scGMM-VGAE: a Gaussian mixture model-based variational graph autoencoder algorithm for clustering single-cell RNA-seq data

Cell type identification using single-cell RNA sequencing data is critical for understanding disease mechanisms and drug discovery. Cell clustering analysis has been widely studied in health research for rare tumor cell detection. In this study, we propose a Gaussian mixture model-based variational...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Machine learning: science and technology Ročník 4; číslo 3; s. 35013 - 35024
Hlavní autori: Lin, Eric, Liu, Boyuan, Lac, Leann, Fung, Daryl L X, Leung, Carson K, Hu, Pingzhao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.09.2023
Predmet:
ISSN:2632-2153, 2632-2153
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cell type identification using single-cell RNA sequencing data is critical for understanding disease mechanisms and drug discovery. Cell clustering analysis has been widely studied in health research for rare tumor cell detection. In this study, we propose a Gaussian mixture model-based variational graph autoencoder on scRNA-seq data (scGMM-VGAE) that integrates a statistical clustering model to a deep learning algorithm to significantly improve the cell clustering performance. This model feeds a cell-cell graph adjacency matrix and a gene feature matrix into a graph variational autoencoder (VGAE) to generate latent data. These data are then used for cell clustering by the Gaussian mixture model (GMM) module. To optimize the algorithm, a designed loss function is derived by combining parameter estimates from the GMM and VGAE. We test the proposed method on four publicly available and three simulated datasets which contain many biological and technical zeros. The scGMM-VGAE outperforms four selected baseline methods on three evaluation metrics in cell clustering. By successfully incorporating GMM into deep learning VGAE on scRNA-seq data, the proposed method shows higher accuracy in cell clustering on scRNA-seq data. This improvement has a significant impact on detecting rare cell types in health research. All source codes used in this study can be found at https://github.com/ericlin1230/scGMM-VGAE .
AbstractList Cell type identification using single-cell RNA sequencing data is critical for understanding disease mechanisms and drug discovery. Cell clustering analysis has been widely studied in health research for rare tumor cell detection. In this study, we propose a Gaussian mixture model-based variational graph autoencoder on scRNA-seq data (scGMM-VGAE) that integrates a statistical clustering model to a deep learning algorithm to significantly improve the cell clustering performance. This model feeds a cell-cell graph adjacency matrix and a gene feature matrix into a graph variational autoencoder (VGAE) to generate latent data. These data are then used for cell clustering by the Gaussian mixture model (GMM) module. To optimize the algorithm, a designed loss function is derived by combining parameter estimates from the GMM and VGAE. We test the proposed method on four publicly available and three simulated datasets which contain many biological and technical zeros. The scGMM-VGAE outperforms four selected baseline methods on three evaluation metrics in cell clustering. By successfully incorporating GMM into deep learning VGAE on scRNA-seq data, the proposed method shows higher accuracy in cell clustering on scRNA-seq data. This improvement has a significant impact on detecting rare cell types in health research. All source codes used in this study can be found at https://github.com/ericlin1230/scGMM-VGAE.
Cell type identification using single-cell RNA sequencing data is critical for understanding disease mechanisms and drug discovery. Cell clustering analysis has been widely studied in health research for rare tumor cell detection. In this study, we propose a Gaussian mixture model-based variational graph autoencoder on scRNA-seq data (scGMM-VGAE) that integrates a statistical clustering model to a deep learning algorithm to significantly improve the cell clustering performance. This model feeds a cell-cell graph adjacency matrix and a gene feature matrix into a graph variational autoencoder (VGAE) to generate latent data. These data are then used for cell clustering by the Gaussian mixture model (GMM) module. To optimize the algorithm, a designed loss function is derived by combining parameter estimates from the GMM and VGAE. We test the proposed method on four publicly available and three simulated datasets which contain many biological and technical zeros. The scGMM-VGAE outperforms four selected baseline methods on three evaluation metrics in cell clustering. By successfully incorporating GMM into deep learning VGAE on scRNA-seq data, the proposed method shows higher accuracy in cell clustering on scRNA-seq data. This improvement has a significant impact on detecting rare cell types in health research. All source codes used in this study can be found at https://github.com/ericlin1230/scGMM-VGAE .
