Applying machine learning optimization methods to the production of a quantum gas
We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the first time, we optimize both laser cooling and evaporative cooling mechanisms simultaneously. We present the results of an evolutionary optimiza...
Saved in:
| Published in: | Machine learning: science and technology Vol. 1; no. 1; pp. 15007 - 15019 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bristol
IOP Publishing
01.03.2020
|
| Subjects: | |
| ISSN: | 2632-2153, 2632-2153 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the first time, we optimize both laser cooling and evaporative cooling mechanisms simultaneously. We present the results of an evolutionary optimization method (differential evolution), a method based on non-parametric inference (Gaussian process regression) and a gradient-based function approximator (artificial neural network). Online optimization is performed using no prior knowledge of the apparatus, and the learner succeeds in creating a BEC from completely randomized initial parameters. Optimizing these cooling processes results in a factor of four increase in BEC atom number compared to our manually-optimized parameters. This automated approach can maintain close-to-optimal performance in long-term operation. Furthermore, we show that machine learning techniques can be used to identify the main sources of instability within the apparatus. |
|---|---|
| AbstractList | We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the first time, we optimize both laser cooling and evaporative cooling mechanisms simultaneously. We present the results of an evolutionary optimization method (differential evolution), a method based on non-parametric inference (Gaussian process regression) and a gradient-based function approximator (artificial neural network). Online optimization is performed using no prior knowledge of the apparatus, and the learner succeeds in creating a BEC from completely randomized initial parameters. Optimizing these cooling processes results in a factor of four increase in BEC atom number compared to our manually-optimized parameters. This automated approach can maintain close-to-optimal performance in long-term operation. Furthermore, we show that machine learning techniques can be used to identify the main sources of instability within the apparatus. |
| Author | Hill, F Foot, C J Sunami, S Garrick, D Luksch, K Bentine, E Barker, A J Style, H |
| Author_xml | – sequence: 1 givenname: A J orcidid: 0000-0003-2574-3081 surname: Barker fullname: Barker, A J email: adam.barker@physics.ox.ac.uk organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom – sequence: 2 givenname: H surname: Style fullname: Style, H organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom – sequence: 3 givenname: K surname: Luksch fullname: Luksch, K organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom – sequence: 4 givenname: S surname: Sunami fullname: Sunami, S organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom – sequence: 5 givenname: D surname: Garrick fullname: Garrick, D organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom – sequence: 6 givenname: F surname: Hill fullname: Hill, F organization: DeepMind, 6 Pancras Square, London, N1C 4AG, United Kingdom – sequence: 7 givenname: C J surname: Foot fullname: Foot, C J organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom – sequence: 8 givenname: E surname: Bentine fullname: Bentine, E organization: University of Oxford Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom |
| BookMark | eNp9kM1LAzEQxYNUsNbePQY8eLF2kmz241iKX1AQQc8hzSZtyu5mm80e9K93tysqImUOGV5-L5l552hUuUojdEnglkCazmnM6IwSzuZyHUeMnqDxtzT61Z-hadPsAIBywjiFMXpZ1HXxbqsNLqXa2krjQktf9YKrgy3thwzWVbjUYevyBgeHw1bj2ru8VYcbZ7DE-1ZWoS3xRjYX6NTIotHTr3OC3u7vXpePs9Xzw9NysZqpKErDTHGdZEkCGQUlaRxHYFJNDVlHacYNNyqFjDEJuZag0lxnhMUmU1qxlBJCCZugq-HdbpZ9q5sgdq71VfeloLxjsgQ4dFQ8UMq7pvHaCGXDYaXgpS0EAdEnKPqIRB-RGBLsjPDHWHtbSv9-zHIzWKyrf4Y5gl__g5dFtwnpCggHSESdG_YJ4syPWw |
| CODEN | MLSTCK |
| CitedBy_id | crossref_primary_10_1088_2632_2153_ad03ad crossref_primary_10_1088_2632_2153_ad1437 crossref_primary_10_1103_PhysRevApplied_14_014011 crossref_primary_10_1088_2632_2153_abea6a crossref_primary_10_1116_5_0210068 crossref_primary_10_1038_s41467_024_52775_8 crossref_primary_10_1103_PhysRevResearch_4_023163 crossref_primary_10_1103_jzw6_dn5h crossref_primary_10_1103_PhysRevResearch_2_043201 crossref_primary_10_1103_PhysRevResearch_4_043216 crossref_primary_10_3390_s23084007 crossref_primary_10_1088_1674_1056_ad0cc8 crossref_primary_10_1088_2058_9565_ac3385 crossref_primary_10_1088_2632_2153_ad3cb6 crossref_primary_10_1088_0256_307X_37_10_103201 crossref_primary_10_1103_PhysRevApplied_23_L011001 crossref_primary_10_1007_s00340_021_07671_0 crossref_primary_10_3390_condmat7010017 crossref_primary_10_1063_5_0040650 crossref_primary_10_1103_PhysRevApplied_20_024042 crossref_primary_10_1088_2058_9565_ad48b2 crossref_primary_10_1088_1367_2630_abcdc8 crossref_primary_10_1063_5_0279068 crossref_primary_10_7566_JPSJ_89_074006 |
| Cites_doi | 10.1088/1361-6455/aad62b 10.1023/A:1008202821328 10.1080/13675560902736537 10.1126/science.269.5221.198 10.1038/415039a 10.1038/nature20114 10.1038/nphys2259 10.1063/1.4808213 10.1142/S0129065704001899 10.1016/j.neunet.2014.09.003 10.1103/PhysRevA.83.043408 10.1063/1.3058756 10.1016/S1049-250X(08)60101-9 10.1038/nature04851 10.1038/s41467-018-06847-1 10.1021/acs.jpca.9b00655 10.1103/PhysRevA.97.013616 10.1002/9783527617197 10.1103/PhysRevLett.75.3969 10.1038/s41534-018-0118-7 10.1038/srep25890 10.1103/PhysRevLett.59.2631 10.1103/PhysRevA.81.031402 10.1103/PhysRevLett.75.1687 10.1007/s00340-016-6391-2 10.1016/j.cell.2018.02.010 10.1155/2013/425740 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by IOP Publishing Ltd 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Author(s). Published by IOP Publishing Ltd – notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1088/2632-2153/ab6432 |
| DatabaseName | Institute of Physics Open Access IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | Applying machine learning optimization methods to the production of a quantum gas |
| EISSN | 2632-2153 |
| ExternalDocumentID | 10_1088_2632_2153_ab6432 mlstab6432 |
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/S013105/1 funderid: https://doi.org/10.13039/501100000266 |
| GroupedDBID | ACHIP ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N5L O3W OK1 TSCCA 88I AAYXX ABHWH ABUWG AEINN AFFHD AFKRA AKPSB ARAPS AZQEC BENPR BGLVJ CCPQU CITATION CJUJL DWQXO GNUQQ HCIFZ IOP K7- M2P PHGZM PHGZT PIMPY PQGLB 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c448t-c5e79770920ca26640f8e2f1b4895f5fc80933a0dea0c8de9136f9cec38211213 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660848100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2632-2153 |
