Local function approximation in evolutionary algorithms for the optimization of costly functions

We develop an approach for the optimization of continuous costly functions that uses a space-filling experimental design and local function approximation to reduce the number of function evaluations in an evolutionary algorithm. Our approach is to estimate the objective function value of an offsprin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 8; H. 5; S. 490 - 505
Hauptverfasser: Regis, R.G., Shoemaker, C.A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.10.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We develop an approach for the optimization of continuous costly functions that uses a space-filling experimental design and local function approximation to reduce the number of function evaluations in an evolutionary algorithm. Our approach is to estimate the objective function value of an offspring by fitting a function approximation model over the k nearest previously evaluated points, where k=(d+1)(d+2)/2 and d is the dimension of the problem. The estimated function values are used to screen offspring to identify the most promising ones for function evaluation. To fit function approximation models, a symmetric Latin hypercube design (SLHD) is used to determine initial points for function evaluation. We compared the performance of an evolution strategy (ES) with local quadratic approximation, an ES with local cubic radial basis function (RBF) interpolation, an ES whose initial parent population comes from an SLHD, and a conventional ES. These algorithms were applied to a twelve-dimensional (12-D) groundwater bioremediation problem involving a complex nonlinear finite-element simulation model. The performances of these algorithms were also compared on the Dixon-Szego test functions and on the ten-dimensional (10-D) Rastrigin and Ackley test functions. All comparisons involve analysis of variance (ANOVA) and the computation of simultaneous confidence intervals. The results indicate that ES algorithms with local approximation were significantly better than conventional ES algorithms and ES algorithms initialized by SLHDs on all Dixon-Szego test functions except for Goldstein-Price. However, for the more difficult 10-D and 12-D functions, only the cubic RBF approach was successful in improving the performance of an ES. Moreover, the results also suggest that the cubic RBF approach is superior to the quadratic approximation approach on all test functions and the difference in performance is statistically significant for all test functions with dimension d/spl ges/4.
AbstractList We develop an approach for the optimization of continuous costly functions that uses a space-filling experimental design and local function approximation to reduce the number of function evaluations in an evolutionary algorithm. Our approach is to estimate the objective function value of an offspring by fitting a function approximation model over the k nearest previously evaluated points, where k=(d+1)(d+2)/2 and d is the dimension of the problem. The estimated function values are used to screen offspring to identify the most promising ones for function evaluation. To fit function approximation models, a symmetric Latin hypercube design (SLHD) is used to determine initial points for function evaluation. We compared the performance of an evolution strategy (ES) with local quadratic approximation, an ES with local cubic radial basis function (RBF) interpolation, an ES whose initial parent population comes from an SLHD, and a conventional ES. These algorithms were applied to a twelve-dimensional (12-D) groundwater bioremediation problem involving a complex nonlinear finite-element simulation model. The performances of these algorithms were also compared on the Dixon-Szego test functions and on the ten-dimensional (10-D) Rastrigin and Ackley test functions. All comparisons involve analysis of variance (ANOVA) and the computation of simultaneous confidence intervals. The results indicate that ES algorithms with local approximation were significantly better than conventional ES algorithms and ES algorithms initialized by SLHDs on all Dixon-Szego test functions except for Goldstein-Price. However, for the more difficult 10-D and 12-D functions, only the cubic RBF approach was successful in improving the performance of an ES. Moreover, the results also suggest that the cubic RBF approach is superior to the quadratic approximation approach on all test functions and the difference in performance is statistically significant for all test functions with dimension d/spl ges/4.
We develop an approach for the optimization of continuous costly functions that uses a space-filling experimental design and local function approximation to reduce the number of function evaluations in an evolutionary algorithm. Our approach is to estimate the objective function value of an offspring by fitting a function approximation model over the k nearest previously evaluated points, where k=(d 1)(d 2)/2 and d is the dimension of the problem. The estimated function values are used to screen offspring to identify the most promising ones for function evaluation. To fit function approximation models, a symmetric Latin hypercube design (SLHD) is used to determine initial points for function evaluation. We compared the performance of an evolution strategy (ES) with local quadratic approximation, an ES with local cubic radial basis function (RBF) interpolation, an ES whose initial parent population comes from an SLHD, and a conventional ES. These algorithms were applied to a twelve-dimensional (12-D) groundwater bioremediation problem involving a complex nonlinear finite-element simulation model. The performances of these algorithms were also compared on the Dixon-Szego test functions and on the ten-dimensional (10-D) Rastrigin and Ackley test functions. All comparisons involve analysis of variance (ANOVA) and the computation of simultaneous confidence intervals. The results indicate that ES algorithms with local approximation were significantly better than conventional ES algorithms and ES algorithms initialized by SLHDs on all Dixon-Szego test functions except for Goldstein-Price. However, for the more difficult 10-D and 12-D functions, only the cubic RBF approach was successful in improving the performance of an ES. Moreover, the results also suggest that the cubic RBF approach is superior to the quadratic approximation approach on all test functions and the difference in performance is statistically significant for all test functions with dimension d/ges/4.
We develop an approach for the optimization of continuous costly functions that uses a space-filling experimental design and local function approximation to reduce the number of function evaluations in an evolutionary algorithm. Our approach is to estimate the objective function value of an offspring by fitting a function approximation model over the k nearest previously evaluated points, where k=(d+1)(d+2)/2 and d is the dimension of the problem. The estimated function values are used to screen offspring to identify the most promising ones for function evaluation. To fit function approximation models, a symmetric Latin hypercube design (SLHD) is used to determine initial points for function evaluation. We compared the performance of an evolution strategy (ES) with local quadratic approximation, an ES with local cubic radial basis function (RBF) interpolation, an ES whose initial parent population comes from an SLHD, and a conventional ES. These algorithms were applied to a twelve-dimensional (12-D) groundwater bioremediation problem involving a complex nonlinear finite-element simulation model. The performances of these algorithms were also compared on the Dixon-Szego test functions and on the ten-dimensional (10-D) Rastrigin and Ackley test functions. All comparisons involve analysis of variance (ANOVA) and the computation of simultaneous confidence intervals. The results indicate that ES algorithms with local approximation were significantly better than conventional ES algorithms and ES algorithms initialized by SLHDs on all Dixon-Szego test functions except for Goldstein-Price. However, for the more difficult 10-D and 12-D functions, only the cubic RBF approach was successful in improving the performance of an ES. Moreover, the results also suggest that the cubic RBF approach is superior to the quadratic approximation approach on all test functions and the difference in performance is statistically significant for all test functions with dimension d greater than or equal to 4.
Author Regis, R.G.
Shoemaker, C.A.
Author_xml – sequence: 1
  givenname: R.G.
  surname: Regis
  fullname: Regis, R.G.
  organization: Sch. of Oper.s Res. & Ind. Eng., Cornell Univ., Ithaca, NY, USA
– sequence: 2
  givenname: C.A.
  surname: Shoemaker
  fullname: Shoemaker, C.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16209261$$DView record in Pascal Francis
BookMark eNp9kc1rFTEUxYNUsK3uBTeDoLiZ571JZpIs5VE_4IGbKu5iyCQ2Zd7kmWSKz7_eTKdUKOgqufA7h3vPOSMnU5wcIc8RNoig3l5efN1uKADfSNZRLh6RU1QcWwDan9Q_SNUKIb89IWc5XwMg71Cdku-7aM3Y-HmyJcSpMYdDir_C3txOYWrcTRznZTDp2JjxR0yhXO1z42NqypVr4qGEffi98tE3NuYyHu8N81Py2Jsxu2d37zn58v7icvux3X3-8Gn7btdazmVpBwnSo_HIEDh6oRQ4M3TMi26wXBne044iH-QwdN5RahUD1_Ve8QGUV4Kdk9erb93_5-xy0fuQrRtHM7k4Z00lQy4Yq-Cb_4LYC2Q1NdpX9OUD9DrOaapnaCmV5LSXC_TqDjK5RumTmWzI-pBqiOlY7Sgo2mPl-pWzKeacnNc2lNvYSjJh1Ah6KVIvReqlSL0WWYXwQHjv_W_Ji1USnHN_ccZFXYf9AVu5q1o
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_advwatres_2013_01_003
crossref_primary_10_5194_hess_24_4641_2020
crossref_primary_10_1109_TMAG_2010_2096461
crossref_primary_10_1007_s11071_021_06983_2
crossref_primary_10_1016_j_envsoft_2015_12_008
crossref_primary_10_1109_TEVC_2009_2033671
crossref_primary_10_1162_evco_2008_16_2_185
crossref_primary_10_1061__ASCE_WR_1943_5452_0000053
crossref_primary_10_1080_0305215X_2012_687731
crossref_primary_10_1016_j_eneco_2018_12_022
crossref_primary_10_1016_j_jhydrol_2015_11_033
crossref_primary_10_1016_j_jocs_2013_07_004
crossref_primary_10_1007_s10898_021_01019_w
crossref_primary_10_1109_TEVC_2009_2027359
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_1162_evco_2009_17_3_379
crossref_primary_10_1007_s10040_015_1272_z
crossref_primary_10_1016_j_eswa_2016_03_044
crossref_primary_10_1029_2011WR011527
crossref_primary_10_1109_TII_2019_2962137
crossref_primary_10_1016_j_cor_2010_09_013
crossref_primary_10_1007_s12065_011_0066_z
crossref_primary_10_1007_s12065_023_00862_y
crossref_primary_10_1016_j_asoc_2012_04_021
crossref_primary_10_1109_TMAG_2007_916292
crossref_primary_10_1016_j_eswa_2017_01_037
crossref_primary_10_1007_s11269_016_1337_3
crossref_primary_10_1109_TEVC_2005_851274
crossref_primary_10_1007_s11081_020_09556_1
crossref_primary_10_1016_j_cageo_2013_08_008
crossref_primary_10_1108_03321640710751217
crossref_primary_10_1623_hysj_52_3_450
crossref_primary_10_1177_09544070251354871
crossref_primary_10_1177_0021998307088592
crossref_primary_10_1016_j_compchemeng_2019_106567
crossref_primary_10_5004_dwt_2018_22330
crossref_primary_10_1016_j_swevo_2020_100694
crossref_primary_10_1007_s00500_006_0145_8
crossref_primary_10_1109_TEVC_2008_919006
crossref_primary_10_1109_TEVC_2013_2262111
crossref_primary_10_1109_TEVC_2005_859465
crossref_primary_10_1016_j_jhydrol_2020_125351
crossref_primary_10_1007_s10898_016_0407_7
crossref_primary_10_1016_j_engappai_2012_04_005
crossref_primary_10_1016_j_jhydrol_2017_03_013
crossref_primary_10_1016_j_asoc_2015_04_010
crossref_primary_10_1016_j_envsoft_2023_105639
crossref_primary_10_1111_exsy_12105
crossref_primary_10_1007_s10040_015_1260_3
crossref_primary_10_1109_TCYB_2018_2811761
crossref_primary_10_1016_j_eswa_2019_113016
crossref_primary_10_1109_TEVC_2005_846356
crossref_primary_10_5004_dwt_2019_24204
crossref_primary_10_1145_3459664
crossref_primary_10_1109_TEVC_2017_2694221
crossref_primary_10_1145_2508148_2485924
crossref_primary_10_1287_ijoc_2025_ed_v37_n4
crossref_primary_10_1016_j_jhydrol_2020_125752
crossref_primary_10_1016_j_cma_2022_115734
crossref_primary_10_1016_j_swevo_2022_101099
crossref_primary_10_1016_j_envsoft_2011_09_010
crossref_primary_10_1109_TEVC_2005_859463
crossref_primary_10_1016_j_ejor_2015_10_043
crossref_primary_10_1016_j_advwatres_2008_08_006
crossref_primary_10_1016_j_advwatres_2011_09_007
crossref_primary_10_1016_j_patcog_2009_07_016
crossref_primary_10_2166_hydro_2020_010
crossref_primary_10_1016_j_jhydrol_2022_128159
crossref_primary_10_1021_acs_iecr_6b04395
crossref_primary_10_1109_ACCESS_2019_2944196
crossref_primary_10_1007_s12293_012_0090_2
crossref_primary_10_1109_TEVC_2010_2040180
crossref_primary_10_2166_hydro_2024_232
crossref_primary_10_1016_j_envsoft_2020_104910
crossref_primary_10_1007_s11590_020_01575_2
crossref_primary_10_1016_j_ijggc_2016_03_003
crossref_primary_10_1109_TEVC_2013_2281538
crossref_primary_10_1016_j_cor_2016_10_003
crossref_primary_10_1007_s10898_017_0516_y
crossref_primary_10_1007_s12065_011_0056_1
crossref_primary_10_1162_EVCO_a_00079
crossref_primary_10_1287_ijoc_2022_1260
crossref_primary_10_1016_j_asoc_2015_10_055
crossref_primary_10_1080_00423114_2020_1804598
crossref_primary_10_1109_MCI_2011_942584
crossref_primary_10_1155_2013_695172
crossref_primary_10_1109_TCYB_2018_2809430
crossref_primary_10_1109_ACCESS_2019_2909743
crossref_primary_10_5004_dwt_2017_20381
crossref_primary_10_1007_s10898_015_0270_y
crossref_primary_10_1016_j_cageo_2010_11_005
Cites_doi 10.1023/A:1008306431147
10.1093/oso/9780195099713.001.0001
10.1061/(ASCE)0733-9496(1999)125:1(54)
10.1029/91wr02826
10.1145/321127.321128
10.1002/0471749214
10.1109/20.582647
10.1214/ss/1177012413
10.1109/ICEC.1996.542329
10.1007/978-1-4613-8122-8
10.1109/CEC.1999.785531
10.2307/1268522
10.1023/A:1011584207202
10.2514/6.1996-4019
10.2514/6.2000-4841
10.1007/978-3-0348-5927-1
10.2172/7192422
10.2514/6.2000-4923
10.1109/CEC.2002.1006266
10.2514/6.1997-1230
10.2514/6.1996-714
10.1109/CEC.2001.934445
10.1109/TEVC.2002.800884
10.1007/978-1-4613-1997-9
10.1109/CEC.2000.870752
10.1093/oso/9780198534396.003.0003
10.1023/A:1012771025575
10.1016/S0378-3758(00)00105-1
10.1109/20.767363
10.1007/978-3-0348-8696-3_14
10.1023/A:1011255519438
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TEVC.2004.835247
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1941-0026
EndPage 505
ExternalDocumentID 2453795461
16209261
10_1109_TEVC_2004_835247
1347162
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c448t-d808f1af131041f7990ead53f75dc49a4625214d8dd5fe22c930e56f94d09f973
IEDL.DBID RIE
ISICitedReferencesCount 124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000224565900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Sep 28 09:43:54 EDT 2025
Sat Sep 27 18:20:53 EDT 2025
Sun Nov 30 04:39:58 EST 2025
Mon Jul 21 09:14:41 EDT 2025
Tue Nov 18 22:37:15 EST 2025
Sat Nov 29 08:05:32 EST 2025
Tue Aug 26 16:39:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Statistical analysis
Evolutionary algorithm
evolutionary algorithm (EA)
Numerical method
Nonlinear problems
Symmetric function
Approximation algorithm
quadratic regression
Variance analysis
Modeling
Optimization
radial basis function (RBF)
Radial basis function
Finite element method
Algorithm performance
Genetic algorithm
function approximation
Approximation by function
Quadratic approximation
Cost function
Latin hypercube
Objective function
Costly function
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-d808f1af131041f7990ead53f75dc49a4625214d8dd5fe22c930e56f94d09f973
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 889842686
PQPubID 23500
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2004_835247
crossref_primary_10_1109_TEVC_2004_835247
proquest_miscellaneous_1671300226
proquest_miscellaneous_28314733
ieee_primary_1347162
proquest_journals_889842686
pascalfrancis_primary_16209261
PublicationCentury 2000
PublicationDate 2004-10-01
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2004
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
Liu (ref16)
ref14
Sellar (ref19)
ref53
ref11
ref55
Box (ref1) 1987
Schwefel (ref58); 2
Neter (ref59) 1985
ref18
Jones (ref5) 1998; 13
Powell (ref13) 1992
Padmanabhan (ref17)
Khuri (ref2) 1987
Rechenberg (ref46) 1973
Jones (ref4) 2001; 21
Jin (ref24)
ref42
Chen (ref15)
ref41
ref43
Dixon (ref37) 1978
Rastrigin (ref38) 1974
ref6
Myers (ref3) 1995
Gutmann (ref10) 2001; 19
ref40
Ackley (ref39) 1987
Ghosh (ref32) 1996
Fogel (ref52) 1966
Shoemaker (ref57) 2001
Ye (ref34) 2000; 90
ref36
ref33
Bickel (ref61) 1977
Holland (ref44) 1975
Rasheed (ref30)
Simpson (ref7); 1
Jin (ref29)
Schwefel (ref50) 1995
Taylor (ref54)
Shoemaker (ref56)
Ratle (ref20) 1998
Rechenberg (ref47) 1994
ref26
Schwefel (ref49) 1981
ref25
ref21
Björkman (ref8) 2000; 1
El-Beltagy (ref22)
ref28
Schwefel (ref35) 1977
ref27
Gutmann (ref9) 2001
El-Beltagy (ref23)
ref60
Rechenberg (ref45) 1965
Gutmann (ref31) 2000
Schwefel (ref48) 1965
Fogel (ref51)
References_xml – volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: ref5
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Opt.
  doi: 10.1023/A:1008306431147
– ident: ref41
  doi: 10.1093/oso/9780195099713.001.0001
– ident: ref36
  doi: 10.1061/(ASCE)0733-9496(1999)125:1(54)
– start-page: 261
  volume-title: North-Holland
  year: 1996
  ident: ref32
– ident: ref55
  doi: 10.1029/91wr02826
– volume-title: On the semi-norm of radial basis function interpolants
  year: 2000
  ident: ref31
– ident: ref43
  doi: 10.1145/321127.321128
– start-page: 395
  volume-title: Proc. Int. Federation Information Processing Congr.
  ident: ref51
  article-title: Toward inductive inference automata
– volume-title: Applied Linear Statistical Models
  year: 1985
  ident: ref59
– ident: ref42
  doi: 10.1002/0471749214
– volume-title: Empirical Model-Building and Response Surfaces
  year: 1987
  ident: ref1
– ident: ref11
  doi: 10.1109/20.582647
– ident: ref6
  doi: 10.1214/ss/1177012413
– ident: ref40
  doi: 10.1109/ICEC.1996.542329
– volume-title: Radial basis function methods for global optimization
  year: 2001
  ident: ref9
– start-page: 87
  volume-title: Parallel Problem Solving from Nature—PPSN V, Springer Verlag, Lecture Notes in Computer Science
  year: 1998
  ident: ref20
  article-title: Accelerating the convergence of evolutionary algorithms by fitness landscape approximation
– ident: ref60
  doi: 10.1007/978-1-4613-8122-8
– start-page: 1
  volume-title: Toward Global Optimization 2
  year: 1978
  ident: ref37
  article-title: The global optimization problem: An introduction
– volume: 1
  start-page: 381
  volume-title: Proc. 7th AIAA/USAF/NASA/ISSMO Symp. Multidisciplinary Analysis Optimization
  ident: ref7
  article-title: Comparison of response surface and kriging models for multidisciplinary design optimization
– ident: ref21
  doi: 10.1109/CEC.1999.785531
– volume-title: Evolutionsstragie’94 Volume 1 of Werkstatt Bionik und Evolutionstechnik
  year: 1994
  ident: ref47
– ident: ref53
  doi: 10.2307/1268522
– volume-title: 2003 INFORMS Annu. Meeting
  ident: ref56
  article-title: Function approximation optimization for costly nonlinear models with environmental examples
– volume: 1
  start-page: 373
  issue: 4
  year: 2000
  ident: ref8
  article-title: Global optimization of costly nonconvex functions using radial basis functions
  publication-title: Opt. Eng.
  doi: 10.1023/A:1011584207202
– ident: ref18
  doi: 10.2514/6.1996-4019
– volume-title: Artificial Intelligence through Simulated Evolution
  year: 1966
  ident: ref52
– volume-title: Response Surfaces
  year: 1987
  ident: ref2
– start-page: 708
  volume-title: Proc. Int. Conf. Artificial Intelligence IC-AI’2001, Vol. II
  ident: ref23
  article-title: Evolutionary optimization for computationally expensive problems using Gaussian processes
– start-page: 1180
  volume-title: Proc. Genetic Evolutionary Computation Conf. (GECCO)
  ident: ref30
  article-title: Comparison of methods for using reduced models to speed up design optimization
– start-page: 4-51
  volume-title: Proc. 1993 Groundwater Modeling Conf.
  ident: ref54
  article-title: Modeling enhanced in-situ biodegradation in groundwater: Model response to biological parameter uncertainty
– volume-title: Evolution and Optimum Seeking
  year: 1995
  ident: ref50
– volume-title: AIAA Multidisciplinary Analysis and Optimization Conf. Exhibit
  ident: ref17
  article-title: An iterative concurrent subspace robust design framework
  doi: 10.2514/6.2000-4841
– start-page: 1105
  volume-title: Proc. Genetic Evolutionary Computation Conf. (GECCO)
  ident: ref29
  article-title: Fitness approximation in evolutionary computation—A survey
– volume-title: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Vol. 26 of Interdisciplinary Systems Research
  year: 1977
  ident: ref35
  doi: 10.1007/978-3-0348-5927-1
– ident: ref33
  doi: 10.2172/7192422
– volume-title: Adaptation in Natural and Artificial Systems
  year: 1975
  ident: ref44
– volume-title: AIAA Multidisciplinary Analysis and Optimization Conf. Exhibit
  ident: ref16
  article-title: Gradient-enhanced neural network response surface approximations
  doi: 10.2514/6.2000-4923
– volume-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments
  year: 1995
  ident: ref3
– ident: ref28
  doi: 10.1109/CEC.2002.1006266
– volume-title: 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, Materials Conf. AIAA/ASME/AHS Adaptive Structures Forum
  ident: ref15
  article-title: Integration of design of experiments and artificial neural networks for achieving affordable concurrent design
  doi: 10.2514/6.1997-1230
– volume-title: Mathematical Statistics
  year: 1977
  ident: ref61
– volume-title: AIAA Aerospace Sciences Meeting and Exhibit
  ident: ref19
  article-title: Response surface based, concurrent subspace optimization for multidisciplinary system design
  doi: 10.2514/6.1996-714
– start-page: 196
  volume-title: Proc. Genetic Evolutionary Computation Conf., Vol. 1
  ident: ref22
  article-title: Metamodeling techniques for evolutionary optimization of computationally expensive problems: Promises and limitations
– ident: ref25
  doi: 10.1109/CEC.2001.934445
– ident: ref26
  doi: 10.1109/TEVC.2002.800884
– start-page: 786
  volume-title: Proc. Genetic Evolutionary Computation Conf.
  ident: ref24
  article-title: On evolutionary optimization with approximate fitness functions
– volume-title: Numerical Optimization of Computer Experiments
  year: 1981
  ident: ref49
– volume-title: A Connectionist Machine for Genetic Hillclimbing
  year: 1987
  ident: ref39
  doi: 10.1007/978-1-4613-1997-9
– ident: ref27
  doi: 10.1109/CEC.2000.870752
– start-page: 125
  volume-title: Innovative Methods in Support of Bioremediation
  year: 2001
  ident: ref57
  article-title: Model analysis of reductive dechlorination with data from cape canaveral field site
– start-page: 105
  volume-title: Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms and Radial Basis Functions
  year: 1992
  ident: ref13
  article-title: The theory of radial basis function approximation in 1990
  doi: 10.1093/oso/9780198534396.003.0003
– volume-title: Cybernetic Solution Path of an Experimental Problem
  year: 1965
  ident: ref45
– volume-title: Kybernetische Evolution als Strategie der experimentellen Forschung in der Strömungstechnik
  year: 1965
  ident: ref48
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: ref4
  article-title: A taxonomy of global optimization methods based on response surfaces
  publication-title: J. Global Opt.
  doi: 10.1023/A:1012771025575
– volume-title: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution
  year: 1973
  ident: ref46
– volume: 90
  start-page: 145
  year: 2000
  ident: ref34
  article-title: Algorithmic construction of orthogonal symmetric latin hypercube designs
  publication-title: J. Statis. Planning Inference
  doi: 10.1016/S0378-3758(00)00105-1
– volume-title: Systems of Extremal Control
  year: 1974
  ident: ref38
– ident: ref12
  doi: 10.1109/20.767363
– ident: ref14
  doi: 10.1007/978-3-0348-8696-3_14
– volume: 2
  start-page: 1025
  volume-title: Preprints of the 31st Annu. Meeting Int. Soc. for General System Research
  ident: ref58
  article-title: Collective phenomena in evolutionary systems
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: ref10
  article-title: A radial basis function method for global optimization
  publication-title: J. Global Opt.
  doi: 10.1023/A:1011255519438
SSID ssj0014519
Score 2.1713853
Snippet We develop an approach for the optimization of continuous costly functions that uses a space-filling experimental design and local function approximation to...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 490
SubjectTerms Algorithms
Analysis of variance
Applied sciences
Approximation
Approximation algorithms
Artificial intelligence
Computer science; control theory; systems
Design engineering
Design for experiments
Design optimization
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Finite element methods
Function approximation
Hypercubes
Interpolation
Mathematical analysis
Mathematical models
Mathematical programming
Operational research and scientific management
Operational research. Management science
Optimization
Problem solving, game playing
Testing
Title Local function approximation in evolutionary algorithms for the optimization of costly functions
URI https://ieeexplore.ieee.org/document/1347162
https://www.proquest.com/docview/889842686
https://www.proquest.com/docview/1671300226
https://www.proquest.com/docview/28314733
Volume 8
WOSCitedRecordID wos000224565900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMcKLQgQqEYiQsS6ebhxPYRVa04oIpDQXsLXj9gpW2CNtmK_ntm7GxaxEPilEi2Iysz4_nG8wJ4bWzl_KLQqSnptmpRilQtJGWjZd7WSqN4mdBsQpyfy_lcfdyBt1MujHMuBJ-5Y3oNvnzbmQ1dlc0o7TGnA_eOECLmak0eAyqTEoPpFSJGOd-6JDM1uzj9fBIswWOCG9RI5ZYKCj1VKCJS9_hTfOxm8dvBHLTN2d7_7fMhPBhRJXsX2eAR7Lh2H_a2HRvYKMD7cP9W-cED-PKBFBkj1UbkYaG--I9lTGZky5a5q5Ex9fqa6dXXbr0cvl32DIEuQ-DIOjxvLsdETtZ5Zrp-WF1PH-wfw6ez04uT9-nYcSE1aKYNqZWZ9Ln2OYI-nnuBqgo5rSq9qKzhSnO0loqcW2lt5V1RGFVmrqq94jZTXonyCey2XeueAtPGcysWssInV5zKosm8pvpkpcqLzCQw2xKhMWM5cuqKsWqCWZKphshGXTJ5E8mWwJtpxfdYiuMfcw-ILDfzIkUSOPqFzjfjdZEpNCYTONwSvhmFuW-kVBKBjKwTeDWNohSSa0W3rtv0uF6QXxCxbAIv_zIHgVzORVk--_PeDuFeLCJJgYLPYXdYb9wLuGuuhmW_PgrM_hOYnP4O
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQk4UGhBhEJrJC5IpBsnTmIfUdWqiGXFYUF7C14_ykrbpNpkq_bf47GzaREPiVMi2Y6szIznG88L4K3SubHzVMYqw9uqeVbGYs4xGy2xuhDSiZfyzSbKyYTPZuLLFrwfcmGMMT74zBzhq_fl60at8apshGmPFA_cezljKQ3ZWoPPAAulhHB64TAjn22ckokYTU--HXtb8AgBB7ZSuaOEfFcVjImUrfstNvSz-O1o9vrmdOf_dvoEHve4knwIjPAUtky9Czubng2kF-FdeHSnAOEefB-jKiOo3JBAxFcYv16EdEayqIm56llTrm6IXJ43q0X346IlDuoSBx1J406ciz6VkzSWqKbtljfDB9tn8PX0ZHp8Fvc9F2LlDLUu1jzhlkpLHexj1JZOWTleyzNb5loxIZmzl1LKNNc6tyZNlcgSkxdWMJ0IK8rsOWzXTW1eAJHKMl3Oee6eTDAsjMZpgRXKMkHTREUw2hChUn1BcuyLsay8YZKICsmGfTJZFcgWwbthxWUoxvGPuXtIltt5gSIRHPxC59vxIk2EMycj2N8QvurFua04F9xBGV5E8GYYdXKIzhVZm2bduvUlegYdmo3g8C9zHJSjrMyyl3_e2yE8OJt-Hlfjj5NP-_AwlJTEsMFXsN2t1uY13FdX3aJdHXjG_wns6AFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+function+approximation+in+evolutionary+algorithms+for+the+optimization+of+costly+functions&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Regis%2C+R.G&rft.au=Shoemaker%2C+C.A&rft.date=2004-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=8&rft.issue=5&rft.spage=490&rft_id=info:doi/10.1109%2FTEVC.2004.835247&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2453795461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon