974
  ident: njpab74a7bib34
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume: 15
  start-page: 625
  year: 2015
  ident: njpab74a7bib13
  article-title: Filling in the blanks: network structure and interbank contagion
  publication-title: Quant. Finance
  doi: 10.1080/14697688.2014.968195
– volume: 2004
  start-page: 230
  year: 2005
  ident: njpab74a7bib10
  article-title: Financial interlinkages in the United Kingdom’s interbank market and the risk of contagion
  publication-title: Bank of England
  doi: 10.2139/ssrn.641288
– volume: 7
  start-page: 111
  year: 2011
  ident: njpab74a7bib11
  article-title: Simulation methods to assess the danger of contagion in interbank markets
  publication-title: J. Financ. Stab.
  doi: 10.1016/j.jfs.2010.12.001
– volume: 17
  year: 2015
  ident: njpab74a7bib25
  article-title: Unbiased sampling of network ensembles
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/2/023052
– volume: 27
  year: 2016
  ident: njpab74a7bib6
  article-title: Systemic risk, maximum entropy and interbank contagion
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183116501485
– volume: 84
  start-page: 44
  year: 2017
  ident: njpab74a7bib22
  article-title: Reconstructing and stress testing credit networks
  publication-title: ESRB Working Paper Series
  doi: 10.2139/ssrn.3084543
– volume: 35
  start-page: 1114
  year: 2018
  ident: njpab74a7bib20
  article-title: The missing links: a global study on uncovering financial network structures from partial data
  publication-title: J. Financ. Stab.
  doi: 10.1016/j.jfs.2017.05.012
– volume: 78
  year: 2008
  ident: njpab74a7bib27
  article-title: Maximum likelihood: extracting unbiased information from complex networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.015101
– year: 2012
  ident: njpab74a7bib17
  article-title: Reconstruction of financial networks for robust estimation of systemic risk
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2012/03/P03011
– volume: 35
  start-page: 1114
  year: 2011
  ident: njpab74a7bib12
  article-title: Assessing financial contagion in the interbank market: maximum entropy versus observed interbank lending patterns
  publication-title: J. Bank. Financ.
  doi: 10.1016/j.jbankfin.2010.09.018
– volume: 32
  start-page: 259
  year: 2006
  ident: njpab74a7bib32
  article-title: A network analysis of the Italian overnight money market
  publication-title: J. Econ. Dyn. Control
  doi: 10.1016/j.jedc.2007.01.032
– ident: njpab74a7bib30
– year: 2017
  ident: njpab74a7bib29
  article-title: Reconnecting statistical physics and combinatorics beyond ensemble equivalence
– volume: 17
  start-page: 101
  year: 2017
  ident: njpab74a7bib16
  article-title: Contagion risk in the interbank market: a probabilistic approach to cope with incomplete structural information
  publication-title: Quant. Finance
  doi: 10.1080/14697688.2016.1178855
– volume: 5
  start-page: 15758
  year: 2015
  ident: njpab74a7bib5
  article-title: Systemic risk analysis on reconstructed economic and financial networks
  publication-title: Sci. Rep.