| IngestDate | Mon Jul 14 07:50:53 EDT 2025 Sat Nov 29 04:11:28 EST 2025 Tue Nov 18 22:10:18 EST 2025 Tue Aug 08 19:43:06 EDT 2023 Fri Jan 08 09:41:21 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-c5e79770920ca26640f8e2f1b4895f5fc80933a0dea0c8de9136f9cec38211213 |
| Notes | MLST-100022.R3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2574-3081 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/2632-2153/ab6432 |
| PQID | 2582197050 |
| PQPubID | 4916454 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1088_2632_2153_ab6432 crossref_primary_10_1088_2632_2153_ab6432 proquest_journals_2582197050 iop_journals_10_1088_2632_2153_ab6432 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Machine learning: science and technology |
| PublicationTitleAbbrev | MLST |
| PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Min (mlstab6432bib2) 2010; 13 Vikhar (mlstab6432bib36) 2016 Patterson (mlstab6432bib1) 2015 Geisel (mlstab6432bib18) 2013; 102 Davis (mlstab6432bib8) 1995; 75 Sheard (mlstab6432bib28) 2011 Ruder (mlstab6432bib43) 2016 Lausch (mlstab6432bib19) 2016; 122 Schmidhuber (mlstab6432bib38) 2015; 61 Tranter (mlstab6432bib5) 2018; 9 Ketterle (mlstab6432bib16) 1996; 37 Pethick (mlstab6432bib30) 2008 Seif (mlstab6432bib6) 2018; 51 Toscano (mlstab6432bib17) 2019; 123 Wigley (mlstab6432bib4) 2016; 6 Einstein (mlstab6432bib7) 1924 Bloch (mlstab6432bib10) 2012; 8 Glover (mlstab6432bib32) 2003 Rasmussen (mlstab6432bib37) 2006 Harte (mlstab6432bib21) 2018; 97 Greiner (mlstab6432bib12) 2002; 415 Navon (mlstab6432bib13) 2016; 539 Storn (mlstab6432bib34) 1997; 11 Gildemeister (mlstab6432bib23) 2010; 81 Jaillet (mlstab6432bib33) 2018 Kalantre (mlstab6432bib40) 2019; 5 Steck (mlstab6432bib26) 2001 Blundell (mlstab6432bib29) 2010 Bradley (mlstab6432bib14) 1995; 75 Hadzibabic (mlstab6432bib11) 2006; 441 Hendrycks (mlstab6432bib39) 2016 Anderson (mlstab6432bib9) 1995; 269 Seeger (mlstab6432bib35) 2004; 14 Kingma (mlstab6432bib42) 2014 Foot (mlstab6432bib24) 2005 Sheela (mlstab6432bib41) 2013; 2013 Cohen-Tannoudji (mlstab6432bib15) 1998 Sherlock (mlstab6432bib27) 2011; 83 Bentine (mlstab6432bib31) 2018 Kermany (mlstab6432bib3) 2018; 172 Rohringer (mlstab6432bib20) 2008; 93 Raab (mlstab6432bib25) 1987; 59 Hush (mlstab6432bib22) 2019 |
| References_xml | – year: 1924 ident: mlstab6432bib7 – volume: 51 year: 2018 ident: mlstab6432bib6 publication-title: J. Phys. B: At. Mol. Opt. Phys. doi: 10.1088/1361-6455/aad62b – volume: 11 start-page: 341 year: 1997 ident: mlstab6432bib34 publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – year: 2005 ident: mlstab6432bib24 – year: 2008 ident: mlstab6432bib30 – year: 2006 ident: mlstab6432bib37 – volume: 13 start-page: 13 year: 2010 ident: mlstab6432bib2 publication-title: Int. J. Logist. Res. Appl. doi: 10.1080/13675560902736537 – volume: 269 start-page: 198 year: 1995 ident: mlstab6432bib9 publication-title: Science doi: 10.1126/science.269.5221.198 – volume: 415 start-page: 39 year: 2002 ident: mlstab6432bib12 publication-title: Nature doi: 10.1038/415039a – year: 2001 ident: mlstab6432bib26 – volume: 539 start-page: 72 year: 2016 ident: mlstab6432bib13 publication-title: Nature doi: 10.1038/nature20114 – year: 2019 ident: mlstab6432bib22 – volume: 8 start-page: 267 year: 2012 ident: mlstab6432bib10 publication-title: Nat. Phys. doi: 10.1038/nphys2259 – volume: 102 year: 2013 ident: mlstab6432bib18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4808213 – volume: 14 start-page: 69 year: 2004 ident: mlstab6432bib35 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 61 start-page: 85 year: 2015 ident: mlstab6432bib38 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 83 year: 2011 ident: mlstab6432bib27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.043408 – year: 2014 ident: mlstab6432bib42 – volume: 93 year: 2008 ident: mlstab6432bib20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3058756 – volume: 37 start-page: 181 year: 1996 ident: mlstab6432bib16 publication-title: Adv. At., Mol., Opt. Phys. doi: 10.1016/S1049-250X(08)60101-9 – volume: 441 start-page: 1118 year: 2006 ident: mlstab6432bib11 publication-title: Nature doi: 10.1038/nature04851 – year: 2003 ident: mlstab6432bib32 – volume: 9 start-page: 4360 year: 2018 ident: mlstab6432bib5 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06847-1 – volume: 123 start-page: 5388 year: 2019 ident: mlstab6432bib17 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b00655 – year: 2010 ident: mlstab6432bib29 – volume: 97 year: 2018 ident: mlstab6432bib21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.013616 – year: 1998 ident: mlstab6432bib15 doi: 10.1002/9783527617197 – volume: 75 start-page: 3969 year: 1995 ident: mlstab6432bib8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.3969 – volume: 5 start-page: 6 year: 2019 ident: mlstab6432bib40 publication-title: npj Quantum Inf. doi: 10.1038/s41534-018-0118-7 – year: 2016 ident: mlstab6432bib39 – year: 2011 ident: mlstab6432bib28 article-title: Magnetic transport and Bose–Einstein condensation of rubidium atoms – volume: 6 start-page: 25890 year: 2016 ident: mlstab6432bib4 publication-title: Sci. Rep. doi: 10.1038/srep25890 – volume: 59 start-page: 2631 year: 1987 ident: mlstab6432bib25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2631 – year: 2018 ident: mlstab6432bib33 – year: 2015 ident: mlstab6432bib1 – volume: 81 year: 2010 ident: mlstab6432bib23 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.031402 – volume: 75 start-page: 1687 year: 1995 ident: mlstab6432bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.1687 – start-page: 261 year: 2016 ident: mlstab6432bib36 article-title: Evolutionary algorithms: a critical review and its future prospects – year: 2016 ident: mlstab6432bib43 – volume: 122 start-page: 112 year: 2016 ident: mlstab6432bib19 publication-title: Appl. Phys. B doi: 10.1007/s00340-016-6391-2 – volume: 172 start-page: 1122 year: 2018 ident: mlstab6432bib3 publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – year: 2018 ident: mlstab6432bib31 article-title: Atomic mixtures in radiofrequency-dressed potentials – volume: 2013 start-page: 1 year: 2013 ident: mlstab6432bib41 publication-title: Math. Probl. Eng. doi: 10.1155/2013/425740 |
| SSID | ssj0002513520 |
| Score | 2.384113 |
| Snippet | We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose-Einstein condensate (BEC). For the... We apply three machine learning strategies to optimize the atomic cooling processes utilized in the production of a Bose–Einstein condensate (BEC). For the... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15007 |
| SubjectTerms | Artificial neural networks Bose-Einstein condensates Cooling Evaporative cooling Evolutionary computation Gaussian process Laser cooling Machine learning Optimization Process parameters Production methods ultracold quantum matter |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60evBifWK1yh704CFkkzQmexIRixdLBYXewmYfpdA2aZP6-51JNi1F6EVyzASSzM58M7Oz8xFyjxAuVGoc5XHlQP4lwOaC1DHY6R6kYahDVZFNRINBPBrxoS24FbatsvGJlaNWmcQauevjiU4esZA95wsHWaNwd9VSaOyTA4hsPGzp-vCH6xoLYDfEF8zuToI9uTid3AGUC1yRAhb7W2i0P8nyPy65wpl--79veEKObYRJX-olcUr29PyMtBv2BmqN-Zx8YgCKh5zorGqo1NQySIxpBn5kZg9o0ppjuqBlRiFYpHk9IhbvZIYKuliBblYzOhbFBfnuv329vjuWYMGRkJWVjgx1BPEf4z6TApC6x0ysfeOlvZiHBru7sN4hmNKCyVhp7gVPhkstA_hSnAV3SVrzbK6vCA39VGsjlDGA9zyFwI4Jj6fSeJDQyDjsELf50Ym008eRBGOaVLvgcZygahJUTVKrpkMe10_k9eSNHbIPoLvEml-xQ45uyc2mRZl4cGHdh0VJrkyHdBvtbuQ2qr3effuGHPmYkFdNal3SKpcrfUsO5U85KZZ31er8BVj6618 priority: 102 providerName: ProQuest |
| Title | Applying machine learning optimization methods to the production of a quantum gas |
| URI | https://iopscience.iop.org/article/10.1088/2632-2153/ab6432 https://www.proquest.com/docview/2582197050 |
| Volume | 1 |
| WOSCitedRecordID | wos000660848100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: K7- dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: PIMPY dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M2P dateStart: 20200301 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_Mj4MXv8X5MXLQg4e6tLU2wZPKhiKbVRT1VNI0GYJbp-08-rf70maToYgghVDoCykvyfu9l7wPgD0D4SJNtJO6PHXQ_hK45_zE0cbT3U-CQAVpWWwi7HbZ4yOPanAyiYXJhlb0H-JrlSi4YqF1iGNNk2HcQaTymyJBPEX5O-czhHFczNf-w-SABYEblQtqryZ_6jgFRTM43Dd5XIJMe-lfv7cMi1a3JKcV6QrU1GAVlsZ1G4jdxmtwY1RPE95E-qUrpSK2dkSPZChB-jY0k1TVpXNSZATVRDKsksOaL5kmgryOcFZGfdIT-Trct1t35xeOLa3gSLTHCkcGKkTNj3KPSoEYfUQ1U552kyPGA238usxJh6CpElSyVHHXP9ZcKukztBg919-A2UE2UJtAAi9RSotUa0R6nqBKR4XLE6ldNGUkC-rQHHM5ljbvuCl_8RKX99-MxYZjseFYXHGsDgeTHsMq58YvtPs4EbHdePkvdGSKrv-SF7GLjznxoWE8THUddsaz_0XnmUBiHtKAbv1xpG1Y8IxNXvqp7cBs8TZSuzAv34vn_K0Bc2etbnTbKG1_bK9CB9uOF5n2o9Uo1zBSRZed6OkTX13sQA |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS-RAEC58LOhF3VVxXB990IOHMJ3OxEkflmXZVRTdQUHBW9vphwjOJJqMy_4pf6NVeSgizM2D5NidkKS_rvqquh4AO6TCtU19YENpA7S_NO65KA08RbpHaRy72FbNJvqDQXJ1Jc-m4KnNhaGwylYmVoLaZoZ85F1BGZ2yz2P-M78PqGsUna62LTRqWJy4___QZCt-HP_B9d0V4vDg4vdR0HQVCAyaImVgYtdH0sOl4Eajeupxnzjhw7SXyNhTSBMZ-Zpbp7lJrJNhtO-lcSbCF6ACaPjcaZjtUWUxChUUZy8-HeQKyGd4cxqK-7dL1dAD1KpRV6eo-8Ub7Td9m-XvVECl1w4XP9sfWYKFhkGzXzXkv8KUG32DxbY7BWuE1TKcE8GmJC42rAJGHWs6ZNywDOXksElAZXUP7YKVGUMyzPK6BC6NZJ5pdj9G7I2H7EYXK3D5IR-2CjOjbOTWgMUidc5r6z3yGZkiceU6lKnxIRpsJok70G0XVpmmujo1-bhT1Sl_kiiCgiIoqBoKHdh7uSOvK4tMmLuLWFGNeCkmzGNv5g3vilKFeJFfi_dVbn0HNlo0vc57hdL65OFtmDu6-HuqTo8HJ99hXpDzoQrI24CZ8mHsNuGLeSxvi4etamcwuP5o4D0D6MNHDA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHi-sT1mYMePNRNW2uTo6iLoqwKit5CmiaLsN1W2_X3O2mziigiSC-lndAyeXwzycx8AHsWwmWaGC_1eeqh_yVxzoWJZ2yke5hEkY7Smmwi7vfZ0xO_dTyndS5MXril_xBvm0LBjQpdQBzr2grjHiJV2JUJ4mnQLVIzDTO2Tokd1jfh48cmC4I3PqXuePKnxl_gaBo_-W1NroGm1_73Ly7CgrMxyUkjvgRTerQM7Ql_A3HTeQXurAlq05xIVodUauI4JAYkx5UkcymapGGZLkmVEzQXSdEUibVvckMkeRlj74wzMpDlKjz0zu9PLzxHseAp9MsqT0U6RguQ8oAqiVh9RA3TgfGTI8YjY-O77I6HpKmWVLFUcz88NlxpFTL0HAM_XIPWKB_pdSBRkGhtZGoMIj5P0LSj0ueJMj66NIpFHehONC2Uqz9uaTCGoj4HZ0xYrQmrNdForQMHHy2KpvbGL7L72BnCTcDyFznyRS4blpXw8bI7PzQW2FEd2JqMgE-5wCYU85hGdOOPX9qFuduznri-7F9twnxg3fQ6dG0LWtXrWG_DrHqrnsvXnXrIvgN_Cup2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+machine+learning+optimization+methods+to+the+production+of+a+quantum+gas&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Barker%2C+A+J&rft.au=Style%2C+H&rft.au=Luksch%2C+K&rft.au=Sunami%2C+S&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1088%2F2632-2153%2Fab6432&rft.externalDocID=mlstab6432 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |