Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity?

Concurrent flame spread over electric wire insulation was studied experimentally in microgravity conditions during parabolic flights. Polyethylene insulated Nickel-Chrome wires and Copper wires were examined for external flow velocities ranging from 50 mm/s to 200 mm/s. The experimental results show...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the Combustion Institute Ročník 37; číslo 3; s. 4155 - 4162
Hlavní autori: Nagachi, Masashi, Mitsui, Fumiya, Citerne, Jean-Marie, Dutilleul, Hugo, Guibaud, Augustin, Jomaas, Grunde, Legros, Guillaume, Hashimoto, Nozomu, Fujita, Osamu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.01.2019
Elsevier
Predmet:
ISSN:1540-7489, 1873-2704, 1540-7489
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Concurrent flame spread over electric wire insulation was studied experimentally in microgravity conditions during parabolic flights. Polyethylene insulated Nickel-Chrome wires and Copper wires were examined for external flow velocities ranging from 50 mm/s to 200 mm/s. The experimental results showed that steady state flame spread over wire insulation in microgravity could be achieved, even for concurrent flow. A theoretical analysis on the balance of heat supply from the flame to the unburned region, radiation heat loss from the surface to the ambient and required energy to sustain the flame propagation was carried out to explain the presence of steady spread over insulated wire under concurrent flow. Based on the theory, the change in heat input (defined by the balance between heat supply from flame and radiation heat loss) was drawn as a function of the flame spread rate. The curve intersected the linear line of the required energy to sustain the flame. This balance point evidences the existence of steady propagation in concurrent flow. Moreover, the estimated steady spread rate (1.2 mm/s) was consistent with the experimental result by considering the ratio of the actual flame length to the theoretical to be 0.5. Further experimental results showed that the concurrent flame spread rate increased with the external flow velocity. In addition, the steady spread rate was found to be faster for Copper wires than for Nickel-Chrome wires. The experimental results for upward spreading (concurrent spreading) in normal gravity were compared with the microgravity results. In normal gravity, the flame did not reach a steady state within the investigated parameter range. This is due to the fact that the fairly large flame spread rate prevented the aforementioned heat balance to be reached, which meant that such a spread rate could not be attained within the length of the tested sample.
AbstractList Concurrent flame spread over electric wire insulation was studied experimentally in microgravity conditions during parabolic flights. Polyethylene insulated Nickel-Chrome wires and Copper wires were examined for external flow velocities ranging from 50 mm/s to 200 mm/s. The experimental results showed that steady state flame spread over wire insulation in microgravity could be achieved, even for concurrent flow. A theoretical analysis on the balance of heat supply from the flame to the unburned region, radiation heat loss from the surface to the ambient and required energy to sustain the flame propagation was carried out to explain the presence of steady spread over insulated wire under concurrent flow. Based on the theory, the change in heat input (defined by the balance between heat supply from flame and radiation heat loss) was drawn as a function of the flame spread rate. The curve intersected the linear line of the required energy to sustain the flame. This balance point evidences the existence of steady propagation in concurrent flow. Moreover, the estimated steady spread rate (1.2 mm/s) was consistent with the experimental result by considering the ratio of the actual flame length to the theoretical to be 0.5. Further experimental results showed that the concurrent flame spread rate increased with the external flow velocity. In addition, the steady spread rate was found to be faster for Copper wires than for Nickel-Chrome wires. The experimental results for upward spreading (concurrent spreading) in normal gravity were compared with the microgravity results. In normal gravity, the flame did not reach a steady state within the investigated parameter range. This is due to the fact that the fairly large flame spread rate prevented the aforementioned heat balance to be reached, which meant that such a spread rate could not be attained within the length of the tested sample.
Author Guibaud, Augustin
Fujita, Osamu
Dutilleul, Hugo
Hashimoto, Nozomu
Nagachi, Masashi
Mitsui, Fumiya
Legros, Guillaume
Citerne, Jean-Marie
Jomaas, Grunde
Author_xml – sequence: 1
  givenname: Masashi
  surname: Nagachi
  fullname: Nagachi, Masashi
  organization: Hokkaido University, Sapporo, Hokkaido 066-8628, Japan
– sequence: 2
  givenname: Fumiya
  surname: Mitsui
  fullname: Mitsui, Fumiya
  organization: Hokkaido University, Sapporo, Hokkaido 066-8628, Japan
– sequence: 3
  givenname: Jean-Marie
  surname: Citerne
  fullname: Citerne, Jean-Marie
  organization: Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
– sequence: 4
  givenname: Hugo
  surname: Dutilleul
  fullname: Dutilleul, Hugo
  organization: Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
– sequence: 5
  givenname: Augustin
  surname: Guibaud
  fullname: Guibaud, Augustin
  organization: Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
– sequence: 6
  givenname: Grunde
  surname: Jomaas
  fullname: Jomaas, Grunde
  organization: School of Engineering, University of Edinburgh, EH9 3FG Edinburgh, United Kingdom
– sequence: 7
  givenname: Guillaume
  orcidid: 0000-0003-4245-8258
  surname: Legros
  fullname: Legros, Guillaume
  organization: Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
– sequence: 8
  givenname: Nozomu
  orcidid: 0000-0002-7958-6061
  surname: Hashimoto
  fullname: Hashimoto, Nozomu
  organization: Hokkaido University, Sapporo, Hokkaido 066-8628, Japan
– sequence: 9
  givenname: Osamu
  orcidid: 0000-0002-2947-8548
  surname: Fujita
  fullname: Fujita, Osamu
  email: ofujita@eng.hokudai.ac.jp
  organization: Hokkaido University, Sapporo, Hokkaido 066-8628, Japan
BackLink https://hal.sorbonne-universite.fr/hal-01914827$$DView record in HAL
BookMark eNqFkMFqGzEQhkVJoEmaJ-hF1xx2K-1qrdWhhGDSpmDIJT2L8eysI7OWjKRs8NtHjksOPbSnGYb_G2a-S3bmgyfGvkpRSyEX37b1PgZ0dSNkX4uuFkJ_Yhey123VaKHOSt8pUWnVm8_sMqWtEK0WbXfB4hI8B572kWBwfsPHCXbEw0yR00SYo0P-6iJx59PLBNkFX1qOweNLjORzIcIrB3x2NBNPuew58HLOHjYf6Z3DGDYRZpcPt1_Y-QhTous_9Yr9_nH_tHyoVo8_fy3vVhUq1ecKTTN0sl1rCQPqFnAUSivS_XoBZMgYZXrREi5QdUbIcYBuLVE3a5RqlHpor9jNae8zTHYf3Q7iwQZw9uFuZY8zIY1UfaNnWbLtKVvuTCnS-AFIYY-K7da-K7ZHxVZ0tigulPmLQpffn84R3PQf9vuJpaJgdhRtQkceaSiyMdshuH_yb-h3nUI
CitedBy_id crossref_primary_10_1016_j_proci_2020_06_228
crossref_primary_10_1016_j_combustflame_2020_09_003
crossref_primary_10_1016_j_firesaf_2021_103368
crossref_primary_10_1016_j_proci_2024_105773
crossref_primary_10_1016_j_proci_2020_05_005
crossref_primary_10_1007_s10694_018_0785_0
crossref_primary_10_1007_s10694_019_00860_6
crossref_primary_10_1016_j_tsep_2024_103181
crossref_primary_10_1007_s10694_023_01482_9
crossref_primary_10_1007_s12217_022_09945_4
crossref_primary_10_1016_j_firesaf_2024_104181
crossref_primary_10_3390_fire8050204
crossref_primary_10_1007_s12217_020_09829_5
crossref_primary_10_3390_polym13030346
crossref_primary_10_11728_cjss2023_03_2022_0049
crossref_primary_10_1051_e3sconf_202130001021
crossref_primary_10_1016_j_psep_2020_04_030
crossref_primary_10_1016_j_ijthermalsci_2024_109062
crossref_primary_10_1016_j_proci_2025_105862
crossref_primary_10_3390_fire7060186
crossref_primary_10_1007_s10694_019_00918_5
crossref_primary_10_1016_j_firesaf_2024_104268
crossref_primary_10_1016_j_combustflame_2020_06_026
crossref_primary_10_1016_j_proci_2020_06_036
crossref_primary_10_11728_cjss2023_02_2022_0049
crossref_primary_10_1177_0040517520947746
crossref_primary_10_1016_j_combustflame_2020_07_044
crossref_primary_10_1016_j_combustflame_2021_111447
crossref_primary_10_1016_j_ijthermalsci_2024_109308
crossref_primary_10_1016_j_combustflame_2021_111896
crossref_primary_10_1016_j_firesaf_2023_103957
crossref_primary_10_3390_pr13092712
crossref_primary_10_1007_s10694_023_01501_9
crossref_primary_10_1007_s10694_019_00935_4
Cites_doi 10.1016/S0082-0784(00)80715-8
10.1016/j.proci.2010.06.123
10.1016/j.proci.2008.06.146
10.1016/j.actaastro.2015.12.021
10.1016/j.proci.2010.06.155
10.1016/j.proci.2014.08.010
10.1016/S1540-7489(02)80310-8
10.1016/j.combustflame.2013.03.029
10.1016/j.proci.2014.09.003
10.1016/S0082-0784(73)80098-0
10.1016/S0082-0784(00)80701-8
10.3801/IAFSS.FSS.1-65
10.1016/0010-2180(94)00285-Z
10.1016/j.proci.2014.05.059
10.1016/j.combustflame.2014.10.009
10.1016/j.proci.2012.06.064
10.1016/S0082-0784(98)80102-1
10.1080/00102208408923786
10.1016/S0082-0784(77)80415-3
10.1016/j.proci.2016.06.028
10.1016/S0082-0784(96)80354-7
10.1016/j.proci.2010.06.053
10.1016/j.proci.2012.06.158
ContentType Journal Article
Copyright 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.proci.2018.05.007
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2704
1540-7489
EndPage 4162
ExternalDocumentID oai:HAL:hal-01914827v1
10_1016_j_proci_2018_05_007
S1540748918300075
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
ID FETCH-LOGICAL-c448t-c92d513b71adc73acf0474e78b6ae9e9949803ec6c45901fda5b1c72bc14f17d3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456628600172&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1540-7489
IngestDate Sat Nov 29 14:58:15 EST 2025
Tue Nov 18 22:01:52 EST 2025
Sat Nov 29 07:05:52 EST 2025
Fri Feb 23 02:31:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Flame spread rate
Electrical wire
Concurrent flow
Microgravity
Fire safety in space
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c448t-c92d513b71adc73acf0474e78b6ae9e9949803ec6c45901fda5b1c72bc14f17d3
ORCID 0000-0002-7958-6061
0000-0003-4245-8258
0000-0002-2947-8548
0000-0001-5168-9547
OpenAccessLink http://hdl.handle.net/20.500.11820/df921b2c-e6a8-4df7-81a0-560f16b0bb89
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_01914827v1
crossref_primary_10_1016_j_proci_2018_05_007
crossref_citationtrail_10_1016_j_proci_2018_05_007
elsevier_sciencedirect_doi_10_1016_j_proci_2018_05_007
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings of the Combustion Institute
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Fujita (bib0015) 2015; 35
Fernandez-Pello (bib0018) 1984; 39
Lim, Kim, Park, Fujita, Chung (bib0011) 2015; 162
Kikuchi, Fujita, Ito, Sato, Sakuraya (bib0007) 1998; 27
Guibaud, Citerne, Orlac'h (bib0026) 2018
Bhattacharjee, Takahashi, Wakai, Paolini (bib0027) 2011; 33
Williams (bib0017) 1977; 16
Takahashi, Takeuchi, Ito, Nakamura, Fujita (bib0012) 2013; 34
Fernandez-Pello (bib0029) 1995
Takano, Fujita, Shigeta, Nakamura, Ito (bib0009) 2013; 34
Honda, Ronney (bib0024) 2000; 28
Citerne, Dutilleul, Kizawa (bib0005) 2016; 126
Grayson, Sacksteder, Ferkul, T'ien (bib0022) 1994
Fujita, Kyono, Kido, Ito, Nakamura (bib0008) 2011; 33
Loh, Fernandez-pello (bib0021) 1986; 1
Nakamura, Yoshimura, Ito, Azumaya, Fujita (bib0013) 2009
Mizutani, Miyamoto, Hashimoto, Konno, Fujita (bib0006) 2018; 35
Osorio, Mizutani, Fernandez-Pello, Fujita (bib0014) 2015; 35
Delichatsios, Delichatsios, Chen, Hasemi (bib0019) 1995; 102
Fujita, Nishizawa, Ito (bib0003) 2002; 29
Nagachi, Mitsui, Citerne (bib0016) 2017
.
Jiang, Tien, Shih (bib0025) 1996; 26
J. Crusan, NASA, available on May 17, 2018 at
Takahashi, Ito, Nakamura, Fujita (bib0004) 2013; 160
Hu, Zhang, Yoshioka, Izumo, Fujita (bib0028) 2015; 35
Kim, Chung, Fujita (bib0010) 2011; 33
Markstein, de Ris (bib0020) 1973; 14
Zhao, Liao, Johnston, T'ien, Ferkul, Olson (bib0023) 2017; 36
Fujita, Kikuchi, Ito, Nishizawa (bib0002) 2000; 28
Takahashi (10.1016/j.proci.2018.05.007_bib0012) 2013; 34
Takano (10.1016/j.proci.2018.05.007_bib0009) 2013; 34
Honda (10.1016/j.proci.2018.05.007_bib0024) 2000; 28
Nagachi (10.1016/j.proci.2018.05.007_bib0016) 2017
Citerne (10.1016/j.proci.2018.05.007_bib0005) 2016; 126
Kikuchi (10.1016/j.proci.2018.05.007_bib0007) 1998; 27
Takahashi (10.1016/j.proci.2018.05.007_bib0004) 2013; 160
Delichatsios (10.1016/j.proci.2018.05.007_bib0019) 1995; 102
10.1016/j.proci.2018.05.007_bib0001
Hu (10.1016/j.proci.2018.05.007_bib0028) 2015; 35
Fernandez-Pello (10.1016/j.proci.2018.05.007_bib0018) 1984; 39
Loh (10.1016/j.proci.2018.05.007_bib0021) 1986; 1
Osorio (10.1016/j.proci.2018.05.007_bib0014) 2015; 35
Fujita (10.1016/j.proci.2018.05.007_bib0008) 2011; 33
Bhattacharjee (10.1016/j.proci.2018.05.007_bib0027) 2011; 33
Lim (10.1016/j.proci.2018.05.007_bib0011) 2015; 162
Zhao (10.1016/j.proci.2018.05.007_bib0023) 2017; 36
Guibaud (10.1016/j.proci.2018.05.007_bib0026) 2018
Markstein (10.1016/j.proci.2018.05.007_bib0020) 1973; 14
Mizutani (10.1016/j.proci.2018.05.007_bib0006) 2018; 35
Grayson (10.1016/j.proci.2018.05.007_bib0022) 1994
Fernandez-Pello (10.1016/j.proci.2018.05.007_bib0029) 1995
Kim (10.1016/j.proci.2018.05.007_bib0010) 2011; 33
Fujita (10.1016/j.proci.2018.05.007_bib0015) 2015; 35
Fujita (10.1016/j.proci.2018.05.007_bib0003) 2002; 29
Fujita (10.1016/j.proci.2018.05.007_bib0002) 2000; 28
Nakamura (10.1016/j.proci.2018.05.007_bib0013) 2009
Jiang (10.1016/j.proci.2018.05.007_bib0025) 1996; 26
Williams (10.1016/j.proci.2018.05.007_bib0017) 1977; 16
References_xml – volume: 35
  year: 2018
  ident: bib0006
  publication-title: Int. J. Microgravity Sci. Appl.
– start-page: 187
  year: 1994
  end-page: 195
  ident: bib0022
  publication-title: Microgravity Sci. Technol. VII
– year: 2018
  ident: bib0026
  publication-title: Proc. Combust. Inst.
– volume: 16
  start-page: 1281
  year: 1977
  end-page: 1294
  ident: bib0017
  publication-title: Symp. Combust.
– volume: 33
  start-page: 2465
  year: 2011
  end-page: 2472
  ident: bib0027
  publication-title: Proc. Combust. Inst.
– volume: 34
  start-page: 2657
  year: 2013
  end-page: 2664
  ident: bib0012
  publication-title: Proc. Combust. Inst.
– volume: 33
  start-page: 2617
  year: 2011
  end-page: 2623
  ident: bib0008
  publication-title: Proc. Combust. Inst.
– volume: 35
  start-page: 2607
  year: 2015
  end-page: 2614
  ident: bib0028
  publication-title: Proc. Combust. Inst.
– volume: 102
  start-page: 357
  year: 1995
  end-page: 370
  ident: bib0019
  publication-title: Combust. Flame
– start-page: 31
  year: 1995
  end-page: 100
  ident: bib0029
  article-title: Combustion Fundamentals of Fire
– volume: 162
  start-page: 1167
  year: 2015
  end-page: 1175
  ident: bib0011
  publication-title: Combust. Flame
– volume: 160
  start-page: 1900
  year: 2013
  end-page: 1902
  ident: bib0004
  publication-title: Combust. Flame
– volume: 14
  start-page: 1085
  year: 1973
  end-page: 1097
  ident: bib0020
  publication-title: Symp. Combust.
– volume: 28
  start-page: 2905
  year: 2000
  end-page: 2911
  ident: bib0002
  publication-title: Proc. Combust. Inst.
– volume: 29
  start-page: 2545
  year: 2002
  end-page: 2552
  ident: bib0003
  publication-title: Proc. Combust. Inst.
– start-page: 2559
  year: 2009
  end-page: 2566
  ident: bib0013
  publication-title: Proc. Combust. Inst. 32 II
– volume: 35
  start-page: 2487
  year: 2015
  end-page: 2502
  ident: bib0015
  publication-title: Proc. Combust. Inst.
– start-page: 244
  year: 2017
  ident: bib0016
  publication-title: 47th International Conference Environment System
– reference: J. Crusan, NASA, available on May 17, 2018 at
– volume: 33
  start-page: 1145
  year: 2011
  end-page: 1151
  ident: bib0010
  publication-title: Proc. Combust. Inst.
– volume: 36
  start-page: 2971
  year: 2017
  end-page: 2978
  ident: bib0023
  publication-title: Proc. Combust. Inst.
– volume: 39
  start-page: 119
  year: 1984
  end-page: 134
  ident: bib0018
  publication-title: Combust. Sci. Technol.
– volume: 1
  start-page: 65
  year: 1986
  end-page: 74
  ident: bib0021
  publication-title: Fire Saf. Sci.
– reference: .
– volume: 126
  start-page: 500
  year: 2016
  end-page: 509
  ident: bib0005
  publication-title: Acta Astronaut
– volume: 27
  start-page: 2507
  year: 1998
  end-page: 2514
  ident: bib0007
  publication-title: Symp. Combust.
– volume: 28
  start-page: 2793
  year: 2000
  end-page: 2801
  ident: bib0024
  publication-title: Proc. Combust. Inst.
– volume: 34
  start-page: 2665
  year: 2013
  end-page: 2673
  ident: bib0009
  publication-title: Proc. Combust. Inst.
– volume: 35
  start-page: 2683
  year: 2015
  end-page: 2689
  ident: bib0014
  publication-title: Proc. Combust. Inst.
– volume: 26
  start-page: 1353
  year: 1996
  end-page: 1360
  ident: bib0025
  publication-title: Symp. Combust.
– volume: 28
  start-page: 2905
  year: 2000
  ident: 10.1016/j.proci.2018.05.007_bib0002
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(00)80715-8
– volume: 33
  start-page: 2617
  year: 2011
  ident: 10.1016/j.proci.2018.05.007_bib0008
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2010.06.123
– start-page: 2559
  year: 2009
  ident: 10.1016/j.proci.2018.05.007_bib0013
  publication-title: Proc. Combust. Inst. 32 II
  doi: 10.1016/j.proci.2008.06.146
– start-page: 31
  year: 1995
  ident: 10.1016/j.proci.2018.05.007_bib0029
  article-title: Combustion Fundamentals of Fire
– volume: 126
  start-page: 500
  year: 2016
  ident: 10.1016/j.proci.2018.05.007_bib0005
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2015.12.021
– year: 2018
  ident: 10.1016/j.proci.2018.05.007_bib0026
  publication-title: Proc. Combust. Inst.
– volume: 33
  start-page: 1145
  year: 2011
  ident: 10.1016/j.proci.2018.05.007_bib0010
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2010.06.155
– start-page: 244
  year: 2017
  ident: 10.1016/j.proci.2018.05.007_bib0016
– volume: 35
  start-page: 2487
  year: 2015
  ident: 10.1016/j.proci.2018.05.007_bib0015
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.08.010
– volume: 29
  start-page: 2545
  year: 2002
  ident: 10.1016/j.proci.2018.05.007_bib0003
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S1540-7489(02)80310-8
– volume: 160
  start-page: 1900
  year: 2013
  ident: 10.1016/j.proci.2018.05.007_bib0004
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2013.03.029
– start-page: 187
  year: 1994
  ident: 10.1016/j.proci.2018.05.007_bib0022
  publication-title: Microgravity Sci. Technol. VII
– volume: 35
  start-page: 2683
  year: 2015
  ident: 10.1016/j.proci.2018.05.007_bib0014
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.09.003
– volume: 14
  start-page: 1085
  year: 1973
  ident: 10.1016/j.proci.2018.05.007_bib0020
  publication-title: Symp. Combust.
  doi: 10.1016/S0082-0784(73)80098-0
– volume: 28
  start-page: 2793
  year: 2000
  ident: 10.1016/j.proci.2018.05.007_bib0024
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(00)80701-8
– volume: 1
  start-page: 65
  year: 1986
  ident: 10.1016/j.proci.2018.05.007_bib0021
  publication-title: Fire Saf. Sci.
  doi: 10.3801/IAFSS.FSS.1-65
– volume: 102
  start-page: 357
  year: 1995
  ident: 10.1016/j.proci.2018.05.007_bib0019
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(94)00285-Z
– volume: 35
  start-page: 2607
  year: 2015
  ident: 10.1016/j.proci.2018.05.007_bib0028
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.05.059
– ident: 10.1016/j.proci.2018.05.007_bib0001
– volume: 162
  start-page: 1167
  year: 2015
  ident: 10.1016/j.proci.2018.05.007_bib0011
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.10.009
– volume: 34
  start-page: 2665
  year: 2013
  ident: 10.1016/j.proci.2018.05.007_bib0009
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2012.06.064
– volume: 27
  start-page: 2507
  year: 1998
  ident: 10.1016/j.proci.2018.05.007_bib0007
  publication-title: Symp. Combust.
  doi: 10.1016/S0082-0784(98)80102-1
– volume: 39
  start-page: 119
  year: 1984
  ident: 10.1016/j.proci.2018.05.007_bib0018
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102208408923786
– volume: 16
  start-page: 1281
  year: 1977
  ident: 10.1016/j.proci.2018.05.007_bib0017
  publication-title: Symp. Combust.
  doi: 10.1016/S0082-0784(77)80415-3
– volume: 36
  start-page: 2971
  year: 2017
  ident: 10.1016/j.proci.2018.05.007_bib0023
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2016.06.028
– volume: 35
  year: 2018
  ident: 10.1016/j.proci.2018.05.007_bib0006
  publication-title: Int. J. Microgravity Sci. Appl.
– volume: 26
  start-page: 1353
  year: 1996
  ident: 10.1016/j.proci.2018.05.007_bib0025
  publication-title: Symp. Combust.
  doi: 10.1016/S0082-0784(96)80354-7
– volume: 33
  start-page: 2465
  year: 2011
  ident: 10.1016/j.proci.2018.05.007_bib0027
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2010.06.053
– volume: 34
  start-page: 2657
  year: 2013
  ident: 10.1016/j.proci.2018.05.007_bib0012
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2012.06.158
SSID ssj0037035
Score 2.4289715
Snippet Concurrent flame spread over electric wire insulation was studied experimentally in microgravity conditions during parabolic flights. Polyethylene insulated...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 4155
SubjectTerms Concurrent flow
Electrical wire
Engineering Sciences
Fire safety in space
Flame spread rate
Microgravity
Reactive fluid environment
Title Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity?
URI https://dx.doi.org/10.1016/j.proci.2018.05.007
https://hal.sorbonne-universite.fr/hal-01914827
Volume 37
WOSCitedRecordID wos000456628600172&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037035
  issn: 1540-7489
  databaseCode: AIEXJ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoftYezKuhti7M3z8N3W0whdQ9q1IbAO-iZkRWpTUifktvaf7eftHMuyHcJK97AXY2RJNjqfJR3xne8Q8inMEpZEeez6KgndKPO0y6RQrpKeFkkqdByIMtlEOhxm5-ds1On8trEwm2laFNnNDZv_V1NDGRgbQ2f_wdx1p1AA92B0uILZ4Xovwx_AHyuc5Xxh6PGOBpsrB5majsl5M5EOChQbGrqwZEfwi6XVaprOfjlIslQb1J-Ffm6RxwVTT137Gnl8mLoIkwpscwNH9ZK4tAQEmHRyzBo2KxpyQn0KDb3KMrOwcyqWmNqpxsBktVyXD_rr68ltQynCqGlzEHusROGeorvfbMhXGN24Nhrd64tZ-1gDI6m2jjVsvE17akbuY2QSDn1Ru2U7i4E5l7jCpUhOkMWXlSKtJsvutvT2oPeDj771-cnR8Pv20xZfcdA7geulmMKHslI_dQN-916Qxizrkr3e0eH5sd0FhDCTxqVWb_WFVvGq5BbufNHfdkUPLu35frnfOXtKnlSOCu0ZgD0jHVU8J49b8pUvyAKgRgWtoUZLqFGEGrVQowg12kANbmkDNYpQoxXUqIEabUENa7eh9vUl-dk_PDsYuFUOD1eC479yJQvGsR_mqS_GMg2F1F6URirN8kQophiLWOaFSiYywihoPRZx7ss0yKUfaT8dh69It5gV6jWh2tfgPcSSsRhWHp0Ij6nA0yqU4MNDw30S2DHkshK4xzwrU26ZjFe8HHiOA8-9mMPA75PPdaO50Xe5u3pijcOrLarZenIA3d0NP4Ip61egqDvAiWNZA6Y396n0ljxq_pd3pLtarNV78lBuVpPl4kMFwz9-n8Jz
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+a+spreading+flame+over+electric+wire+insulation+in+concurrent+flow+achieve+steady+propagation+in+microgravity%3F&rft.jtitle=Proceedings+of+the+Combustion+Institute&rft.au=Nagachi%2C+Masashi&rft.au=Mitsui%2C+Fumiya&rft.au=Citerne%2C+Jean-Marie&rft.au=Dutilleul%2C+Hugo&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=1540-7489&rft.eissn=1540-7489&rft_id=info:doi/10.1016%2Fj.proci.2018.05.007&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01914827v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7489&client=summon