Gradient of mutual information in linear vector Gaussian channels

This paper considers a general linear vector Gaussian channel with arbitrary signaling and pursues two closely related goals: i) closed-form expressions for the gradient of the mutual information with respect to arbitrary parameters of the system, and ii) fundamental connections between information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 52; H. 1; S. 141 - 154
Hauptverfasser: Palomar, D.P., Verdu, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.01.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers a general linear vector Gaussian channel with arbitrary signaling and pursues two closely related goals: i) closed-form expressions for the gradient of the mutual information with respect to arbitrary parameters of the system, and ii) fundamental connections between information theory and estimation theory. Generalizing the fundamental relationship recently unveiled by Guo, Shamai, and Verdu/spl acute/, we show that the gradient of the mutual information with respect to the channel matrix is equal to the product of the channel matrix and the error covariance matrix of the best estimate of the input given the output. Gradients and derivatives with respect to other parameters are then found via the differentiation chain rule.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2005.860424