Bayesian hierarchical modeling based on multisource exchangeability
Bayesian hierarchical models produce shrinkage estimators that can be used as the basis for integrating supplementary data into the analysis of a primary data source. Established approaches should be considered limited, however, because posterior estimation either requires prespecification of a shri...
Saved in:
| Published in: | Biostatistics (Oxford, England) Vol. 19; no. 2; p. 169 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
01.04.2018
|
| Subjects: | |
| ISSN: | 1468-4357, 1468-4357 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Bayesian hierarchical models produce shrinkage estimators that can be used as the basis for integrating supplementary data into the analysis of a primary data source. Established approaches should be considered limited, however, because posterior estimation either requires prespecification of a shrinkage weight for each source or relies on the data to inform a single parameter, which determines the extent of influence or shrinkage from all sources, risking considerable bias or minimal borrowing. We introduce multisource exchangeability models (MEMs), a general Bayesian approach for integrating multiple, potentially non-exchangeable, supplemental data sources into the analysis of a primary data source. Our proposed modeling framework yields source-specific smoothing parameters that can be estimated in the presence of the data to facilitate a dynamic multi-resolution smoothed estimator that is asymptotically consistent while reducing the dimensionality of the prior space. When compared with competing Bayesian hierarchical modeling strategies, we demonstrate that MEMs achieve approximately 2.2 times larger median effective supplemental sample size when the supplemental data sources are exchangeable as well as a 56% reduction in bias when there is heterogeneity among the supplemental sources. We illustrate the application of MEMs using a recently completed randomized trial of very low nicotine content cigarettes, which resulted in a 30% improvement in efficiency compared with the standard analysis. |
|---|---|
| AbstractList | Bayesian hierarchical models produce shrinkage estimators that can be used as the basis for integrating supplementary data into the analysis of a primary data source. Established approaches should be considered limited, however, because posterior estimation either requires prespecification of a shrinkage weight for each source or relies on the data to inform a single parameter, which determines the extent of influence or shrinkage from all sources, risking considerable bias or minimal borrowing. We introduce multisource exchangeability models (MEMs), a general Bayesian approach for integrating multiple, potentially non-exchangeable, supplemental data sources into the analysis of a primary data source. Our proposed modeling framework yields source-specific smoothing parameters that can be estimated in the presence of the data to facilitate a dynamic multi-resolution smoothed estimator that is asymptotically consistent while reducing the dimensionality of the prior space. When compared with competing Bayesian hierarchical modeling strategies, we demonstrate that MEMs achieve approximately 2.2 times larger median effective supplemental sample size when the supplemental data sources are exchangeable as well as a 56% reduction in bias when there is heterogeneity among the supplemental sources. We illustrate the application of MEMs using a recently completed randomized trial of very low nicotine content cigarettes, which resulted in a 30% improvement in efficiency compared with the standard analysis.Bayesian hierarchical models produce shrinkage estimators that can be used as the basis for integrating supplementary data into the analysis of a primary data source. Established approaches should be considered limited, however, because posterior estimation either requires prespecification of a shrinkage weight for each source or relies on the data to inform a single parameter, which determines the extent of influence or shrinkage from all sources, risking considerable bias or minimal borrowing. We introduce multisource exchangeability models (MEMs), a general Bayesian approach for integrating multiple, potentially non-exchangeable, supplemental data sources into the analysis of a primary data source. Our proposed modeling framework yields source-specific smoothing parameters that can be estimated in the presence of the data to facilitate a dynamic multi-resolution smoothed estimator that is asymptotically consistent while reducing the dimensionality of the prior space. When compared with competing Bayesian hierarchical modeling strategies, we demonstrate that MEMs achieve approximately 2.2 times larger median effective supplemental sample size when the supplemental data sources are exchangeable as well as a 56% reduction in bias when there is heterogeneity among the supplemental sources. We illustrate the application of MEMs using a recently completed randomized trial of very low nicotine content cigarettes, which resulted in a 30% improvement in efficiency compared with the standard analysis. Bayesian hierarchical models produce shrinkage estimators that can be used as the basis for integrating supplementary data into the analysis of a primary data source. Established approaches should be considered limited, however, because posterior estimation either requires prespecification of a shrinkage weight for each source or relies on the data to inform a single parameter, which determines the extent of influence or shrinkage from all sources, risking considerable bias or minimal borrowing. We introduce multisource exchangeability models (MEMs), a general Bayesian approach for integrating multiple, potentially non-exchangeable, supplemental data sources into the analysis of a primary data source. Our proposed modeling framework yields source-specific smoothing parameters that can be estimated in the presence of the data to facilitate a dynamic multi-resolution smoothed estimator that is asymptotically consistent while reducing the dimensionality of the prior space. When compared with competing Bayesian hierarchical modeling strategies, we demonstrate that MEMs achieve approximately 2.2 times larger median effective supplemental sample size when the supplemental data sources are exchangeable as well as a 56% reduction in bias when there is heterogeneity among the supplemental sources. We illustrate the application of MEMs using a recently completed randomized trial of very low nicotine content cigarettes, which resulted in a 30% improvement in efficiency compared with the standard analysis. |
| Author | Kaizer, Alexander M Koopmeiners, Joseph S Hobbs, Brian P |
| Author_xml | – sequence: 1 givenname: Alexander M surname: Kaizer fullname: Kaizer, Alexander M organization: Division of Biostatistics, University of Minnesota, A460 Mayo Building, MMC 303 420 Delaware St. SE, Minneapolis, MN 55455, USA – sequence: 2 givenname: Joseph S surname: Koopmeiners fullname: Koopmeiners, Joseph S organization: The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030, USA – sequence: 3 givenname: Brian P surname: Hobbs fullname: Hobbs, Brian P organization: The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29036300$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAUhYOMOA_9ByJduqmTR5O2Sx18wYAbXZfb5GYm2iZj00Ln31twBFfnW3ycw1mSmQ8eCblm9I7RUqxrF2IPvYu903H9NY5UsDOyYJkq0kzIfPaP52QZ4yelnAslLsicl3QCShdk8wBHjA58snfYQaf3TkOTtMFg4_wuqSGiSYJP2qGZtsLQaUxw1HvwO4TaNa4_XpJzC03Eq1OuyMfT4_vmJd2-Pb9u7repzrKiT41kFpiS2k7rhtZClBKVlbrMZQai1pQXCiZVCW1yiUZbU0xPNShurM35itz-9h668D1g7KvWRY1NAx7DECtWSs4oY7ma1JuTOtQtmurQuRa6Y_V3nP8AscZg9w |
| CitedBy_id | crossref_primary_10_1093_biomtc_ujae118 crossref_primary_10_1093_biostatistics_kxz066 crossref_primary_10_1002_sim_9191 crossref_primary_10_1097_EDE_0000000000001690 crossref_primary_10_1016_j_cct_2021_106460 crossref_primary_10_1002_pst_2289 crossref_primary_10_1002_bimj_202200312 crossref_primary_10_1093_biomtc_ujae086 crossref_primary_10_1093_biomtc_ujae085 crossref_primary_10_1080_10543406_2023_2292211 crossref_primary_10_1177_0962280220975187 crossref_primary_10_1016_j_cct_2022_106972 crossref_primary_10_1080_10543406_2024_2358806 crossref_primary_10_1002_sim_10267 crossref_primary_10_1093_biostatistics_kxab008 crossref_primary_10_1002_sim_8946 crossref_primary_10_1080_19466315_2021_2008484 crossref_primary_10_1177_09622802251367439 crossref_primary_10_1177_17407745231158906 crossref_primary_10_1002_sim_8465 crossref_primary_10_1002_sim_9114 crossref_primary_10_1002_sim_7893 crossref_primary_10_1177_17407745211073624 crossref_primary_10_1002_sim_9514 crossref_primary_10_1111_rssc_12324 crossref_primary_10_1093_biostatistics_kxab051 crossref_primary_10_1002_sim_10077 crossref_primary_10_3390_cancers16020251 crossref_primary_10_1002_sim_10158 crossref_primary_10_1017_cts_2023_537 crossref_primary_10_1158_1078_0432_CCR_19_0820 crossref_primary_10_3390_math13162639 crossref_primary_10_1214_20_BA1229 crossref_primary_10_1002_pst_2464 crossref_primary_10_1080_10543406_2021_1998100 crossref_primary_10_1002_wics_1581 crossref_primary_10_1002_sim_70137 crossref_primary_10_1016_j_drudis_2024_104127 crossref_primary_10_1002_sim_9249 crossref_primary_10_1200_EDBK_319783 crossref_primary_10_1016_j_csda_2018_05_002 crossref_primary_10_1158_1078_0432_CCR_21_2124 crossref_primary_10_1093_biostatistics_kxaf003 crossref_primary_10_1093_biostatistics_kxad024 crossref_primary_10_1214_21_AOAS1469 crossref_primary_10_1002_bimj_202100287 crossref_primary_10_1111_biom_13927 crossref_primary_10_1371_journal_pone_0272367 crossref_primary_10_1016_j_cct_2024_107489 crossref_primary_10_1038_s41571_020_0384_0 crossref_primary_10_1002_sim_10006 crossref_primary_10_1002_bimj_202000314 crossref_primary_10_1111_biom_13253 crossref_primary_10_3389_fphar_2023_1266322 crossref_primary_10_1111_biom_13294 crossref_primary_10_1093_jnci_djy196 crossref_primary_10_1002_sim_9890 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/biostatistics/kxx031 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1468-4357 |
| ExternalDocumentID | 29036300 |
| Genre | Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: U54 DA031659 – fundername: NIDA NIH HHS grantid: R03 DA041870 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C45 CDBKE CGR CS3 CUY CVF CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS ECM EE~ EIF EJD EMOBN F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NMDNZ NOMLY NPM NU- O9- ODMLO OJQWA OJZSN OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 ROL ROX RUSNO RW1 RXO SV3 TEORI TJP TN5 TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 7X8 |
| ID | FETCH-LOGICAL-c448t-d51fa165cf903d0b3395e6f5c9754a3bc0286a44863cd75edcfd8093ca62dff72 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429028200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1468-4357 |
| IngestDate | Sun Sep 28 10:04:23 EDT 2025 Mon Jul 21 06:07:30 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-d51fa165cf903d0b3395e6f5c9754a3bc0286a44863cd75edcfd8093ca62dff72 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/biostatistics/article-pdf/19/2/169/24268734/kxx031.pdf |
| PMID | 29036300 |
| PQID | 1952101176 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1952101176 pubmed_primary_29036300 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biostatistics (Oxford, England) |
| PublicationTitleAlternate | Biostatistics |
| PublicationYear | 2018 |
| SSID | ssj0022363 |
| Score | 2.447624 |
| Snippet | Bayesian hierarchical models produce shrinkage estimators that can be used as the basis for integrating supplementary data into the analysis of a primary data... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 169 |
| SubjectTerms | Bayes Theorem Biostatistics - methods Cigarette Smoking - prevention & control Data Interpretation, Statistical Humans Models, Statistical Nicotine Outcome Assessment, Health Care - methods Randomized Controlled Trials as Topic Tobacco Products Tobacco Use Disorder - prevention & control |
| Title | Bayesian hierarchical modeling based on multisource exchangeability |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29036300 https://www.proquest.com/docview/1952101176 |
| Volume | 19 |
| WOSCitedRecordID | wos000429028200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7qKHhxX8aNCF7LpE3SNCfRwcGDDnNQmVtJs4AI7eiozPx7X5KOXjwIXnJqoby-5Pvytg-hC-IkLVhWJcRQljAHi0qtTCzgkasKpmyYpfd0J4bDYjyWozbgNm3LKhdnYjioTaN9jLyXSgAaP8Asv5y8Jl41ymdXWwmNZdShQGW8V4vxdxYBkC8oqYXuIqAFYtE6J2mvem58x04chtx7mc1IKzP3K8kMYDPY_O9nbqGNlmbiq-gX22jJ1jtoLQpPzndR_1rNrW-fxF4KOyQT4F_hIIsDWIY9thnc1DjUG8YAP7az2CUcJ3vP99Dj4Oahf5u0cgqJhjvYe2J46lSac-0koYZUlEpuc8e1FJwpWmmgGrmCR3OqjeDWaGcKsJVWeWacE9k-Wqmb2h4inFWpJkZkSgrDuFKV5UwTIF-W-hsR76LzhXVKcFefg1C1bT6m5Y99uuggmricxLkaZSZ9VpmQoz-8fYzWgboUsYbmBHUcbFZ7ilb1J1jl7Sz4AazD0f0X8LO_Rg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+hierarchical+modeling+based+on+multisource+exchangeability&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Kaizer%2C+Alexander+M&rft.au=Koopmeiners%2C+Joseph+S&rft.au=Hobbs%2C+Brian+P&rft.date=2018-04-01&rft.eissn=1468-4357&rft.volume=19&rft.issue=2&rft.spage=169&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxx031&rft_id=info%3Apmid%2F29036300&rft_id=info%3Apmid%2F29036300&rft.externalDocID=29036300 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-4357&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-4357&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-4357&client=summon |