  doi: 10.1038/srep15758
– volume: 92
  year: 2015
  ident: njpab74a7bib4
  article-title: Estimating topological properties of weights networks from limited information
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.040802
SSID ssj0011822
Score 2.4880767
Snippet Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system, including the implied level of systemic...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 53053
SubjectTerms complex networks
Density
Entropy
entropy maximization
Horses
network reconstruction
Network topologies
Optimization
Physics
Probability distribution functions
Reconstruction
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7EJ64vctCDh7JpHm3jTUXxtHhQ2FvIU1ekXawo-OudpN1VEfQi9BQSmsxMMvM1028QOpJOS-qYzEiwZcZ1PAeLSAQpC-EgfGVck1RsohyNqvFY3nwp9RVzwjp64E5wwyontiDS5WXg3LtKci-YFtYGL6inib2UlHIGpvr7A4iaaX8pCdtoGHnJMlowMtSm5Lr85oQSVz-4lkkz_XEgJy9ztYZW-_AQn3XTWkcLvt5AyylN07ab6OkMBx2pDfBD89x63NRY41YHaIi1Hp5O8X1HIz159w5PZj_zYYhMMUR62CfCCPAzOAHhOXksbgJ-Sx9JYVjdZYa3W-ju6vL24jrr6yVkFkDWS-aMMdQIWDorGLjxEPGCIIwaT3RuA4PpVIAvaGDSFd5LJgAssUC1YACzLNtGi3VT-x2EuQHZ5gb0xS03JDeV1oQZyStpKOhwgIYzASrbk4mndap0qV1VKopcRZGrTuQDdDIfMe2INH7pex51Mu8XKbBTAxiG6g1D_WUYA3QMGlX9lmx_eRn-1q9-nCpKlVBwPMGjpi4M0P7MLD77JW44ISgpdv9juntohUYon3Ip99EiGIA_QEv29WXSPh8m6_4AS6H7XQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Institute of Physics Journals Open Access
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxUxEB9qVfDit_i0Sg714GF92XzsJnqqYvFUe1DaW8infVJ2H93Sgn-9k-y-LUUpgrCHJUxIdmZ2PpLJLwC7OljNAtcVTb6thM12sMlAkLqRAcNXLiwtl020Bwfq-FgfbsGH-SxMv55M_zt8HYGCRxZOBXFqmUHGKtZwurSuFba9Bbe5QjeOyvyVH81bCBg4s2lf8m-9rvmhAteP3gWH_MMmF0ez_-C_pvgQ7k_xJdkbSR_BVuwew91S5-mHJ3C6R5LN2AjkpD8bIuk7YslgEzbkyyJO35MfIw716lcMZLU5DUgwtCUYKpJYECfQUZGSSc_os6RP5LKssmK3biwtH57C9_3P3z59qaYLFyqPWdp5FZxzzElkHG84xgEpJxyScuYitbVPHKejMEFhievQxKi5xGyLJ2YlxzzN82ew3fVdfA5EOBZZ7VDgwgtHa6espdxpobRjqAQLWG7Yb_yERl6-05RdcaVM5qHJPDQjDxfwdu6xHpE4bqD9mCU602UM7dKAwjKTsIyqqW-oDnWbhIhBaRElt9L7FCVOXi7gDcrXTP_0cMNg5Bpd93NtGDPSoH3Dx6xDWsDORqmu6Aq4nJSMNi_-caSXcI_ldL_UW-7ANso4voI7_uJ8NZy9Lur_GwOGA50
  priority: 102
  providerName: IOP Publishing
Title A faster horse on a safer trail: generalized inference for the efficient reconstruction of weighted networks
URI https://iopscience.iop.org/article/10.1088/1367-2630/ab74a7
https://www.proquest.com/docview/2408555206
https://doaj.org/article/810c609d17f44ed894e53a5ccfe52e25
Volume 22
WOSCitedRecordID wos000538446300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Journals Open Access
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: O3W
  dateStart: 19981217
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1367-2630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011822
  issn: 1367-2630
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYkLb8RCqXyAA4doHT-SmAtq0VZw6LJCIMrJ8rNdVCXppioSB347Y8e7VYW0F6TIh3isOJnxPOzJNwi9lk5L6pgsSLB1wXXUg1UEgpSVcOC-Mq5JKjZRz-fNyYlc5A23IadVrnViUtSus3GPfJqguISgpHrfXxSxalQ8Xc0lNG6j3YhUBnK-ezibL75szhHAe6b5cBKW0zTikxW0YmSqTc11fcMYJcx-MDHLrv9HMSdrc_Tgf-f5EN3PfiY-GAXjEbrl28fobsr3tMMTdH6Ag44YCfisWw0edy3WeNABbsSiEefv8OmIR7387R1erv8KxODiYnAZsU_IE2CwcIqoNyi0uAv4V9pthWHtmGI-PEXfjmZfP3wscuGFwkK0dlk4Yww1Ar4dqxj4AyEGHoIwajzRpQ0MptNAoEIDk67yXjIBURcLVAsG8Zplz9BO27X-OcLcUE9LA4znlhtSmkZrwozkjTQUhGGCpmsOKJtRydN7qnQ63jQq8kxFnqmRZxP0djOiHxE5ttAeRqZu6CKWdrrRrU5VXpqqKYmtiHRlHTj3rpHcC6aFtcELmLyYoDcgEiqv7WHLw_ANuvZnryhVQoGeg0v1LkzQ3lporumuJebF9u6X6B6N0X5Kt9xDO8Ba_wrdsVeXy2G1n0V_P-0qQHv8ZwbtZ_Ydehafjhc__gJpHg9m
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguPItYKOADPXCINvEjGyMhVB5VV21XeyhSORnbscuiKlk2FRX8KH4jYyfZqkLaWw9IOSW2E8efZ8ae8TcAr2SpJS2ZTFJvxwnXQQ7mgQhS5qJE85VxncZkE-PptDg5kbMN-NOfhQlhlb1MjIK6rG3YIx9FKi4haJq_W_xIQtao4F3tU2i0sDhwvy5wyda8nXzE8d2hdO_T8Yf9pMsqkFhcipwnpTGGGoGKkeUMlZ0PVrVIGTUu1Zn1THtXoBVOPZNl7pxkApcUzFMtGC5GLMN2b8AmD2AfwOZscjT7svJboLVOO2coTt9R4ENLaM7SkTZjrsdXlF_MEYAqbV4v_lEEUbvt3fvf_st9uNvZ0WS3Bf4D2HDVQ7gV41lt8wjOdonXgQOCfKuXjSN1RTRpsO0lCUkxzt6Q05Zve_7blWTen3okaMITNImJi8waqJBJ3DFYseyS2pOLuJuM1ao2hL7Zgs_X0tXHMKjqyj0Bwg11NDMIbG65STNTaJ0yI3khDUWwD2HUj7iyHet67KeK3v-iUAEjKmBEtRgZwutVjUXLOLKm7PsAolW5wBUeb9TLU9WJHlVkqc1TWWZjz7krC8mdYFpY653AjxdD2EEIqk52NWteRq6Uq74vFKVKKJTjeKlF6Yew3YP0stwlQp-uf_wSbu8fHx2qw8n04BncoWFnI4aWbsMAh9k9h5v25_m8Wb7oph2Br9eN6L-eJWWA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BgYoL74qFAj7AgUNYx4_E5lYeKxBo6QFEb5afsKhKVk0FEr-esZNdVIEqJKQcomgsOzP2POzxNwCPdbCaBa4rmnxbCZv1YJOBIHUjA7qvXFhaik20y6U6OtKHU53TchemX0-q_xm-jkDBIwunhDg1zyBjFWs4nVvXCtvO1yFdhEsZpyRP6w_88_YYAZ1nNp1N_q3lGVtUIPvRwmC3f-jlYmwW1_97mDfg2uRnkoOR_CZciN0tuFLyPf1wG44PSLIZI4F87U-GSPqOWDLYhB9y0Yjj5-TLiEe9-hkDWW1uBRJ0cQm6jCQW5Ak0WKRE1FsUWtIn8qPstmKzbkwxH-7Ap8Xrjy_fVFPhhcpjtHZaBecccxKZxxuO_kDKgYeknLlIbe0Tx-EoDFRY4jo0MWouMeriiVnJMV7zfA92ur6Ld4EIxyKrHQpeeOFo7ZS1lDstlHYMJ8MM5hsRGD-hkpf_NOV0XCmT-WgyH83Ixxk83bZYj4gc59C-yFLd0mUs7fIBBWYmgRlVU99QHeo2CRGD0iJKbqX3KUocvJzBE5Sxmdb2cE5n5Axd921tGDPSoJ7Dx6D8Z7C_mVi_6QrInJSMNvf-sadHsHv4amHev12-uw9XWd4BKCmY-7CD4o4P4LL_froaTh6W1fALyScJBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+faster+horse+on+a+safer+trail%3A+generalized+inference+for+the+efficient+reconstruction+of+weighted+networks&rft.jtitle=New+journal+of+physics&rft.au=Parisi%2C+Federica&rft.au=Squartini%2C+Tiziano&rft.au=Garlaschelli%2C+Diego&rft.date=2020-05-01&rft.issn=1367-2630&rft.eissn=1367-2630&rft.volume=22&rft.issue=5&rft.spage=53053&rft_id=info:doi/10.1088%2F1367-2630%2Fab74a7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1367_2630_ab74a7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon