Applying machine learning optimization methods to the production of a quantum gas

We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the first time, we optimize both laser cooling and evaporative cooling mechanisms simultaneously. We present the results of an evolutionary optimiza...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning: science and technology Vol. 1; no. 1; pp. 15007 - 15019
Main Authors: Barker, A J, Style, H, Luksch, K, Sunami, S, Garrick, D, Hill, F, Foot, C J, Bentine, E
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.03.2020
Subjects:
ISSN:2632-2153, 2632-2153
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the first time, we optimize both laser cooling and evaporative cooling mechanisms simultaneously. We present the results of an evolutionary optimization method (differential evolution), a method based on non-parametric inference (Gaussian process regression) and a gradient-based function approximator (artificial neural network). Online optimization is performed using no prior knowledge of the apparatus, and the learner succeeds in creating a BEC from completely randomized initial parameters. Optimizing these cooling processes results in a factor of four increase in BEC atom number compared to our manually-optimized parameters. This automated approach can maintain close-to-optimal performance in long-term operation. Furthermore, we show that machine learning techniques can be used to identify the main sources of instability within the apparatus.
AbstractList We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the first time, we optimize both laser cooling and evaporative cooling mechanisms simultaneously. We present the results of an evolutionary optimization method (differential evolution), a method based on non-parametric inference (Gaussian process regression) and a gradient-based function approximator (artificial neural network). Online optimization is performed using no prior knowledge of the apparatus, and the learner succeeds in creating a BEC from completely randomized initial parameters. Optimizing these cooling processes results in a factor of four increase in BEC atom number compared to our manually-optimized parameters. This automated approach can maintain close-to-optimal performance in long-term operation. Furthermore, we show that machine learning techniques can be used to identify the main sources of instability within the apparatus.
Author Hill, F
Foot, C J
Sunami, S
Garrick, D
Luksch, K
Bentine, E
Barker, A J
Style, H
Author_xml – sequence: 1
  givenname: A J
  orcidid: 0000-0003-2574-3081
  surname: Barker
  fullname: Barker, A J
  email: adam.barker@physics.ox.ac.uk
  organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
– sequence: 2
  givenname: H
  surname: Style
  fullname: Style, H
  organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
– sequence: 3
  givenname: K
  surname: Luksch
  fullname: Luksch, K
  organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
– sequence: 4
  givenname: S
  surname: Sunami
  fullname: Sunami, S
  organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
– sequence: 5
  givenname: D
  surname: Garrick
  fullname: Garrick, D
  organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
– sequence: 6
  givenname: F
  surname: Hill
  fullname: Hill, F
  organization: DeepMind, 6 Pancras Square, London, N1C 4AG, United Kingdom
– sequence: 7
  givenname: C J
  surname: Foot
  fullname: Foot, C J
  organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
– sequence: 8
  givenname: E
  surname: Bentine
  fullname: Bentine, E
  organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
BookMark eNp9kM1LAzEQxYNUsNbePQY8eLF2kmz241iKX1AQQc8hzSZtyu5mm80e9K93tysqImUOGV5-L5l552hUuUojdEnglkCazmnM6IwSzuZyHUeMnqDxtzT61Z-hadPsAIBywjiFMXpZ1HXxbqsNLqXa2krjQktf9YKrgy3thwzWVbjUYevyBgeHw1bj2ru8VYcbZ7DE-1ZWoS3xRjYX6NTIotHTr3OC3u7vXpePs9Xzw9NysZqpKErDTHGdZEkCGQUlaRxHYFJNDVlHacYNNyqFjDEJuZag0lxnhMUmU1qxlBJCCZugq-HdbpZ9q5sgdq71VfeloLxjsgQ4dFQ8UMq7pvHaCGXDYaXgpS0EAdEnKPqIRB-RGBLsjPDHWHtbSv9-zHIzWKyrf4Y5gl__g5dFtwnpCggHSESdG_YJ4syPWw
CODEN MLSTCK
CitedBy_id crossref_primary_10_1088_2632_2153_ad03ad
crossref_primary_10_1088_2632_2153_ad1437
crossref_primary_10_1103_PhysRevApplied_14_014011
crossref_primary_10_1088_2632_2153_abea6a
crossref_primary_10_1116_5_0210068
crossref_primary_10_1038_s41467_024_52775_8
crossref_primary_10_1103_PhysRevResearch_4_023163
crossref_primary_10_1103_jzw6_dn5h
crossref_primary_10_1103_PhysRevResearch_2_043201
crossref_primary_10_1103_PhysRevResearch_4_043216
crossref_primary_10_3390_s23084007
crossref_primary_10_1088_1674_1056_ad0cc8
crossref_primary_10_1088_2058_9565_ac3385
crossref_primary_10_1088_2632_2153_ad3cb6
crossref_primary_10_1088_0256_307X_37_10_103201
crossref_primary_10_1103_PhysRevApplied_23_L011001
crossref_primary_10_1007_s00340_021_07671_0
crossref_primary_10_3390_condmat7010017
crossref_primary_10_1063_5_0040650
crossref_primary_10_1103_PhysRevApplied_20_024042
crossref_primary_10_1088_2058_9565_ad48b2
crossref_primary_10_1088_1367_2630_abcdc8
crossref_primary_10_1063_5_0279068
crossref_primary_10_7566_JPSJ_89_074006
Cites_doi 10.1088/1361-6455/aad62b
10.1023/A:1008202821328
10.1080/13675560902736537
10.1126/science.269.5221.198
10.1038/415039a
10.1038/nature20114
10.1038/nphys2259
10.1063/1.4808213
10.1142/S0129065704001899
10.1016/j.neunet.2014.09.003
10.1103/PhysRevA.83.043408
10.1063/1.3058756
10.1016/S1049-250X(08)60101-9
10.1038/nature04851
10.1038/s41467-018-06847-1
10.1021/acs.jpca.9b00655
10.1103/PhysRevA.97.013616
10.1002/9783527617197
10.1103/PhysRevLett.75.3969
10.1038/s41534-018-0118-7
10.1038/srep25890
10.1103/PhysRevLett.59.2631
10.1103/PhysRevA.81.031402
10.1103/PhysRevLett.75.1687
10.1007/s00340-016-6391-2
10.1016/j.cell.2018.02.010
10.1155/2013/425740
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1088/2632-2153/ab6432
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Applying machine learning optimization methods to the production of a quantum gas
EISSN 2632-2153
ExternalDocumentID 10_1088_2632_2153_ab6432
mlstab6432
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/S013105/1
  funderid: https://doi.org/10.13039/501100000266
GroupedDBID ACHIP
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N5L
O3W
OK1
TSCCA
88I
AAYXX
ABHWH
ABUWG
AEINN
AFFHD
AFKRA
AKPSB
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
CJUJL
DWQXO
GNUQQ
HCIFZ
IOP
K7-
M2P
PHGZM
PHGZT
PIMPY
PQGLB
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c448t-c5e79770920ca26640f8e2f1b4895f5fc80933a0dea0c8de9136f9cec38211213
IEDL.DBID O3W
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660848100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2632-2153
IngestDate Mon Jul 14 07:50:53 EDT 2025
Sat Nov 29 04:11:28 EST 2025
Tue Nov 18 22:10:18 EST 2025
Tue Aug 08 19:43:06 EDT 2023
Fri Jan 08 09:41:21 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-c5e79770920ca26640f8e2f1b4895f5fc80933a0dea0c8de9136f9cec38211213
Notes MLST-100022.R3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2574-3081
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/ab6432
PQID 2582197050
PQPubID 4916454
PageCount 13
ParticipantIDs crossref_citationtrail_10_1088_2632_2153_ab6432
crossref_primary_10_1088_2632_2153_ab6432
proquest_journals_2582197050
iop_journals_10_1088_2632_2153_ab6432
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Min (mlstab6432bib2) 2010; 13
Vikhar (mlstab6432bib36) 2016
Patterson (mlstab6432bib1) 2015
Geisel (mlstab6432bib18) 2013; 102
Davis (mlstab6432bib8) 1995; 75
Sheard (mlstab6432bib28) 2011
Ruder (mlstab6432bib43) 2016
Lausch (mlstab6432bib19) 2016; 122
Schmidhuber (mlstab6432bib38) 2015; 61
Tranter (mlstab6432bib5) 2018; 9
Ketterle (mlstab6432bib16) 1996; 37
Pethick (mlstab6432bib30) 2008
Seif (mlstab6432bib6) 2018; 51
Toscano (mlstab6432bib17) 2019; 123
Wigley (mlstab6432bib4) 2016; 6
Einstein (mlstab6432bib7) 1924
Bloch (mlstab6432bib10) 2012; 8
Glover (mlstab6432bib32) 2003
Rasmussen (mlstab6432bib37) 2006
Harte (mlstab6432bib21) 2018; 97
Greiner (mlstab6432bib12) 2002; 415
Navon (mlstab6432bib13) 2016; 539
Storn (mlstab6432bib34) 1997; 11
Gildemeister (mlstab6432bib23) 2010; 81
Jaillet (mlstab6432bib33) 2018
Kalantre (mlstab6432bib40) 2019; 5
Steck (mlstab6432bib26) 2001
Blundell (mlstab6432bib29) 2010
Bradley (mlstab6432bib14) 1995; 75
Hadzibabic (mlstab6432bib11) 2006; 441
Hendrycks (mlstab6432bib39) 2016
Anderson (mlstab6432bib9) 1995; 269
Seeger (mlstab6432bib35) 2004; 14
Kingma (mlstab6432bib42) 2014
Foot (mlstab6432bib24) 2005
Sheela (mlstab6432bib41) 2013; 2013
Cohen-Tannoudji (mlstab6432bib15) 1998
Sherlock (mlstab6432bib27) 2011; 83
Bentine (mlstab6432bib31) 2018
Kermany (mlstab6432bib3) 2018; 172
Rohringer (mlstab6432bib20) 2008; 93
Raab (mlstab6432bib25) 1987; 59
Hush (mlstab6432bib22) 2019
References_xml – year: 1924
  ident: mlstab6432bib7
– volume: 51
  year: 2018
  ident: mlstab6432bib6
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/1361-6455/aad62b
– volume: 11
  start-page: 341
  year: 1997
  ident: mlstab6432bib34
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– year: 2005
  ident: mlstab6432bib24
– year: 2008
  ident: mlstab6432bib30
– year: 2006
  ident: mlstab6432bib37
– volume: 13
  start-page: 13
  year: 2010
  ident: mlstab6432bib2
  publication-title: Int. J. Logist. Res. Appl.
  doi: 10.1080/13675560902736537
– volume: 269
  start-page: 198
  year: 1995
  ident: mlstab6432bib9
  publication-title: Science
  doi: 10.1126/science.269.5221.198
– volume: 415
  start-page: 39
  year: 2002
  ident: mlstab6432bib12
  publication-title: Nature
  doi: 10.1038/415039a
– year: 2001
  ident: mlstab6432bib26
– volume: 539
  start-page: 72
  year: 2016
  ident: mlstab6432bib13
  publication-title: Nature
  doi: 10.1038/nature20114
– year: 2019
  ident: mlstab6432bib22
– volume: 8
  start-page: 267
  year: 2012
  ident: mlstab6432bib10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2259
– volume: 102
  year: 2013
  ident: mlstab6432bib18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4808213
– volume: 14
  start-page: 69
  year: 2004
  ident: mlstab6432bib35
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– volume: 61
  start-page: 85
  year: 2015
  ident: mlstab6432bib38
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 83
  year: 2011
  ident: mlstab6432bib27
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.043408
– year: 2014
  ident: mlstab6432bib42
– volume: 93
  year: 2008
  ident: mlstab6432bib20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3058756
– volume: 37
  start-page: 181
  year: 1996
  ident: mlstab6432bib16
  publication-title: Adv. At., Mol., Opt. Phys.
  doi: 10.1016/S1049-250X(08)60101-9
– volume: 441
  start-page: 1118
  year: 2006
  ident: mlstab6432bib11
  publication-title: Nature
  doi: 10.1038/nature04851
– year: 2003
  ident: mlstab6432bib32
– volume: 9
  start-page: 4360
  year: 2018
  ident: mlstab6432bib5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06847-1
– volume: 123
  start-page: 5388
  year: 2019
  ident: mlstab6432bib17
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.9b00655
– year: 2010
  ident: mlstab6432bib29
– volume: 97
  year: 2018
  ident: mlstab6432bib21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.013616
– year: 1998
  ident: mlstab6432bib15
  doi: 10.1002/9783527617197
– volume: 75
  start-page: 3969
  year: 1995
  ident: mlstab6432bib8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.3969
– volume: 5
  start-page: 6
  year: 2019
  ident: mlstab6432bib40
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-018-0118-7
– year: 2016
  ident: mlstab6432bib39
– year: 2011
  ident: mlstab6432bib28
  article-title: Magnetic transport and Bose–Einstein condensation of rubidium atoms
– volume: 6
  start-page: 25890
  year: 2016
  ident: mlstab6432bib4
  publication-title: Sci. Rep.
  doi: 10.1038/srep25890
– volume: 59
  start-page: 2631
  year: 1987
  ident: mlstab6432bib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2631
– year: 2018
  ident: mlstab6432bib33
– year: 2015
  ident: mlstab6432bib1
– volume: 81
  year: 2010
  ident: mlstab6432bib23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.031402
– volume: 75
  start-page: 1687
  year: 1995
  ident: mlstab6432bib14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.1687
– start-page: 261
  year: 2016
  ident: mlstab6432bib36
  article-title: Evolutionary algorithms: a critical review and its future prospects
– year: 2016
  ident: mlstab6432bib43
– volume: 122
  start-page: 112
  year: 2016
  ident: mlstab6432bib19
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-016-6391-2
– volume: 172
  start-page: 1122
  year: 2018
  ident: mlstab6432bib3
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– year: 2018
  ident: mlstab6432bib31
  article-title: Atomic mixtures in radiofrequency-dressed potentials
– volume: 2013
  start-page: 1
  year: 2013
  ident: mlstab6432bib41
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2013/425740
SSID ssj0002513520
Score 2.3842006
Snippet We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the...
We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose–Einstein condensate (BEC). For the...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15007
SubjectTerms Artificial neural networks
Bose-Einstein condensates
Cooling
Evaporative cooling
Evolutionary computation
Gaussian process
Laser cooling
Machine learning
Optimization
Process parameters
Production methods
ultracold quantum matter
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86PXhxfuJ0Sg568FCaNm3TnkTE4UHHBIXdSpamY7Cu3dr59_tem20MYRfpMa_Q9Je898vL-yDkXvueFkomluJcWMBvmSXdOvVJSB0IGTKvThR-F_1-OBxGA-NwK01Y5Uon1oo6yRX6yG0XMzojwXz2VMwt7BqFt6umhcY-OQBm42BI14c7WPtYwHYDv2DmdhL2k43VyS2wctyWI7DF7pY12p_kxR-VXNuZXvu_X3hCjg3DpM_Nkjgle3p2Rtqr7g3UbOZz8okEFJOcaFYHVGpqOkiMaQ56JDMJmrTpMV3SKqdAFmnRlIjFkTylks6XgM0yo2NZXpDv3uvXy5tlGixYCk5llaV8LYD_schlChAKPJaG2k2dkRdGforRXejvkCzRkqkw0ZHDgzRSWnGYKdaCuyStWT7TV4TCxB3JAWAecS_1tOSJcgMRqNHI86VMOsRe_ehYmerj2ARjGte34GEYIzQxQhM30HTI4_qNoqm8sUP2AbCLzfYrd8jRLblsWlaxAw_6fZiIiyTtkO4K3Y3cBtrr3cM35MjFA3kdpNYlrWqx1LfkUP1Uk3JxV6_OX3WZ6vY
  priority: 102
  providerName: ProQuest
Title Applying machine learning optimization methods to the production of a quantum gas
URI https://iopscience.iop.org/article/10.1088/2632-2153/ab6432
https://www.proquest.com/docview/2582197050
Volume 1
WOSCitedRecordID wos000660848100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: K7-
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: PIMPY
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M2P
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LSsQwcPB18OJbXB9LDnrwUDdt2ibFk8qKoq5VFPVUsmkqgrtdbdej3-6kza6IIoIUQqETUmaSeWUeANs68DVXMnUUY9xB_ZY60qtSn7jUIZeC-lWi8DnvdMT9fRRPwP44FyYfWNa_h691oeAahTYgTrRMhXEHJRVryS7KU-S_00ygGMfNfMnuxg4WFNyoXFB7NfnTxC-iaBKX-8aPKyFzPP-v31uAOatbkoMadBEmdH8J5kd9G4g9xstwZVRPk95EelUopSa2d8QjyZGD9GxqJqm7SxekzAmqiWRQF4c1X_KMSPIyRKoMe-RRFitwe9y-OTpxbGsFR6E9Vjoq0Bw1Pxp5VCFtQp9mQnuZ2_VFFGQmrst4OiRNtaRKpDpyWZhFSism0GL0XLYKU_28r9eAuBF3JUPSsoj5ma8lS5UX8lB1u34gZdqA1gjLibJ1x037i-ekuv8WIjEYSwzGkhpjDdgdzxjUNTd-gd1BQiT24BW_wJEvcL3nokxcfIzHh_JkkGYN2BxR_xPOM4nEEacBXf_jShsw6xmbvIpT24Sp8nWot2BGvZVPxWsTpg_bnfi6Wdn-OJ5xB8cLLzbje7tZ7WGEik8v4ocPaQ_r1w
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BglQuQGmrLuXhAxw4ROu1kzg5VFXVgkBsVyCBxM31Og5CYjdhk6Xqn-I3MpMHCCHtjQPK0ZPIsT_PjOcJsOcC3ylrEs9KqTzUb7lnRJX6pIwLlYm4XyUKD9RwGF1dxWcL8NDmwlBYZcsTK0adZJZs5D1BGZ2x4gH_kd951DWKvKttC40aFqfu_z-8shXfT37j_u4LcXR48evYa7oKeBavIqVnA6dQ6eGx4BanFfo8jZxI-yM_ioOUQprokm944gy3UeLivgzT2DorcQJUAA2_uwhLPlUWo1BBcfZk00FdAfUZ3nhD8fz2qBq6h1JV9swIZb94If0Wb7L8lQio5NrR2ntbkXVYbTRo9rOG_EdYcJMNWGu7U7CGWX2Cc1KwKYmLjauAUceaDhnXLEM-OW4SUFndQ7tgZcZQGWZ5XQKXRrKUGXY3Q-zNxuzaFJ_h8k1-7At0JtnEfQWGC903EgEsY-mnvjMysSJUoR2N_MCYpAu9dmO1baqrU5OPW115-aNIExQ0QUHXUOjCwdMbeV1ZZA7tPmJFN-ylmEPHXtCNb4tS9_EhuxZXOk_SLmy1aHqme4bS5vzhXfhwfPFnoAcnw9NvsCLI-FAF5G1Bp5zO3DYs2_vyppjuVCeDwd-3Bt4jrBtGow
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dS8Mw8PAL8cVvcTo1D_rgQ13atE36KOpQHHOCom8hS1MR3Dpt5-_30mbKUESQvpT2QsLdJfeR-wA4NFFouFappxnjHuq31FNBlfrElYm5EjSsEoU7vNsVj49Jz_U5rXJh8pE7-k_wtS4UXKPQBcSJlq0w7qGkYi3VR3katEZpNgvztk6JZesb9vDpZEHhjV-pu578afCUOJrFKb-dyZWgaa_8e4mrsOx0THJag6_BjBmuw8qkfwNx23kDbq0KatOcyKAKqTTE9ZB4IjmeJAOXoknqLtMFKXOC6iIZ1UVi7Z88I4q8jpE64wF5UsUm3Lcv7s4uPddiwdNol5WejgxHDZAmAdVIozikmTBB5vdDkUSZje-yHg9FU6OoFqlJfBZniTaaCbQcA59twdwwH5ptIH7CfcWQxCxhYRYaxVIdxDzW_X4YKZU2oDXBtNSu_rhtg_Eiq3twIaTFmrRYkzXWGnD8OWJU1974BfYIiSHdBix-gSNTcIOXopQ-PtbzQ7lEQjWgOeGAL7jAJhQnnEZ0548zHcBi77wtO1fd611YCqyZXoWuNWGufBubPVjQ7-Vz8bZfsewHkxHqDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+machine+learning+optimization+methods+to+the+production+of+a+quantum+gas&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Barker%2C+A+J&rft.au=Style%2C+H&rft.au=Luksch%2C+K&rft.au=Sunami%2C+S&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1088%2F2632-2153%2Fab6432&rft.externalDocID=mlstab6432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon