Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity?
Concurrent flame spread over electric wire insulation was studied experimentally in microgravity conditions during parabolic flights. Polyethylene insulated Nickel-Chrome wires and Copper wires were examined for external flow velocities ranging from 50 mm/s to 200 mm/s. The experimental results show...
Saved in:
| Published in: | Proceedings of the Combustion Institute Vol. 37; no. 3; pp. 4155 - 4162 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.01.2019
Elsevier |
| Subjects: | |
| ISSN: | 1540-7489, 1873-2704, 1540-7489 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Concurrent flame spread over electric wire insulation was studied experimentally in microgravity conditions during parabolic flights. Polyethylene insulated Nickel-Chrome wires and Copper wires were examined for external flow velocities ranging from 50 mm/s to 200 mm/s. The experimental results showed that steady state flame spread over wire insulation in microgravity could be achieved, even for concurrent flow. A theoretical analysis on the balance of heat supply from the flame to the unburned region, radiation heat loss from the surface to the ambient and required energy to sustain the flame propagation was carried out to explain the presence of steady spread over insulated wire under concurrent flow. Based on the theory, the change in heat input (defined by the balance between heat supply from flame and radiation heat loss) was drawn as a function of the flame spread rate. The curve intersected the linear line of the required energy to sustain the flame. This balance point evidences the existence of steady propagation in concurrent flow. Moreover, the estimated steady spread rate (1.2 mm/s) was consistent with the experimental result by considering the ratio of the actual flame length to the theoretical to be 0.5. Further experimental results showed that the concurrent flame spread rate increased with the external flow velocity. In addition, the steady spread rate was found to be faster for Copper wires than for Nickel-Chrome wires. The experimental results for upward spreading (concurrent spreading) in normal gravity were compared with the microgravity results. In normal gravity, the flame did not reach a steady state within the investigated parameter range. This is due to the fact that the fairly large flame spread rate prevented the aforementioned heat balance to be reached, which meant that such a spread rate could not be attained within the length of the tested sample. |
|---|---|
| AbstractList | Concurrent flame spread over electric wire insulation was studied experimentally in microgravity conditions during parabolic flights. Polyethylene insulated Nickel-Chrome wires and Copper wires were examined for external flow velocities ranging from 50 mm/s to 200 mm/s. The experimental results showed that steady state flame spread over wire insulation in microgravity could be achieved, even for concurrent flow. A theoretical analysis on the balance of heat supply from the flame to the unburned region, radiation heat loss from the surface to the ambient and required energy to sustain the flame propagation was carried out to explain the presence of steady spread over insulated wire under concurrent flow. Based on the theory, the change in heat input (defined by the balance between heat supply from flame and radiation heat loss) was drawn as a function of the flame spread rate. The curve intersected the linear line of the required energy to sustain the flame. This balance point evidences the existence of steady propagation in concurrent flow. Moreover, the estimated steady spread rate (1.2 mm/s) was consistent with the experimental result by considering the ratio of the actual flame length to the theoretical to be 0.5. Further experimental results showed that the concurrent flame spread rate increased with the external flow velocity. In addition, the steady spread rate was found to be faster for Copper wires than for Nickel-Chrome wires. The experimental results for upward spreading (concurrent spreading) in normal gravity were compared with the microgravity results. In normal gravity, the flame did not reach a steady state within the investigated parameter range. This is due to the fact that the fairly large flame spread rate prevented the aforementioned heat balance to be reached, which meant that such a spread rate could not be attained within the length of the tested sample. |
| Author | Guibaud, Augustin Fujita, Osamu Dutilleul, Hugo Hashimoto, Nozomu Nagachi, Masashi Mitsui, Fumiya Legros, Guillaume Citerne, Jean-Marie Jomaas, Grunde |
| Author_xml | – sequence: 1 givenname: Masashi surname: Nagachi fullname: Nagachi, Masashi organization: Hokkaido University, Sapporo, Hokkaido 066-8628, Japan – sequence: 2 givenname: Fumiya surname: Mitsui fullname: Mitsui, Fumiya organization: Hokkaido University, Sapporo, Hokkaido 066-8628, Japan – sequence: 3 givenname: Jean-Marie surname: Citerne fullname: Citerne, Jean-Marie organization: Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France – sequence: 4 givenname: Hugo surname: Dutilleul fullname: Dutilleul, Hugo organization: Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France – sequence: 5 givenname: Augustin surname: Guibaud fullname: Guibaud, Augustin organization: Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France – sequence: 6 givenname: Grunde surname: Jomaas fullname: Jomaas, Grunde organization: School of Engineering, University of Edinburgh, EH9 3FG Edinburgh, United Kingdom – sequence: 7 givenname: Guillaume orcidid: 0000-0003-4245-8258 surname: Legros fullname: Legros, Guillaume organization: Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France – sequence: 8 givenname: Nozomu orcidid: 0000-0002-7958-6061 surname: Hashimoto fullname: Hashimoto, Nozomu organization: Hokkaido University, Sapporo, Hokkaido 066-8628, Japan – sequence: 9 givenname: Osamu orcidid: 0000-0002-2947-8548 surname: Fujita fullname: Fujita, Osamu email: ofujita@eng.hokudai.ac.jp organization: Hokkaido University, Sapporo, Hokkaido 066-8628, Japan |
| BackLink | https://hal.sorbonne-universite.fr/hal-01914827$$DView record in HAL |
| BookMark | eNqFkMFqGzEQhkVJoEmaJ-hF1xx2K-1qrdWhhGDSpmDIJT2L8eysI7OWjKRs8NtHjksOPbSnGYb_G2a-S3bmgyfGvkpRSyEX37b1PgZ0dSNkX4uuFkJ_Yhey123VaKHOSt8pUWnVm8_sMqWtEK0WbXfB4hI8B572kWBwfsPHCXbEw0yR00SYo0P-6iJx59PLBNkFX1qOweNLjORzIcIrB3x2NBNPuew58HLOHjYf6Z3DGDYRZpcPt1_Y-QhTous_9Yr9_nH_tHyoVo8_fy3vVhUq1ecKTTN0sl1rCQPqFnAUSivS_XoBZMgYZXrREi5QdUbIcYBuLVE3a5RqlHpor9jNae8zTHYf3Q7iwQZw9uFuZY8zIY1UfaNnWbLtKVvuTCnS-AFIYY-K7da-K7ZHxVZ0tigulPmLQpffn84R3PQf9vuJpaJgdhRtQkceaSiyMdshuH_yb-h3nUI |
| CitedBy_id | crossref_primary_10_1016_j_proci_2020_06_228 crossref_primary_10_1016_j_combustflame_2020_09_003 crossref_primary_10_1016_j_firesaf_2021_103368 crossref_primary_10_1016_j_proci_2024_105773 crossref_primary_10_1016_j_proci_2020_05_005 crossref_primary_10_1007_s10694_018_0785_0 crossref_primary_10_1007_s10694_019_00860_6 crossref_primary_10_1016_j_tsep_2024_103181 crossref_primary_10_1007_s10694_023_01482_9 crossref_primary_10_1007_s12217_022_09945_4 crossref_primary_10_1016_j_firesaf_2024_104181 crossref_primary_10_3390_fire8050204 crossref_primary_10_1007_s12217_020_09829_5 crossref_primary_10_3390_polym13030346 crossref_primary_10_11728_cjss2023_03_2022_0049 crossref_primary_10_1051_e3sconf_202130001021 crossref_primary_10_1016_j_psep_2020_04_030 crossref_primary_10_1016_j_ijthermalsci_2024_109062 crossref_primary_10_1016_j_proci_2025_105862 crossref_primary_10_3390_fire7060186 crossref_primary_10_1007_s10694_019_00918_5 crossref_primary_10_1016_j_firesaf_2024_104268 crossref_primary_10_1016_j_combustflame_2020_06_026 crossref_primary_10_1016_j_proci_2020_06_036 crossref_primary_10_11728_cjss2023_02_2022_0049 crossref_primary_10_1177_0040517520947746 crossref_primary_10_1016_j_combustflame_2020_07_044 crossref_primary_10_1016_j_combustflame_2021_111447 crossref_primary_10_1016_j_ijthermalsci_2024_109308 crossref_primary_10_1016_j_combustflame_2021_111896 crossref_primary_10_1016_j_firesaf_2023_103957 crossref_primary_10_3390_pr13092712 crossref_primary_10_1007_s10694_023_01501_9 crossref_primary_10_1007_s10694_019_00935_4 |
| Cites_doi | 10.1016/S0082-0784(00)80715-8 10.1016/j.proci.2010.06.123 10.1016/j.proci.2008.06.146 10.1016/j.actaastro.2015.12.021 10.1016/j.proci.2010.06.155 10.1016/j.proci.2014.08.010 10.1016/S1540-7489(02)80310-8 10.1016/j.combustflame.2013.03.029 10.1016/j.proci.2014.09.003 10.1016/S0082-0784(73)80098-0 10.1016/S0082-0784(00)80701-8 10.3801/IAFSS.FSS.1-65 10.1016/0010-2180(94)00285-Z 10.1016/j.proci.2014.05.059 10.1016/j.combustflame.2014.10.009 10.1016/j.proci.2012.06.064 10.1016/S0082-0784(98)80102-1 10.1080/00102208408923786 10.1016/S0082-0784(77)80415-3 10.1016/j.proci.2016.06.028 10.1016/S0082-0784(96)80354-7 10.1016/j.proci.2010.06.053 10.1016/j.proci.2012.06.158 |
| ContentType | Journal Article |
| Copyright | 2018 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.proci.2018.05.007 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2704 1540-7489 |
| EndPage | 4162 |
| ExternalDocumentID | oai:HAL:hal-01914827v1 10_1016_j_proci_2018_05_007 S1540748918300075 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSR SST SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC |
| ID | FETCH-LOGICAL-c448t-c92d513b71adc73acf0474e78b6ae9e9949803ec6c45901fda5b1c72bc14f17d3 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456628600172&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1540-7489 |
| IngestDate | Sat Nov 29 14:58:15 EST 2025 Tue Nov 18 22:01:52 EST 2025 Sat Nov 29 07:05:52 EST 2025 Fri Feb 23 02:31:10 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Flame spread rate Electrical wire Concurrent flow Microgravity Fire safety in space |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c448t-c92d513b71adc73acf0474e78b6ae9e9949803ec6c45901fda5b1c72bc14f17d3 |
| ORCID | 0000-0002-7958-6061 0000-0003-4245-8258 0000-0002-2947-8548 0000-0001-5168-9547 |
| OpenAccessLink | http://hdl.handle.net/20.500.11820/df921b2c-e6a8-4df7-81a0-560f16b0bb89 |
| PageCount | 8 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01914827v1 crossref_primary_10_1016_j_proci_2018_05_007 crossref_citationtrail_10_1016_j_proci_2018_05_007 elsevier_sciencedirect_doi_10_1016_j_proci_2018_05_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings of the Combustion Institute |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Fujita (bib0015) 2015; 35 Fernandez-Pello (bib0018) 1984; 39 Lim, Kim, Park, Fujita, Chung (bib0011) 2015; 162 Kikuchi, Fujita, Ito, Sato, Sakuraya (bib0007) 1998; 27 Guibaud, Citerne, Orlac'h (bib0026) 2018 Bhattacharjee, Takahashi, Wakai, Paolini (bib0027) 2011; 33 Williams (bib0017) 1977; 16 Takahashi, Takeuchi, Ito, Nakamura, Fujita (bib0012) 2013; 34 Fernandez-Pello (bib0029) 1995 Takano, Fujita, Shigeta, Nakamura, Ito (bib0009) 2013; 34 Honda, Ronney (bib0024) 2000; 28 Citerne, Dutilleul, Kizawa (bib0005) 2016; 126 Grayson, Sacksteder, Ferkul, T'ien (bib0022) 1994 Fujita, Kyono, Kido, Ito, Nakamura (bib0008) 2011; 33 Loh, Fernandez-pello (bib0021) 1986; 1 Nakamura, Yoshimura, Ito, Azumaya, Fujita (bib0013) 2009 Mizutani, Miyamoto, Hashimoto, Konno, Fujita (bib0006) 2018; 35 Osorio, Mizutani, Fernandez-Pello, Fujita (bib0014) 2015; 35 Delichatsios, Delichatsios, Chen, Hasemi (bib0019) 1995; 102 Fujita, Nishizawa, Ito (bib0003) 2002; 29 Nagachi, Mitsui, Citerne (bib0016) 2017 . Jiang, Tien, Shih (bib0025) 1996; 26 J. Crusan, NASA, available on May 17, 2018 at Takahashi, Ito, Nakamura, Fujita (bib0004) 2013; 160 Hu, Zhang, Yoshioka, Izumo, Fujita (bib0028) 2015; 35 Kim, Chung, Fujita (bib0010) 2011; 33 Markstein, de Ris (bib0020) 1973; 14 Zhao, Liao, Johnston, T'ien, Ferkul, Olson (bib0023) 2017; 36 Fujita, Kikuchi, Ito, Nishizawa (bib0002) 2000; 28 Takahashi (10.1016/j.proci.2018.05.007_bib0012) 2013; 34 Takano (10.1016/j.proci.2018.05.007_bib0009) 2013; 34 Honda (10.1016/j.proci.2018.05.007_bib0024) 2000; 28 Nagachi (10.1016/j.proci.2018.05.007_bib0016) 2017 Citerne (10.1016/j.proci.2018.05.007_bib0005) 2016; 126 Kikuchi (10.1016/j.proci.2018.05.007_bib0007) 1998; 27 Takahashi (10.1016/j.proci.2018.05.007_bib0004) 2013; 160 Delichatsios (10.1016/j.proci.2018.05.007_bib0019) 1995; 102 10.1016/j.proci.2018.05.007_bib0001 Hu (10.1016/j.proci.2018.05.007_bib0028) 2015; 35 Fernandez-Pello (10.1016/j.proci.2018.05.007_bib0018) 1984; 39 Loh (10.1016/j.proci.2018.05.007_bib0021) 1986; 1 Osorio (10.1016/j.proci.2018.05.007_bib0014) 2015; 35 Fujita (10.1016/j.proci.2018.05.007_bib0008) 2011; 33 Bhattacharjee (10.1016/j.proci.2018.05.007_bib0027) 2011; 33 Lim (10.1016/j.proci.2018.05.007_bib0011) 2015; 162 Zhao (10.1016/j.proci.2018.05.007_bib0023) 2017; 36 Guibaud (10.1016/j.proci.2018.05.007_bib0026) 2018 Markstein (10.1016/j.proci.2018.05.007_bib0020) 1973; 14 Mizutani (10.1016/j.proci.2018.05.007_bib0006) 2018; 35 Grayson (10.1016/j.proci.2018.05.007_bib0022) 1994 Fernandez-Pello (10.1016/j.proci.2018.05.007_bib0029) 1995 Kim (10.1016/j.proci.2018.05.007_bib0010) 2011; 33 Fujita (10.1016/j.proci.2018.05.007_bib0015) 2015; 35 Fujita (10.1016/j.proci.2018.05.007_bib0003) 2002; 29 Fujita (10.1016/j.proci.2018.05.007_bib0002) 2000; 28 Nakamura (10.1016/j.proci.2018.05.007_bib0013) 2009 Jiang (10.1016/j.proci.2018.05.007_bib0025) 1996; 26 Williams (10.1016/j.proci.2018.05.007_bib0017) 1977; 16 |
| References_xml | – volume: 35 year: 2018 ident: bib0006 publication-title: Int. J. Microgravity Sci. Appl. – start-page: 187 year: 1994 end-page: 195 ident: bib0022 publication-title: Microgravity Sci. Technol. VII – year: 2018 ident: bib0026 publication-title: Proc. Combust. Inst. – volume: 16 start-page: 1281 year: 1977 end-page: 1294 ident: bib0017 publication-title: Symp. Combust. – volume: 33 start-page: 2465 year: 2011 end-page: 2472 ident: bib0027 publication-title: Proc. Combust. Inst. – volume: 34 start-page: 2657 year: 2013 end-page: 2664 ident: bib0012 publication-title: Proc. Combust. Inst. – volume: 33 start-page: 2617 year: 2011 end-page: 2623 ident: bib0008 publication-title: Proc. Combust. Inst. – volume: 35 start-page: 2607 year: 2015 end-page: 2614 ident: bib0028 publication-title: Proc. Combust. Inst. – volume: 102 start-page: 357 year: 1995 end-page: 370 ident: bib0019 publication-title: Combust. Flame – start-page: 31 year: 1995 end-page: 100 ident: bib0029 article-title: Combustion Fundamentals of Fire – volume: 162 start-page: 1167 year: 2015 end-page: 1175 ident: bib0011 publication-title: Combust. Flame – volume: 160 start-page: 1900 year: 2013 end-page: 1902 ident: bib0004 publication-title: Combust. Flame – volume: 14 start-page: 1085 year: 1973 end-page: 1097 ident: bib0020 publication-title: Symp. Combust. – volume: 28 start-page: 2905 year: 2000 end-page: 2911 ident: bib0002 publication-title: Proc. Combust. Inst. – volume: 29 start-page: 2545 year: 2002 end-page: 2552 ident: bib0003 publication-title: Proc. Combust. Inst. – start-page: 2559 year: 2009 end-page: 2566 ident: bib0013 publication-title: Proc. Combust. Inst. 32 II – volume: 35 start-page: 2487 year: 2015 end-page: 2502 ident: bib0015 publication-title: Proc. Combust. Inst. – start-page: 244 year: 2017 ident: bib0016 publication-title: 47th International Conference Environment System – reference: J. Crusan, NASA, available on May 17, 2018 at – volume: 33 start-page: 1145 year: 2011 end-page: 1151 ident: bib0010 publication-title: Proc. Combust. Inst. – volume: 36 start-page: 2971 year: 2017 end-page: 2978 ident: bib0023 publication-title: Proc. Combust. Inst. – volume: 39 start-page: 119 year: 1984 end-page: 134 ident: bib0018 publication-title: Combust. Sci. Technol. – volume: 1 start-page: 65 year: 1986 end-page: 74 ident: bib0021 publication-title: Fire Saf. Sci. – reference: . – volume: 126 start-page: 500 year: 2016 end-page: 509 ident: bib0005 publication-title: Acta Astronaut – volume: 27 start-page: 2507 year: 1998 end-page: 2514 ident: bib0007 publication-title: Symp. Combust. – volume: 28 start-page: 2793 year: 2000 end-page: 2801 ident: bib0024 publication-title: Proc. Combust. Inst. – volume: 34 start-page: 2665 year: 2013 end-page: 2673 ident: bib0009 publication-title: Proc. Combust. Inst. – volume: 35 start-page: 2683 year: 2015 end-page: 2689 ident: bib0014 publication-title: Proc. Combust. Inst. – volume: 26 start-page: 1353 year: 1996 end-page: 1360 ident: bib0025 publication-title: Symp. Combust. – volume: 28 start-page: 2905 year: 2000 ident: 10.1016/j.proci.2018.05.007_bib0002 publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80715-8 – volume: 33 start-page: 2617 year: 2011 ident: 10.1016/j.proci.2018.05.007_bib0008 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.06.123 – start-page: 2559 year: 2009 ident: 10.1016/j.proci.2018.05.007_bib0013 publication-title: Proc. Combust. Inst. 32 II doi: 10.1016/j.proci.2008.06.146 – start-page: 31 year: 1995 ident: 10.1016/j.proci.2018.05.007_bib0029 article-title: Combustion Fundamentals of Fire – volume: 126 start-page: 500 year: 2016 ident: 10.1016/j.proci.2018.05.007_bib0005 publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2015.12.021 – year: 2018 ident: 10.1016/j.proci.2018.05.007_bib0026 publication-title: Proc. Combust. Inst. – volume: 33 start-page: 1145 year: 2011 ident: 10.1016/j.proci.2018.05.007_bib0010 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.06.155 – start-page: 244 year: 2017 ident: 10.1016/j.proci.2018.05.007_bib0016 – volume: 35 start-page: 2487 year: 2015 ident: 10.1016/j.proci.2018.05.007_bib0015 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.08.010 – volume: 29 start-page: 2545 year: 2002 ident: 10.1016/j.proci.2018.05.007_bib0003 publication-title: Proc. Combust. Inst. doi: 10.1016/S1540-7489(02)80310-8 – volume: 160 start-page: 1900 year: 2013 ident: 10.1016/j.proci.2018.05.007_bib0004 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2013.03.029 – start-page: 187 year: 1994 ident: 10.1016/j.proci.2018.05.007_bib0022 publication-title: Microgravity Sci. Technol. VII – volume: 35 start-page: 2683 year: 2015 ident: 10.1016/j.proci.2018.05.007_bib0014 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.09.003 – volume: 14 start-page: 1085 year: 1973 ident: 10.1016/j.proci.2018.05.007_bib0020 publication-title: Symp. Combust. doi: 10.1016/S0082-0784(73)80098-0 – volume: 28 start-page: 2793 year: 2000 ident: 10.1016/j.proci.2018.05.007_bib0024 publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80701-8 – volume: 1 start-page: 65 year: 1986 ident: 10.1016/j.proci.2018.05.007_bib0021 publication-title: Fire Saf. Sci. doi: 10.3801/IAFSS.FSS.1-65 – volume: 102 start-page: 357 year: 1995 ident: 10.1016/j.proci.2018.05.007_bib0019 publication-title: Combust. Flame doi: 10.1016/0010-2180(94)00285-Z – volume: 35 start-page: 2607 year: 2015 ident: 10.1016/j.proci.2018.05.007_bib0028 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.05.059 – ident: 10.1016/j.proci.2018.05.007_bib0001 – volume: 162 start-page: 1167 year: 2015 ident: 10.1016/j.proci.2018.05.007_bib0011 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.10.009 – volume: 34 start-page: 2665 year: 2013 ident: 10.1016/j.proci.2018.05.007_bib0009 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2012.06.064 – volume: 27 start-page: 2507 year: 1998 ident: 10.1016/j.proci.2018.05.007_bib0007 publication-title: Symp. Combust. doi: 10.1016/S0082-0784(98)80102-1 – volume: 39 start-page: 119 year: 1984 ident: 10.1016/j.proci.2018.05.007_bib0018 publication-title: Combust. Sci. Technol. doi: 10.1080/00102208408923786 – volume: 16 start-page: 1281 year: 1977 ident: 10.1016/j.proci.2018.05.007_bib0017 publication-title: Symp. Combust. doi: 10.1016/S0082-0784(77)80415-3 – volume: 36 start-page: 2971 year: 2017 ident: 10.1016/j.proci.2018.05.007_bib0023 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.06.028 – volume: 35 year: 2018 ident: 10.1016/j.proci.2018.05.007_bib0006 publication-title: Int. J. Microgravity Sci. Appl. – volume: 26 start-page: 1353 year: 1996 ident: 10.1016/j.proci.2018.05.007_bib0025 publication-title: Symp. Combust. doi: 10.1016/S0082-0784(96)80354-7 – volume: 33 start-page: 2465 year: 2011 ident: 10.1016/j.proci.2018.05.007_bib0027 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.06.053 – volume: 34 start-page: 2657 year: 2013 ident: 10.1016/j.proci.2018.05.007_bib0012 publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2012.06.158 |
| SSID | ssj0037035 |
| Score | 2.4289715 |
| Snippet | Concurrent flame spread over electric wire insulation was studied experimentally in microgravity conditions during parabolic flights. Polyethylene insulated... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 4155 |
| SubjectTerms | Concurrent flow Electrical wire Engineering Sciences Fire safety in space Flame spread rate Microgravity Reactive fluid environment |
| Title | Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity? |
| URI | https://dx.doi.org/10.1016/j.proci.2018.05.007 https://hal.sorbonne-universite.fr/hal-01914827 |
| Volume | 37 |
| WOSCitedRecordID | wos000456628600172&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037035 issn: 1540-7489 databaseCode: AIEXJ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpuoftYexKuxti7M0z-CJH8tMIpaUraymsg7wZWZE3l9QJiZO1P3L_aedIlu3sUrbBXoxRbNnR-SydI77zHULeyEQEYhoUPuNF4DOlmS_ykfILKVINDooKtTDFJvjZmZhM0vPB4JvLhdnMeFWJ6-t08V9NDW1gbEyd_Qtzt51CA5yD0eEIZofjHxn-AL5Y6a0WS0uP9wqwufaQqenZmjel8lCg2NLQpSM7QlysnFbTbP7VQ5Kl3qD-LPRzgzwumHraq6-Qx4eli7CowDY38LxdEleOgACTTo5Vw-ZVR05od6GhV2UqC3uncoWlnVoMlPVqbX44Wl-VNx2lCLOm7UbsiZaVf4rhfueQ15jduLYa3evP8_62BmZSbW1rtPk2W3TQEGkcqJdjVy_bJniMWXWsP6dbIZkGu3Fvgkb_qbfYgzsa_XIhsXsal7iMqRIZgMIIvNoKvT8odH_E18K3gunR-GA7ZDfiSSqGZHf8_nBy4lyDGKbXxAj4Nn_DyWAZwuFPj_qdq7TzxW36Gyfo4gG530QvdGxR95AMdPWI3OtpWj4mS8AflbTFHzX4o4g_6vBHEX-0wx-c0g5_FPFHG_xRiz_awx9e3cffuyfk09HhxcGx3xT28BVjovZVGk2TMM55KKeKx1IVAeNMc5glpE51mrJUBLFWI8UwNbqYyiQPFY9yFbIi5NP4KRlW80rvEZpqCGjECOJw8FMh-BfggKoY855yCAVG8T6J3BhmqlG9x-Irs8zRGy8zM_AZDnwWJBkM_D552960sKIvt18-csbJGr_V-qMZoOn2G1-DKdtHoNL78fhDhm0B6i6KiG_CZ__a-3Nyt_uwXpBhvVzrl-SO2tTlavmqgeZ3EhvOlw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+a+spreading+flame+over+electric+wire+insulation+in+concurrent+flow+achieve+steady+propagation+in+microgravity%3F&rft.jtitle=Proceedings+of+the+Combustion+Institute&rft.au=Nagachi%2C+Masashi&rft.au=Mitsui%2C+Fumiya&rft.au=Citerne%2C+Jean-Marie&rft.au=Dutilleul%2C+Hugo&rft.date=2019-01-01&rft.pub=Elsevier+Inc&rft.issn=1540-7489&rft.eissn=1873-2704&rft.volume=37&rft.issue=3&rft.spage=4155&rft.epage=4162&rft_id=info:doi/10.1016%2Fj.proci.2018.05.007&rft.externalDocID=S1540748918300075 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7489&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7489&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7489&client=summon |