Author Hu, Pingzhao
Fung, Daryl L X
Liu, Boyuan
Leung, Carson K
Lac, Leann
Lin, Eric
Author_xml – sequence: 1
  givenname: Eric
  surname: Lin
  fullname: Lin, Eric
  organization: Dalla Lana School of Public Health, University of Toronto , Toronto, Ontario, Canada
– sequence: 2
  givenname: Boyuan
  surname: Liu
  fullname: Liu, Boyuan
  organization: Dalla Lana School of Public Health, University of Toronto , Toronto, Ontario, Canada
– sequence: 3
  givenname: Leann
  surname: Lac
  fullname: Lac, Leann
  organization: University of Manitoba Department of Statistics, Winnipeg, Manitoba, Canada
– sequence: 4
  givenname: Daryl L X
  surname: Fung
  fullname: Fung, Daryl L X
  organization: University of Manitoba Department of Computer Science, Winnipeg, Manitoba, Canada
– sequence: 5
  givenname: Carson K
  orcidid: 0000-0002-7541-9127
  surname: Leung
  fullname: Leung, Carson K
  organization: University of Manitoba Department of Computer Science, Winnipeg, Manitoba, Canada
– sequence: 6
  givenname: Pingzhao
  orcidid: 0000-0002-9546-2245
  surname: Hu
  fullname: Hu, Pingzhao
  organization: Western University Department of Biochemistry, London, Ontario N6A 5C1, Canada
BookMark eNp9kUtv1DAUhSNUJErpnqUlFmwI9SuJw25UlaFSCxICttaNH1OPnDi1nQr49XgaXkLAxte6-s7R0T2Pq6MpTKaqnhL8kmAhzmjLaE1Jw85A6U6xB9Xxz9XRb_9H1WlKe4wxbQhrKD6uvia1vb6uP203F68QoC0sKTmY0Og-5yUaNAZtfD1AMhrdQXSQXZjAo12E-QbBkoOZVGEiAr8L0eWbEdkQkfJLyia6aYdSebyplfEevX-7qZO5RRoyPKkeWvDJnH6fJ9XH1xcfzt_UV--2l-ebq1pxLnIN1IiesF4ZC6JTvdAYW8J5q83QkZYOQnRU97a3HcfMKmsGihtCm87oBjRmJ9Xl6qsD7OUc3Qjxiwzg5P0ixJ2EmJ3yRlLQzAIVDe4wVwx6ToG3A8aM97RYFa9nq9ccw-1iUpb7sMRykCSp4IwUpGsL1a6UiiGlaKxULt9fLkdwXhIsD7XJQy_y0ItcaytC_IfwR9z_SJ6vEhfmX2FGX6JxySRmDSZMztoW8sVfyH8afwNLH7eP
CODEN MLSTCK
CitedBy_id crossref_primary_10_1186_s13063_024_08669_7
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1007_s00521_024_09662_6
crossref_primary_10_1016_j_jbi_2024_104629
Cites_doi 10.1093/bib/bbaa316
10.1016/j.cels.2016.08.011
10.1093/bioinformatics/btz752
10.1038/s41467-018-07931-2
10.1073/pnas.1507125112
10.1371/journal.pone.0151984
10.1016/j.asoc.2017.08.032
10.1186/s13073-017-0467-4
10.1186/s12575-018-0067-8
10.7717/peerj.12087
10.1021/acs.chemrev.0c01140
10.1093/bib/bbab034
10.1093/bioinformatics/btab085
10.3389/fgene.2019.00317
10.1109/ACCESS.2020.2988796
10.1038/nbt1406
10.3389/fcvm.2019.00173
10.1038/s41592-018-0229-2
10.1142/S0219720020400053
10.1146/annurevstatistics031017-100325
10.1038/s41467-019-12630-7
10.1371/journal.pcbi.1007509
10.1016/j.cell.2019.05.031
10.1093/bib/bbab345
10.1093/bioinformatics/btac168
10.1016/j.cell.2021.04.048
10.1109/TNNLS.2021.3121224
10.1002/hep.29353
10.1093/bioinformatics/btab804
10.1109/ACCESS.2020.2977671
10.1093/bioinformatics/17.9.763
10.1038/nbt.4096
10.1038/ncomms14049
10.3389/fgene.2019.01253
10.24963/ijcai.2017/273
10.1016/j.csda.2016.05.007
10.21105/joss.00861
10.1609/aaai.v34i04.5843
10.1007/s12626-021-00100-w
10.1093/bib/bbab236
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
– notice: 2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1088/2632-2153/acd7c3
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID oai_doaj_org_article_2ad3fa2850704c3a942a46b003492d03
10_1088_2632_2153_acd7c3
mlstacd7c3
GrantInformation_xml – fundername: Manitoba Medical Services Foundation (MMSF)
– fundername: Canada Research Chairs Tier II Program
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c448t-a2e89139cefa87c98d00f1446deb7162b8872d9f9f7403fcfeb2051257ed5ad03
IEDL.DBID O3W
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038623200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2632-2153
IngestDate Mon Nov 10 04:36:00 EST 2025
Sat Jul 26 00:37:24 EDT 2025
Sat Nov 29 02:22:47 EST 2025
Tue Nov 18 22:10:18 EST 2025
Fri Aug 04 05:13:27 EDT 2023
Wed Aug 21 03:30:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-a2e89139cefa87c98d00f1446deb7162b8872d9f9f7403fcfeb2051257ed5ad03
Notes MLST-100777.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9546-2245
0000-0002-7541-9127
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/acd7c3
PQID 2843103376
PQPubID 4916454
PageCount 12
ParticipantIDs crossref_citationtrail_10_1088_2632_2153_acd7c3
proquest_journals_2843103376
iop_journals_10_1088_2632_2153_acd7c3
crossref_primary_10_1088_2632_2153_acd7c3
doaj_primary_oai_doaj_org_article_2ad3fa2850704c3a942a46b003492d03
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Baron (mlstacd7c3bib1) 2016; 3
Kipf (mlstacd7c3bib21) 2016
Yu (mlstacd7c3bib43) 2021; 22
El Assaad (mlstacd7c3bib11) 2016; 103
Kingma (mlstacd7c3bib20) 2014
Reynolds (mlstacd7c3bib30) 2015
Krzak (mlstacd7c3bib24) 2019; 10
Wu (mlstacd7c3bib39) 2021; 121
Wang (mlstacd7c3bib37) 2022; 23
Wei (mlstacd7c3bib38) 2022; 38
Yeung (mlstacd7c3bib42) 2001; 17
Haque (mlstacd7c3bib17) 2017; 9
Tsumoto (mlstacd7c3bib35) 2022; 16
Li (mlstacd7c3bib25) 2020; 4
Cui (mlstacd7c3bib8) 2021; 22
Kraskov (mlstacd7c3bib23) 2009
Garriga (mlstacd7c3bib13) 2016; 11
Jiang (mlstacd7c3bib19) 2017
Lopez (mlstacd7c3bib26) 2018; 15
Xiong (mlstacd7c3bib40) 2019; 10
Hao (mlstacd7c3bib16) 2021; 184
Chen (mlstacd7c3bib7) 2019; 10
Darmanis (mlstacd7c3bib9) 2015; 112
Zheng (mlstacd7c3bib46) 2017; 8
Butler (mlstacd7c3bib5) 2018; 36
Eraslan (mlstacd7c3bib12) 2019; 10
Chaudhry (mlstacd7c3bib6) 2019; 6
McInnes (mlstacd7c3bib28) 2018; 3
McLachlan (mlstacd7c3bib29) 2019; 6
Buterez (mlstacd7c3bib4) 2021; 38
Stuart (mlstacd7c3bib33) 2019; 177
Baruzzo (mlstacd7c3bib2) 2020; 36
Do (mlstacd7c3bib10) 2008; 26
Zhao (mlstacd7c3bib45) 2018; 20
Guo (mlstacd7c3bib15) 2020; 8
Uykan (mlstacd7c3bib36) 2021
Malik (mlstacd7c3bib27) 2019
Yu (mlstacd7c3bib44) 2018; 68
Shiga (mlstacd7c3bib31) 2021; 9
Kipf (mlstacd7c3bib22) 2017
Booeshaghi (mlstacd7c3bib3) 2021; 37
Govek (mlstacd7c3bib14) 2019; 15
Sinaga (mlstacd7c3bib32) 2020; 8
Yang (mlstacd7c3bib41) 2017; 66
Su (mlstacd7c3bib34) 2021; 22
Hui (mlstacd7c3bib18) 2020; vol 34
References_xml – volume: 22
  start-page: bbaa316
  year: 2021
  ident: mlstacd7c3bib43
  article-title: ScGMAI: a Gaussian mixture model for clustering single-cell RNA-seq data based on deep autoencoder
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa316
– volume: 3
  start-page: 346
  year: 2016
  ident: mlstacd7c3bib1
  article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.08.011
– volume: 36
  start-page: 1468
  year: 2020
  ident: mlstacd7c3bib2
  article-title: SPARSim single cell: a count data simulator for scRNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz752
– volume: 10
  start-page: 390
  year: 2019
  ident: mlstacd7c3bib12
  article-title: Single-cell RNA-seq denoising using a deep count autoencoder
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07931-2
– volume: 112
  start-page: 7285
  year: 2015
  ident: mlstacd7c3bib9
  article-title: A survey of human brain transcriptome diversity at the single cell level
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1507125112
– volume: 11
  year: 2016
  ident: mlstacd7c3bib13
  article-title: Expectation-maximization binary clustering for behavioural annotation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151984
– volume: 68
  start-page: 747
  year: 2018
  ident: mlstacd7c3bib44
  article-title: Two improved k-means algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.032
– volume: 9
  start-page: 75
  year: 2017
  ident: mlstacd7c3bib17
  article-title: A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications
  publication-title: Genome Med.
  doi: 10.1186/s13073-017-0467-4
– volume: 20
  start-page: 5
  year: 2018
  ident: mlstacd7c3bib45
  article-title: Silhouette scores for arbitrary defined groups in gene expression data and insights into differential expression results
  publication-title: Biol. Proced. Online
  doi: 10.1186/s12575-018-0067-8
– volume: 9
  year: 2021
  ident: mlstacd7c3bib31
  article-title: SC-JNMF: single-cell clustering integrating multiple quantification methods based on joint non-negative matrix factorization
  publication-title: PeerJ
  doi: 10.7717/peerj.12087
– volume: 121
  start-page: 12035
  year: 2021
  ident: mlstacd7c3bib39
  article-title: Aptamer-Based Detection of Circulating Targets for Precision Medicine
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c01140
– volume: 22
  start-page: bbab034
  year: 2021
  ident: mlstacd7c3bib34
  article-title: Accurate feature selection improves single-cell RNA-seq cell clustering
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab034
– volume: 37
  start-page: 2223
  year: 2021
  ident: mlstacd7c3bib3
  article-title: Normalization of single-cell RNA-seq counts by log (x + 1) or log(1 + x)
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab085
– volume: 10
  start-page: 317
  year: 2019
  ident: mlstacd7c3bib7
  article-title: Single-cell RNA-seq technologies and related computational data analysis
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00317
– volume: 8
  start-page: 80716
  year: 2020
  ident: mlstacd7c3bib32
  article-title: Unsupervised k-means clustering algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 26
  start-page: 897
  year: 2008
  ident: mlstacd7c3bib10
  article-title: What is the expectation maximization algorithm?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1406
– volume: 6
  start-page: 173
  year: 2019
  ident: mlstacd7c3bib6
  article-title: Single-cell RNA sequencing of the cardiovascular system: new looks for old diseases
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2019.00173
– year: 2017
  ident: mlstacd7c3bib22
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 15
  start-page: 1053
  year: 2018
  ident: mlstacd7c3bib26
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– start-page: 827
  year: 2015
  ident: mlstacd7c3bib30
  article-title: Gaussian mixture models
– volume: 4
  year: 2020
  ident: mlstacd7c3bib25
  article-title: Single-cell RNA-seq data clustering: a survey with performance comparison study
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720020400053
– year: 2016
  ident: mlstacd7c3bib21
  article-title: Variational graph autoencoders
– volume: 6
  start-page: 355
  year: 2019
  ident: mlstacd7c3bib29
  article-title: Finite mixture models
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurevstatistics031017-100325
– volume: 10
  start-page: 4576
  year: 2019
  ident: mlstacd7c3bib40
  article-title: SCALE method for single-cell ATAC-seq analysis via latent feature extraction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12630-7
– volume: 15
  year: 2019
  ident: mlstacd7c3bib14
  article-title: Clustering-independent analysis of genomic data using spectral simplicial theory
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007509
– volume: 177
  start-page: 1888
  year: 2019
  ident: mlstacd7c3bib33
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 23
  start-page: bbab345
  year: 2022
  ident: mlstacd7c3bib37
  article-title: A comparison of deep learning-based pre-processing and clustering approaches for single-cell RNA sequencing data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab345
– volume: 38
  start-page: 2692
  year: 2022
  ident: mlstacd7c3bib38
  article-title: EDClust: an EM-MM hybrid method for cell clustering in multiple-subject single-cell RNA sequencing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac168
– volume: 184
  start-page: 3573
  year: 2021
  ident: mlstacd7c3bib16
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– start-page: 1
  year: 2021
  ident: mlstacd7c3bib36
  article-title: Fusion of centroid-based clustering with graph clustering: an expectation maximization-based hybrid clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3121224
– volume: 66
  start-page: 1387
  year: 2017
  ident: mlstacd7c3bib41
  article-title: A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation
  publication-title: Hepatology
  doi: 10.1002/hep.29353
– volume: 38
  start-page: 1277
  year: 2021
  ident: mlstacd7c3bib4
  article-title: CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab804
– volume: 8
  start-page: 43992
  year: 2020
  ident: mlstacd7c3bib15
  article-title: Variational autoencoder with optimizing Gaussian mixture model priors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2977671
– year: 2014
  ident: mlstacd7c3bib20
  article-title: Auto-encoding variational Bayes
– volume: 17
  start-page: 763
  year: 2001
  ident: mlstacd7c3bib42
  article-title: Principal component analysis for clustering gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.9.763
– volume: 36
  start-page: 411
  year: 2018
  ident: mlstacd7c3bib5
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 8
  year: 2017
  ident: mlstacd7c3bib46
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 10
  start-page: 1253
  year: 2019
  ident: mlstacd7c3bib24
  article-title: Benchmark and parameter sensitivity analysis of single-cell RNA sequencing clustering methods
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.01253
– year: 2017
  ident: mlstacd7c3bib19
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
  doi: 10.24963/ijcai.2017/273
– year: 2019
  ident: mlstacd7c3bib27
– start-page: 101
  year: 2009
  ident: mlstacd7c3bib23
  article-title: MIC: mutual information based hierarchical clustering
– volume: 103
  start-page: 206
  year: 2016
  ident: mlstacd7c3bib11
  article-title: A variational expectation-maximization algorithm for temporal data clustering
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2016.05.007
– volume: 3
  start-page: 861
  year: 2018
  ident: mlstacd7c3bib28
  article-title: UMAP: uniform manifold approximation and projection
  publication-title: J. Open-source Softw.
  doi: 10.21105/joss.00861
– volume: vol 34
  start-page: 4215
  year: 2020
  ident: mlstacd7c3bib18
  article-title: Collaborative graph convolutional networks: unsupervised learning meets semi-supervised learning
  doi: 10.1609/aaai.v34i04.5843
– volume: 16
  start-page: 25
  year: 2022
  ident: mlstacd7c3bib35
  article-title: Expectation-maximization (EM) clustering as a preprocessing method for clinical pathway mining
  publication-title: Rev. Socionetwork Strateg.
  doi: 10.1007/s12626-021-00100-w
– volume: 22
  start-page: bbab236
  year: 2021
  ident: mlstacd7c3bib8
  article-title: Consensus clustering of single-cell RNA-seq data by enhancing network affinity
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab236
SSID ssj0002513520
Score 2.2835293
Snippet Cell type identification using single-cell RNA sequencing data is critical for understanding disease mechanisms and drug discovery. Cell clustering analysis...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35013
SubjectTerms Algorithms
cell type
Cluster analysis
Clustering
Deep learning
Gaussian mixture model
Gene sequencing
Graph neural networks
Machine learning
Medical research
model integration
Parameter estimation
Probabilistic models
Ribonucleic acid
RNA
scGMM-VGAE
single cell RNA-seq
variational graph autoencoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELb8RCW_kABw7WurbTJNy2VbtcukIIUG_W-AUrZR9sshXi1zPjZEsrpHLhGk0e8jy-GY_zDWNvnAGfkpbCV4US1FkSLhZeHJl4hHgHXrmQh02Us1l1eVl_vDHqi86E9fTA_cKNFQSdQFWYt0jjNdRGgTl2mVdFhZ7nU5b1jWKKYjCiNmYWcuhLoieNiZdcIL7pMfhQen0LhzJdP6LLfLX-KyZnoDl_zB4OGSKf9F_2hN2Ly6fs0W76Ah-c8Rn71frpxYX4Op2cvefAp7Bt6YdIvpj_pK4AzzNuBKFU4FdYEQ-7fjxTVHPYdivisAz4SGi-rTbz7vuCYwbLfbMl8gSENE77CE0UtLnPP80moo0_OB0pfc6-nJ99Pv0ghkkKwmP51QlQkdqRtY8JqtLXVZAyUSUYoiMKKYehRoU61ak0UiefsN5Gb0V3jqEAXOUXbG-5WsaXjEvQWoF0WjpvAJIrNIQKi6ayKKKMZsTGu3W1fqAZp2kXjc3t7qqypAlLmrC9Jkbs3fUd655i4w7ZE1LVtRyRY-cLaDJ2MBn7L5MZsbeoaDs4a3vHy_gtuUXTdtZYbXM3Vtt1SCO2v7OWP3KI-DS9DUP3q__xua_ZA5px3x9s22d73WYbD9h9f9XN281htvvf0isEXg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5B4cCF8hSBgvYABw6rbHZtbHNBAbXhkqhCgHpbjfdRIjlxGjsV4tczs9mkqpBy4WqPX5r3w98w9rbOwIagpbBlrgR1lkTtcytGmR-hvwOraheXTRSzWXlxUZ2ngluXxip3NjEaatdaqpEP0YzSSizUh0-rK0Fbo6i7mlZo3GX3MLIZ0UjXVJ3vayzouzG-kKk7ifo0JHRygV5OD8G6wupb3iiC9qOPmberfyxzdDdnx__7oo_YwxRo8vFWMh6zO375hB3vljjwpNNP2Z_OTqZT8XMyPv3IgU9g09F_lXwx_03NBR5X5Qhydo5fY2Kdioc8Il1z2PQtQWE6vCU0l_ge_a8Fx0CY22ZDGAzoGTmVIxovqEfAv83GovNXnCZTn7EfZ6ffv3wVaSGDsJjF9QKUp65mZX2AsrBV6aQMlFA6XxMSVY0WS7kqVKHIpA42YNqOSo9WwbscnNTP2dGyXfoXjEvQWoGstaxtBhDqXIMrMfcq8txLnw3YcMcYYxNaOS3NaEzsmpelIVYaYqXZsnLA3u-vWG2ROg7QfiZe7-kIYzseaNeXJqmsUeB0AFVixCwzq6HKFGQf6ojoo_BjBuwdSopJOt8deBi_Rbdout5kRpvY1NVm5cKAnexk6YbuRpBeHj79ij1QGHptJ99O2FG_3vjX7L697ufd-k1Uib_pNROY
  priority: 102
  providerName: ProQuest
Title scGMM-VGAE: a Gaussian mixture model-based variational graph autoencoder algorithm for clustering single-cell RNA-seq data
URI https://iopscience.iop.org/article/10.1088/2632-2153/acd7c3
https://www.proquest.com/docview/2843103376
https://doaj.org/article/2ad3fa2850704c3a942a46b003492d03
Volume 4
WOSCitedRecordID wos001038623200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: K7-
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: PIMPY
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M2P
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfGxoEL41PrGJUPcOBg6tkJceDUoa4g1FJNfIyT5fgDKqUfa9IJceBv5z0nLZpAExIXK4qe48Qvfp_27xHypEiMDUFyZlUqGGaWWOFTy44Tfwz6zlhRuFhsIhuP1fl5Ptkhr7ZnYRbLVvQ_h8sGKLiZwnZDnOohwjgDTSV7xrrMyhtkT6o0xf187-XnbYAFFDcYF7xNTf6t4xVVFBH7QcHAqH-I5ahrTvf_6y3vkNutiUn7DeldsuPn98j-pnwDbVfzffKjssPRiH0a9gcvqaFDs67wRCWdTb9jWoHGIjkM1Zyjl-BSt2FDGjGuqVnXCwTBdPBIU35drKb1txkFE5jaco3oC6ATKQYiSs8wO0DPxn1W-QuKe1IfkI-ngw-v37C2FAOz4L_VzAiP-czc-mBUZnPlOA_oSjpfIAZVAbJKuDzkIUu4DDaAww7LHeSBd6lxXD4ku_PF3B8Qyo2UwvBC8sImxoQilcYp8LqyNPXcJx3S23BF2xanHMtllDrmy5XSOLUap1Y3U9shz7Y9lg1GxzW0J8joLR2ia8cbwEPd8lAL42QwQoGtzBMrTZ4Ik7woIpaPgI_pkKfAdt2u9uqawegVullZ1TrRUsd0rtRLFzrkaPOv_aYDkwHLv4HsP_zHkR6RWwKsr2bz2xHZrVdr_5jctJf1tFp1yd7JYDw568aAA7TvMgbtSEyw_TnoxoUDVJO3o8mXX5HVFao
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHRK8MK6iMMAP7IEHq56d0AQJoQK7VFurCg00nozjy6jU25p0XH4Uv5Fz0qTThNS3PfCaOI7ifD4XH_v7AF5mkbEhKMFtEktOlSWe-djy3cjvor8zVmauFJto9_vJ6Wk62IA_9VkY2lZZ28TSULuppTXyFppRksTC-fBuds5JNYqqq7WExhIWR_7XD0zZ8rfdj_h_d6Tc3zv5cMgrVQFuMRUpuJGeSnOp9cEkbZsmTohAWZHzGdEpZTjtpEtDGtqRUMEGzD0RuQht72LjhMJ-b8BmhGAXDdgcdHuDr6tVHYwWMKIRVT0UZ3CL-NA5-lXVMta1rbri_0qZAPRqw-nsH19QOrj9rf9taO7CnSqUZp0l9u_Bhp_ch61apoJVVusB_M7tQa_Hvxx09t4www7MIqeTo2w8_EnlE1aKAXFy545dmPmwWh5lJZc3M4tiSmSfDrs0ozP87uL7mGGoz-xoQSwT6PsZLbiMPKcqCPvU7_DcnzPae_sQPl_LCDyCxmQ68Y-BCaOUNCJTIrORMSGLlXEJZpftOPbCR01o1UDQtuJjJ1mQkS73BSSJJuhogo5eQqcJr1ZPzJZcJGvavidsrdoRi3h5YTo_05VR0tI4FYxMMCcQkVUmjaSJXmclZ5HEj2nCDiJTV1YtX_MydqXdeJQXOtJKl2VrpWcuNGG7xu5lu0vgPll_-wXcOjzpHevjbv_oKdyWGGgu9_ltQ6OYL_wzuGkvimE-f15NSAbfrhvofwH_e3KD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgQYgLy2tFYQEf4MDB1GsnJOFWYFsQbFkhHnuzJn5Apb5o0hXi1zPjuEUr0AqJW2SN48Rj-5vx2N8w9qjOwIagpbBlrgRFlkTtcysOMn-AeAdW1S4mmyjG4_LkpDpOeU7jXZjFMi39T_GxIwruujAdiCv7xDAuEKl0H6wrrO4vXbjILhFPCaUweK-_bDdZELyxVKbw5N8qn4GjyNqPIIMt_7E0R7wZ7v73l15n15KpyQed-A12wc9vst1NGgeeZvUt9rOxo6Mj8Xk0OHzOgY9g3dDNSj6b_KDwAo_JcgTBneOn6Fqn7UMeua45rNsFkWE6fCVMvy5Wk_bbjKMpzO10TSwMiI2cNiSmXlCUgH8YD0Tjv3M6m3qbfRoefnz5WqSUDMKiH9cKUJ7impX1AcrCVqWTMpBL6XxNXFQ1rlnKVaEKRSZ1sAEdd5z2uC54l4OTeo_tzBdzf4dxCVorkLWWtc0AQp1rcCV6X0Wee-mzHutvNGNs4iuntBlTE-PmZWmoew11r-m6t8eebGssO66Oc2RfkLK3csSyHQtQjybp0ShwOoAq0WaWmdVQZQqyZ3Xk9FH4Mz32GFVv0qxvzmmMn5GbTZvWZEabGNbVBodFj-1vxttvOTQdKA0cYsDdf2zpIbty_Gpo3r0Zv73Hrio0yLrzcPtsp12t_X122Z62k2b1IM6TXzggE9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scGMM-VGAE%3A+a+Gaussian+mixture+model-based+variational+graph+autoencoder+algorithm+for+clustering+single-cell+RNA-seq+data&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Lin%2C+Eric&rft.au=Liu%2C+Boyuan&rft.au=Lac%2C+Leann&rft.au=Fung%2C+Daryl+L+X&rft.date=2023-09-01&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=4&rft.issue=3&rft.spage=35013&rft_id=info:doi/10.1088%2F2632-2153%2Facd7c3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2632_2153_acd7c3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon