Population stock structure of leatherback turtles (Dermochelyscoriacea) in the Atlantic revealed using mtDNA and microsatellite markers
This study presents a comprehensive genetic analysis of stock structure for leatherback turtles ( Dermochelys coriacea ), combining 17 microsatellite loci and 763 bp of the mtDNA control region. Recently discovered eastern Atlantic nesting populations of this critically endangered species were absen...
Uloženo v:
| Vydáno v: | Conservation genetics Ročník 14; číslo 3; s. 625 - 636 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.06.2013
Springer Nature B.V |
| Témata: | |
| ISSN: | 1566-0621, 1572-9737 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (
Dermochelys
coriacea
), combining 17 microsatellite loci and 763 bp of the mtDNA control region. Recently discovered eastern Atlantic nesting populations of this critically endangered species were absent in a previous survey that found little ocean-wide mtDNA variation. We added rookeries in West Africa and Brazil and generated longer sequences for previously analyzed samples. A total of 1,417 individuals were sampled from nine nesting sites in the Atlantic and SW Indian Ocean. We detected additional mtDNA variation with the longer sequences, identifying ten polymorphic sites that resolved a total of ten haplotypes, including three new variants of haplotypes previously described by shorter sequences. Population differentiation was substantial between all but two adjacent rookery pairs, and
F
ST
values ranged from 0.034 to 0.676 and 0.004 to 0.205 for mtDNA and microsatellite data respectively, suggesting that male-mediated gene flow is not as widespread as previously assumed. We detected weak (
F
ST
= 0.008 and 0.006) but significant differentiation with microsatellites between the two population pairs that were indistinguishable with mtDNA data. POWSIM analysis showed that our mtDNA marker had very low statistical power to detect weak structure (
F
ST
< 0.005), while our microsatellite marker array had high power. We conclude that the weak differentiation detected with microsatellites reflects a fine scale level of demographic independence that warrants recognition, and that all nine of the nesting colonies should be considered as demographically independent populations for conservation. Our findings illustrate the importance of evaluating the power of specific genetic markers to detect structure in order to correctly identify the appropriate population units to conserve. |
|---|---|
| AbstractList | This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (
Dermochelys
coriacea
), combining 17 microsatellite loci and 763 bp of the mtDNA control region. Recently discovered eastern Atlantic nesting populations of this critically endangered species were absent in a previous survey that found little ocean-wide mtDNA variation. We added rookeries in West Africa and Brazil and generated longer sequences for previously analyzed samples. A total of 1,417 individuals were sampled from nine nesting sites in the Atlantic and SW Indian Ocean. We detected additional mtDNA variation with the longer sequences, identifying ten polymorphic sites that resolved a total of ten haplotypes, including three new variants of haplotypes previously described by shorter sequences. Population differentiation was substantial between all but two adjacent rookery pairs, and
F
ST
values ranged from 0.034 to 0.676 and 0.004 to 0.205 for mtDNA and microsatellite data respectively, suggesting that male-mediated gene flow is not as widespread as previously assumed. We detected weak (
F
ST
= 0.008 and 0.006) but significant differentiation with microsatellites between the two population pairs that were indistinguishable with mtDNA data. POWSIM analysis showed that our mtDNA marker had very low statistical power to detect weak structure (
F
ST
< 0.005), while our microsatellite marker array had high power. We conclude that the weak differentiation detected with microsatellites reflects a fine scale level of demographic independence that warrants recognition, and that all nine of the nesting colonies should be considered as demographically independent populations for conservation. Our findings illustrate the importance of evaluating the power of specific genetic markers to detect structure in order to correctly identify the appropriate population units to conserve. This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (Dermochelys coriacea), combining 17 microsatellite loci and 763 bp of the mtDNA control region. Recently discovered eastern Atlantic nesting populations of this critically endangered species were absent in a previous survey that found little ocean-wide mtDNA variation. We added rookeries in West Africa and Brazil and generated longer sequences for previously analyzed samples. A total of 1,417 individuals were sampled from nine nesting sites in the Atlantic and SW Indian Ocean. We detected additional mtDNA variation with the longer sequences, identifying ten polymorphic sites that resolved a total of ten haplotypes, including three new variants of haplotypes previously described by shorter sequences. Population differentiation was substantial between all but two adjacent rookery pairs, and F ^sub ST^ values ranged from 0.034 to 0.676 and 0.004 to 0.205 for mtDNA and microsatellite data respectively, suggesting that male-mediated gene flow is not as widespread as previously assumed. We detected weak (F ^sub ST^ = 0.008 and 0.006) but significant differentiation with microsatellites between the two population pairs that were indistinguishable with mtDNA data. POWSIM analysis showed that our mtDNA marker had very low statistical power to detect weak structure (F ^sub ST^ < 0.005), while our microsatellite marker array had high power. We conclude that the weak differentiation detected with microsatellites reflects a fine scale level of demographic independence that warrants recognition, and that all nine of the nesting colonies should be considered as demographically independent populations for conservation. Our findings illustrate the importance of evaluating the power of specific genetic markers to detect structure in order to correctly identify the appropriate population units to conserve.[PUBLICATION ABSTRACT] This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (Dermochelys coriacea), combining 17 microsatellite loci and 763 bp of the mtDNA control region. Recently discovered eastern Atlantic nesting populations of this critically endangered species were absent in a previous survey that found little ocean-wide mtDNA variation. We added rookeries in West Africa and Brazil and generated longer sequences for previously analyzed samples. A total of 1,417 individuals were sampled from nine nesting sites in the Atlantic and SW Indian Ocean. We detected additional mtDNA variation with the longer sequences, identifying ten polymorphic sites that resolved a total of ten haplotypes, including three new variants of haplotypes previously described by shorter sequences. Population differentiation was substantial between all but two adjacent rookery pairs, and F sub(ST) values ranged from 0.034 to 0.676 and 0.004 to 0.205 for mtDNA and microsatellite data respectively, suggesting that male-mediated gene flow is not as widespread as previously assumed. We detected weak (F sub(ST) = 0.008 and 0.006) but significant differentiation with microsatellites between the two population pairs that were indistinguishable with mtDNA data. POWSIM analysis showed that our mtDNA marker had very low statistical power to detect weak structure (F sub(ST) < 0.005), while our microsatellite marker array had high power. We conclude that the weak differentiation detected with microsatellites reflects a fine scale level of demographic independence that warrants recognition, and that all nine of the nesting colonies should be considered as demographically independent populations for conservation. Our findings illustrate the importance of evaluating the power of specific genetic markers to detect structure in order to correctly identify the appropriate population units to conserve. This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (Dermochelys coriacea), combining 17 microsatellite loci and 763 bp of the mtDNA control region. Recently discovered eastern Atlantic nesting populations of this critically endangered species were absent in a previous survey that found little ocean-wide mtDNA variation. We added rookeries in West Africa and Brazil and generated longer sequences for previously analyzed samples. A total of 1,417 individuals were sampled from nine nesting sites in the Atlantic and SW Indian Ocean. We detected additional mtDNA variation with the longer sequences, identifying ten polymorphic sites that resolved a total of ten haplotypes, including three new variants of haplotypes previously described by shorter sequences. Population differentiation was substantial between all but two adjacent rookery pairs, and F ST values ranged from 0.034 to 0.676 and 0.004 to 0.205 for mtDNA and microsatellite data respectively, suggesting that male-mediated gene flow is not as widespread as previously assumed. We detected weak (F ST = 0.008 and 0.006) but significant differentiation with microsatellites between the two population pairs that were indistinguishable with mtDNA data. POWSIM analysis showed that our mtDNA marker had very low statistical power to detect weak structure (F ST < 0.005), while our microsatellite marker array had high power. We conclude that the weak differentiation detected with microsatellites reflects a fine scale level of demographic independence that warrants recognition, and that all nine of the nesting colonies should be considered as demographically independent populations for conservation. Our findings illustrate the importance of evaluating the power of specific genetic markers to detect structure in order to correctly identify the appropriate population units to conserve. © 2013 Springer Science+Business Media Dordrecht (outside the USA). |
| Author | Thomé, Joao Carlos LaCasella, Erin Formia, Angela Eckert, Scott Tiwari, Manjula Chacon-Chaverri, Didiher Stewart, Kelly R. Dutton, Peter H. Livingstone, Suzanne R. Rivalan, Philippe Allman, Phil Roden, Suzanne E. |
| Author_xml | – sequence: 1 givenname: Peter H. surname: Dutton fullname: Dutton, Peter H. email: peter.dutton@noaa.gov organization: Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration – sequence: 2 givenname: Suzanne E. surname: Roden fullname: Roden, Suzanne E. organization: Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration – sequence: 3 givenname: Kelly R. surname: Stewart fullname: Stewart, Kelly R. organization: Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration – sequence: 4 givenname: Erin surname: LaCasella fullname: LaCasella, Erin organization: Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration – sequence: 5 givenname: Manjula surname: Tiwari fullname: Tiwari, Manjula organization: Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration – sequence: 6 givenname: Angela surname: Formia fullname: Formia, Angela organization: Molecular Ecology Research Group, Department of Animal Biology and Genetics, University of Florence, Wildlife Conservation Society, Global Conservation Program – sequence: 7 givenname: Joao Carlos surname: Thomé fullname: Thomé, Joao Carlos organization: Instituto Chico Mendes de Conservacao da Biodiversidade, Centro Tamar-DIBIO – sequence: 8 givenname: Suzanne R. surname: Livingstone fullname: Livingstone, Suzanne R. organization: College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow – sequence: 9 givenname: Scott surname: Eckert fullname: Eckert, Scott organization: Biology and Natural Resources Department, Principia College – sequence: 10 givenname: Didiher surname: Chacon-Chaverri fullname: Chacon-Chaverri, Didiher organization: WIDECAST-Costa Rica – sequence: 11 givenname: Philippe surname: Rivalan fullname: Rivalan, Philippe organization: Laboratoire d’Ecologie, Systématique et Evolution, Université Paris-XI Orsay – sequence: 12 givenname: Phil surname: Allman fullname: Allman, Phil organization: Department of Biological Studies, Florida Gulf Coast University |
| BookMark | eNqFkc1u1TAQhSNUJNrCA7CzxKYsAuP4L15etfxJFbDoPnKcSevWsS-2U6lPwGvj9LJAlYCNbY2_Mz7jc9IchRiwaV5TeEcB1PtMQeiuBcpa4EK28Kw5pkJ1rVZMHW1nWYuyoy-ak5xvAajsFD1ufn6P-9Wb4mIguUR7V9e02rImJHEmHk25wTSaelFrxWMmZxeYlmhv0D9kG5MzFs1b4gKpJNkVb0JxliS8R-NxImt24Zos5eLrjpgwkcXZFLMp6L0rSBaT7jDll83z2fiMr37vp83Vxw9X55_by2-fvpzvLlvLeV9a0yFoo5HZiYIyirN-tpqOoMdJ4KxQW2A9QKf70ciJTsrMcgTZz0JyAHbanB3a7lP8sWIuw-KyrVZMwLjmgYr6g0IJqv6PMiE145yJir55gt7GNYU6xyMlNVeaV4oeqG3-nHAe9snV8R8GCsMW4nAIcagWhi3EYfOrnmisK49plWSc_6eyOyhzfSVcY_rD019FvwDBw7Qt |
| CitedBy_id | crossref_primary_10_1007_s10592_015_0723_3 crossref_primary_10_5358_hsj_35_115 crossref_primary_10_1007_s00227_016_2875_1 crossref_primary_10_1016_j_fishres_2017_10_005 crossref_primary_10_1016_j_biocon_2017_12_014 crossref_primary_10_1016_j_jembe_2015_11_014 crossref_primary_10_1016_j_jembe_2022_151722 crossref_primary_10_1007_s00227_017_3211_0 crossref_primary_10_1093_jhered_esv091 crossref_primary_10_1007_s00227_023_04212_5 crossref_primary_10_3389_fmars_2017_00156 crossref_primary_10_1016_j_jembe_2025_152100 crossref_primary_10_1080_24701394_2024_2409067 crossref_primary_10_1017_S002531541700193X crossref_primary_10_1111_cobi_13647 crossref_primary_10_1186_s12863_014_0141_4 crossref_primary_10_1038_s41598_023_33931_4 crossref_primary_10_3389_fmars_2022_959366 crossref_primary_10_1016_j_jembe_2014_08_020 crossref_primary_10_2744_CCB_1152_1 crossref_primary_10_2744_CCB_1522_1 crossref_primary_10_1371_journal_pone_0088138 crossref_primary_10_1002_ece3_1897 crossref_primary_10_1002_ecs2_1272 crossref_primary_10_1038_s41598_024_82754_4 crossref_primary_10_3389_fmars_2020_595853 crossref_primary_10_1007_s10592_022_01465_3 crossref_primary_10_1016_j_rsma_2022_102530 crossref_primary_10_3389_fmars_2025_1569466 crossref_primary_10_2984_68_2_5 crossref_primary_10_1371_journal_pone_0085956 crossref_primary_10_2744_CCB_1224_1 crossref_primary_10_3389_fmars_2023_1116941 crossref_primary_10_1007_s12686_019_01112_z crossref_primary_10_1016_j_cbpa_2018_05_015 crossref_primary_10_1002_ece3_1269 crossref_primary_10_1007_s12686_017_0905_z crossref_primary_10_1038_s41598_018_19887_w crossref_primary_10_2984_68_4_1 crossref_primary_10_1007_s10709_015_9880_z crossref_primary_10_1007_s00227_014_2467_x crossref_primary_10_2744_CCB_1253_1 crossref_primary_10_1111_mec_15165 crossref_primary_10_3354_meps12957 crossref_primary_10_1007_s10682_024_10312_5 crossref_primary_10_1038_srep16182 crossref_primary_10_1016_j_jembe_2014_04_025 crossref_primary_10_1111_mms_12409 crossref_primary_10_1002_ece3_71014 crossref_primary_10_1371_journal_pone_0194201 crossref_primary_10_1002_aqc_3270 crossref_primary_10_1007_s00027_024_01158_8 crossref_primary_10_3390_ani13081285 crossref_primary_10_3390_d14090764 crossref_primary_10_3390_d16030177 crossref_primary_10_3389_fmars_2024_1281897 crossref_primary_10_1007_s00442_018_4279_z crossref_primary_10_1016_j_jembe_2016_11_009 crossref_primary_10_1093_conphys_coae028 |
| Cites_doi | 10.1371/journal.pone.0024510 10.1016/0169-5347(94)90057-4 10.1098/rspb.2010.2467 10.1093/oxfordjournals.molbev.a026036 10.1093/jhered/89.5.377 10.3354/meps09980 10.1111/j.1365-294X.2006.02991.x 10.1890/09-1838.1 10.1093/genetics/132.2.619 10.1016/S0169-5347(00)02026-7 10.1016/j.biocon.2009.03.009 10.1111/j.1755-0998.2010.02847.x 10.2307/2408641 10.1111/j.1365-294X.2007.03635.x 10.2307/2410454 10.1007/s00227-005-1581-1 10.1007/s10592-010-0079-7 10.1007/s10592-008-9693-z 10.2307/j.ctt6wqgxv.10 10.1046/j.1523-1739.1999.97352.x 10.1111/j.1365-294X.2006.02839.x 10.1111/j.1365-294X.2012.05576.x 10.2744/1071-8443(2007)6[47:SAGSON]2.0.CO;2 10.1093/nar/16.3.1215 10.1139/z06-167 10.1111/j.1755-0998.2010.02973.x 10.1093/jhered/ess056 10.1111/j.1755-0998.2010.02927.x 10.1038/hdy.1991.24 10.1093/jhered/ess055 10.1111/j.1471-8286.2006.01378.x 10.1890/ES12-00348.1 10.1093/genetics/131.1.163 10.1111/j.1365-294X.2008.03887.x 10.1093/jhered/esm120 10.1111/j.1365-294X.2010.04996.x 10.1007/s10592-006-9224-8 10.1007/s00227-010-1582-6 10.1016/j.biocon.2005.05.013 10.1007/s12686-010-9284-4 10.1093/genetics/131.2.479 10.1371/journal.pone.0015465 10.1111/j.1469-7998.1999.tb01038.x 10.1534/genetics.166.4.1857 10.1016/j.margeo.2004.04.007 10.1046/j.1365-294X.1999.00797.x 10.1111/j.1365-294X.2006.02890.x 10.1111/j.1755-0998.2008.02443.x 10.2744/1071-8443(2007)6[117:LTNTAT]2.0.CO;2 10.1046/j.1365-294X.1997.00267.x 10.1093/genetics/147.4.1843 10.2744/1071-8443(2007)6[101:LSTNAG]2.0.CO;2 10.1111/j.1365-294X.2005.02598.x 10.2307/2532296 10.1017/S0030605304000766 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht (outside the USA) 2013 Springer Science+Business Media Dordrecht 2013 |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht (outside the USA) 2013 – notice: Springer Science+Business Media Dordrecht 2013 |
| DBID | AAYXX CITATION 3V. 7SN 7SS 7X7 7XB 88A 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7TN F1W H95 H99 L.F L.G 7S9 L.6 |
| DOI | 10.1007/s10592-013-0456-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Databases ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1572-9737 |
| EndPage | 636 |
| ExternalDocumentID | 2983565901 10_1007_s10592_013_0456_0 |
| Genre | Feature |
| GeographicLocations | AE, Atlantic ISW, Indian Ocean ASE, Africa A, Atlantic Western Africa Indian Ocean Brazil |
| GeographicLocations_xml | – name: AE, Atlantic – name: ISW, Indian Ocean – name: ASE, Africa – name: A, Atlantic – name: Indian Ocean – name: Western Africa – name: Brazil |
| GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 203 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 78A 7X7 88A 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EDH EIOEI EJD EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM M0L M4Y M7P MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OVD P2P PF0 PQQKQ PROAC PT4 Q2X QOR QOS R89 R9I RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 XSW YLTOR Z45 Z7Y Z7Z ZMTXR ZOVNA ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7SN 7SS 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS RC3 7TN F1W H95 H99 L.F L.G 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c448t-a2e09a9e3cd107a7438fc91b09bd5ef7e9c03800298ba6d1d7af6b068f564003 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318893800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1566-0621 |
| IngestDate | Fri Sep 05 09:11:54 EDT 2025 Tue Oct 07 09:34:00 EDT 2025 Wed Nov 26 13:51:50 EST 2025 Tue Nov 18 21:46:30 EST 2025 Sat Nov 29 04:44:29 EST 2025 Fri Feb 21 02:37:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Microsatellites Recovery plan Mitochondrial DNA Demographically independent populations Management Sea turtle Conservation genetics |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-a2e09a9e3cd107a7438fc91b09bd5ef7e9c03800298ba6d1d7af6b068f564003 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1356694794 |
| PQPubID | 55377 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1501357517 proquest_miscellaneous_1356934435 proquest_journals_1356694794 crossref_primary_10_1007_s10592_013_0456_0 crossref_citationtrail_10_1007_s10592_013_0456_0 springer_journals_10_1007_s10592_013_0456_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-01 |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Conservation genetics |
| PublicationTitleAbbrev | Conserv Genet |
| PublicationYear | 2013 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | O’Corry-CroweGMSuydamRSRosenbergAFrostKJDizonAEPhylogeography, population structure and dispersal patterns of the beluga whale Delphinapterus leucas in the western Nearctic revealed by mitochondrial DNAMol Ecol1997695597010.1046/j.1365-294X.1997.00267.x HoelzelARDoverGAGenetic differentiation between sympatric Killer whale populationsHeredity19916619119510.1038/hdy.1991.24 ShamblinBMBoltenABBjorndalKADuttonPHNielsenJTAbreu-GroboisFAReichKJWitheringtonBEBagleyDAEhrhartLMTuckerADAddisonDSArenasAJohnsonCCarthyRRLamontMMDoddMGGainesMSLaCasellaENairnCJExpanded mitochondrial control region sequences increase resolution of stock structure among North Atlantic loggerhead turtle rookeriesMar Ecol Prog Ser2012469145160 WallaceBPDiMatteoADHurleyBJFinkbeinerEMBoltenABChaloupkaMYHutchinsonBJRegional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scalesPLoS One20105e154652125300710.1371/journal.pone.0015465 TaylorBLDizonAEFirst policy then science: why a management unit based solely on genetic criteria cannot workMol Ecol19998S11S161070354810.1046/j.1365-294X.1999.00797.x1:STN:280:DC%2BD3c7mvVWqsQ%3D%3D WittMJBaertBBroderickACFormiaAFreteyJGibudiAMounguenguiGAMMoussoundaCNougessonoSParnellRJRoumetDSounguetG-PVerhageSZogoAGodleyBJAerial surveying of the world’s largest leatherback turtle rookery: a more effective methodology for large-scale monitoringBiol Conserv20091421719172710.1016/j.biocon.2009.03.009 Velez-ZuazoXRamosWDVan DamRPDiezCEAbreu-GroboisFAMcMillanWODispersal, recruitment and migratory behaviour in a hawksbill sea turtle aggregationMol Ecol2008178398531820848710.1111/j.1365-294X.2007.03635.x1:CAS:528:DC%2BD1cXjt12htb0%3D DuttonPHHitipeuwCZeinMBensonSRAl-GhaisSMStatus and genetic structure of nesting populations of leatherback turtles (Dermochelys coriacea) in the Western PacificChelonian Conserv Biol200764710.2744/1071-8443(2007)6[47:SAGSON]2.0.CO;2 GirondotMFreteyJLeatherback turtles, Dermochelys coriacea, nesting in French Guiana, 1978–1995Chelonian Conserv Biol19962204208 KarlSAToonenRJGrantWSBowenBWCommon misconceptions in molecular ecology: echoes of the modern synthesisMol Ecol201221417141892257471410.1111/j.1365-294X.2012.05576.x1:CAS:528:DC%2BC38Xht1CgsbfO RymanNPalmSPOWSIM: a computer program for assessing statistical power when testing for genetic differentiationMol Ecol Notes2006660060210.1111/j.1471-8286.2006.01378.x TroëngSHarrisonEEvansDHaroADVargasELeatherback turtle nesting trends and threats at Tortuguero, Costa RicaChelonian Conserv Biol2007611712210.2744/1071-8443(2007)6[117:LTNTAT]2.0.CO;2 TroëngSChacónDDickBPossible decline in leatherback turtle Dermochelyscoriacea nesting along the coast of Caribbean Central AmericaOryx20043839540310.1017/S0030605304000766 MeirmansPGHedrickPWAssessing population structure: Fst and related measuresMol Ecol Resour2011115182142909610.1111/j.1755-0998.2010.02927.x CarrerasCPascualMCardonaLAguilarAMargaritoulisDReesAFTurkozanOLevyYGasithAAureggiMKhalilMThe genetic structure of the loggerhead sea turtle (Caretta caretta) in the Mediterranean as revealed by nuclear and mitochondrial DNA and its conservation implicationsConserv Genet2007876177510.1007/s10592-006-9224-81:CAS:528:DC%2BD2sXotFWqtrg%3D WaplesRSGaggiottiOWhat is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivityMol Ecol200615141914391662980110.1111/j.1365-294X.2006.02890.x1:CAS:528:DC%2BD28XlsVCjur4%3D Taylor BL (1997) Defining ‘‘population’’ to meet management objectives for marine mammals. In: Dizon AE, Chivers SJ, Perrin WF (eds) Molecular genetics of marine mammals, special publication 3. Society for Marine Mammalogy, Lawrence, p 49–65 Tapilatu RF, Dutton PH, Tiwari M, Wibbels T, Ferdinandus HV, Iwanggin WG, Nugroho BH (2013) Long-term decline of the western Pacific leatherback, Dermochelys coriacea; a globally important sea turtle population. Ecosphere (in press) Evans D, Ordonez C, Troeng S, Drews C (2007) Satellite tracking of leatherback turtles from Caribbean Central America reveals unexpected foraging grounds. In: Book of abstracts. Twenty-seventh annual symposium on sea turtle biology and conservation. NOAA, Miami, p 70–71 RymanNPalmSAndréCCarvalhoGRDahlgrenTGJordePELaikreLLarssonLCPalméARuzzanteDEPower for detecting genetic divergence: differences between statistical methods and marker lociMol Ecol200615203120451678042210.1111/j.1365-294X.2006.02839.x1:CAS:528:DC%2BD28Xot1aisLs%3D FitzSimmonsNNMoritzCLimpusCJPopeLPrinceRITGeographic structure of the mitochondrial and nuclear gene polymorphisms in Australian green turtle populations and male-biased gene flowGenetics19971471843185494098401:CAS:528:DyaK1cXivFGqsQ%3D%3D O’Corry-CroweGMTaylorBLGelattTLoughlinTRBickhamJBasterretcheMPitcherKWDeMasterDPDemographic independence along ecosystem boundaries in Steller sea lions revealed by mtDNA analysis: implications for management of an endangered speciesCan J Zool2006841796180910.1139/z06-167 ShamblinBMDoddMGBagleyDAEhrhartLMTuckerADJohnsonCCarthyRRScarpinoRAMcMichaelEAddisonDSGenetic structure of the southeastern United States loggerhead turtle nesting aggregation: evidence of additional structure within the peninsular Florida recovery unitMar Biol201115811710.1007/s00227-010-1582-6 LeRouxRADuttonPHAbreu-GroboisFALagueuxCJCampbellCLDelcroixEChevalierJHorrocksJAHillis-StarrZTroëngSHarrisonEStapletonSRe-examination of population structure and phylogeography of hawksbill turtles in the Wider Caribbean using longer mtDNA sequencesJ Hered20121036806820 JamesMCEckertSAMyersRAMigratory and reproductive movements of male leatherback turtles (Dermochelyscoriacea)Mar Biol200514784585310.1007/s00227-005-1581-1 LarssonLCCharlierJLaikreLRymanNStatistical power for detecting genetic divergence—organelle versus nuclear markersConserv Genet2009101255126410.1007/s10592-008-9693-z DuttonDLDuttonPHChaloupkaMBoulonRHIncrease of a Caribbean leatherback turtle Dermochelys coriacea nesting population linked to long-term nest protectionBiol Conserv200512618619410.1016/j.biocon.2005.05.013 Martinez LS, Barragan AR (2011) Importance of networks for conservation of the Pacific leatherback turtle: the case of “Projecto Laud” in Mexico. In: Dutton PH, Squires D, Mahfuzuddin A (eds) Conservation and sustainable management of sea turtles in the Pacific Ocean. University of Hawaii Press, Hawaii, pp 120–131 AviseJCConservation genetics in the marine realmJ Hered19988937738210.1093/jhered/89.5.377 SambrookJFritschEFManiatisTMolecular cloning: a laboratory manual1989New YorkCold Spring Harbour Laboratory Press Chacón-ChaverriDEckertKLLeatherback sea turtle nesting at Gandoca Beach in Caribbean Costa Rica: management recommendations from fifteen years of conservationChelonian Conserv Biol2007610111010.2744/1071-8443(2007)6[101:LSTNAG]2.0.CO;2 ExcoffierLSmousePEQuattroJMAnalysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction dataGenetics199213147949116442821:CAS:528:DyaK38XlsVCntro%3D LaCasella EL, Dutton PH (2008) Longer mtDNA sequences resolve leatherback stock structure. In: Rees AF, Frick M, Panagopoulou A, Williams K (eds.) Proceedings of the twenty-seventh annual symposium on sea turtle biology and conservation, p 128–129. NOAA technical memorandum NMFS-SEFSC-569. NOAA, Miami, p 262 DuttonPHFreyACharacterization of polymorphic microsatellite markers for the green turtle (Chelonia mydas)Mol Ecol Resour200993543562156464810.1111/j.1755-0998.2008.02443.x1:CAS:528:DC%2BD1MXjtFGlsr8%3D WallaceBPDiMatteoADBoltenABChaloupkaMYHutchinsonBJGlobal conservation priorities for marine turtlesPLoS One201169e245102196985810.1371/journal.pone.00245101:CAS:528:DC%2BC3MXhtlCmtr%2FI Jensen MP, FitzSimmons NN, Dutton PH (in press) Molecular genetics of sea turtles. In: Musick J, Lohman K, Wyneken J (eds) The biology of sea turtles, vol 3. CRC Press, Boca Raton BowenBWBassALSoaresLToonenRJConservation implications of complex population structure: lessons from the loggerhead turtle (Carettacaretta)Mol Ecol200514238924021596972210.1111/j.1365-294X.2005.02598.x1:CAS:528:DC%2BD2MXmvF2qsLc%3D JostLGST and its relatives do not measure differentiationMol Ecol200817401540261923870310.1111/j.1365-294X.2008.03887.x BandeltHForsterPMedian-joining networks for inferring intraspecific phylogeniesMol Biol Evol19991637481033125010.1093/oxfordjournals.molbev.a0260361:CAS:528:DyaK1MXjvVGltA%3D%3D Abreu-Grobois FA, Horrocks JA, Formia A, Dutton PH, LeRoux RA, Velez-Zuazo X, Soares L, Meylan AB (2006) New mtDNA D-loop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analysis. In: Frick M, Panagopoulous A, Rees AF Williams K (eds) Proceedings of the 26th annual symposium on sea turtle biology. NOAA, Myrtle Beach, p 179 GuoSWThompsonEAPerforming the exact test of Hardy–Weinberg proportion for multiple allelesBiometrics199248361372163796610.2307/25322961:STN:280:DyaK38zksFGgsA%3D%3D Liew HC (2011) Tragedy of the Malaysian leatherback population: what went wrong. In: Dutton PH, Squires D, Mahfuzuddin A (eds) Conservation and sustainable management of sea turtles in the Pacific Ocean. University of Hawaii Press, Hawaii, pp 97–106 ChiversSJDizonAEGearinPJRobertsonKMSmall-scale population structure of eastern North Pacific harbour porpoises (Phocoena phocoena) indicated by molecular genetic analysesFish Sci20024111122 TempletonARCrandallKASingCFA cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimationGenetics199213261963313852661:CAS:528:DyaK3sXhslSrsQ%3D%3D WittMJBongunoEABroderickACCoyneMSFormiaAGibudiAMounguenguiGAMMoussoundaCNsafouMNougessonoSParnellRJSounguetG-PVerhageSGodleyBJTracking leatherback turtles from the world’s largest rookery: assessing threats across the South AtlanticProc R Soc B2011278233823472120894910.1098/rspb.2010.24 N Ryman (456_CR55) 2006; 15 M Girondot (456_CR21) 1996; 2 SE Roden (456_CR53) 2011; 3 SA Karl (456_CR31) 1992; 131 R Development Core Team (456_CR50) 2011 BL Taylor (456_CR63) 1999; 8 JD DiBattista (456_CR10) 2012; 103 SM Vargas (456_CR69) 2008; 99 A Billes (456_CR5) 2006; 111 RS Waples (456_CR73) 2006; 15 L Excoffier (456_CR19) 1992; 131 D Posada (456_CR49) 2001; 16 SA Karl (456_CR32) 2012; 21 BP Wallace (456_CR72) 2011; 6 DL Dutton (456_CR15) 2005; 126 456_CR17 456_CR58 S Troëng (456_CR66) 2004; 38 JC Avise (456_CR3) 1998; 89 456_CR12 456_CR11 SA Karl (456_CR30) 1999; 13 GM O’Corry-Crowe (456_CR46) 1997; 6 NN FitzSimmons (456_CR20) 1997; 147 KR Stewart (456_CR59) 2011; 21 J Sambrook (456_CR56) 1989 MC James (456_CR27) 2005; 147 AR Hoelzel (456_CR23) 1991; 66 C Moritz (456_CR42) 1994; 9 M Raymond (456_CR51) 1995; 49 H Bandelt (456_CR4) 1999; 16 PH Dutton (456_CR14) 1999; 248 D Chacón-Chaverri (456_CR8) 2007; 6 C Monzón-Argüello (456_CR41) 2010; 11 N Ryman (456_CR54) 2006; 6 MJ Witt (456_CR76) 2009; 142 MC Whitlock (456_CR75) 2011; 20 PG Meirmans (456_CR38) 2011; 11 BS Weir (456_CR74) 1984; 38 N Mrosovsky (456_CR43) 2010; 128 L Excoffier (456_CR18) 2010; 10 BW Bowen (456_CR6) 2005; 14 S Troëng (456_CR67) 2007; 6 456_CR37 BP Wallace (456_CR71) 2010; 5 456_CR36 GM O’Corry-Crowe (456_CR47) 2006; 84 456_CR35 C Carreras (456_CR7) 2007; 8 456_CR33 AR Templeton (456_CR65) 1992; 132 456_CR1 PH Dutton (456_CR13) 2009; 9 PH Dutton (456_CR16) 2007; 6 S Mesnick (456_CR39) 2011; 11 L Jost (456_CR29) 2008; 17 SJ Chivers (456_CR9) 2002; 4 JI Hoffman (456_CR24) 2006; 15 SW Guo (456_CR22) 1992; 48 LC Larsson (456_CR34) 2009; 10 BM Shamblin (456_CR57) 2011; 158 456_CR64 PGE Augustinus (456_CR2) 2004; 208 456_CR62 MA Roberts (456_CR52) 2004; 166 456_CR61 MJ Witt (456_CR77) 2011; 278 456_CR28 456_CR26 456_CR68 X Velez-Zuazo (456_CR70) 2008; 17 SA Miller (456_CR40) 1988; 16 |
| References_xml | – reference: Martinez LS, Barragan AR (2011) Importance of networks for conservation of the Pacific leatherback turtle: the case of “Projecto Laud” in Mexico. In: Dutton PH, Squires D, Mahfuzuddin A (eds) Conservation and sustainable management of sea turtles in the Pacific Ocean. University of Hawaii Press, Hawaii, pp 120–131 – reference: HoelzelARDoverGAGenetic differentiation between sympatric Killer whale populationsHeredity19916619119510.1038/hdy.1991.24 – reference: FitzSimmonsNNMoritzCLimpusCJPopeLPrinceRITGeographic structure of the mitochondrial and nuclear gene polymorphisms in Australian green turtle populations and male-biased gene flowGenetics19971471843185494098401:CAS:528:DyaK1cXivFGqsQ%3D%3D – reference: WittMJBongunoEABroderickACCoyneMSFormiaAGibudiAMounguenguiGAMMoussoundaCNsafouMNougessonoSParnellRJSounguetG-PVerhageSGodleyBJTracking leatherback turtles from the world’s largest rookery: assessing threats across the South AtlanticProc R Soc B2011278233823472120894910.1098/rspb.2010.2467 – reference: GuoSWThompsonEAPerforming the exact test of Hardy–Weinberg proportion for multiple allelesBiometrics199248361372163796610.2307/25322961:STN:280:DyaK38zksFGgsA%3D%3D – reference: SambrookJFritschEFManiatisTMolecular cloning: a laboratory manual1989New YorkCold Spring Harbour Laboratory Press – reference: Evans D, Ordonez C, Troeng S, Drews C (2007) Satellite tracking of leatherback turtles from Caribbean Central America reveals unexpected foraging grounds. In: Book of abstracts. Twenty-seventh annual symposium on sea turtle biology and conservation. NOAA, Miami, p 70–71 – reference: Taylor BL (1997) Defining ‘‘population’’ to meet management objectives for marine mammals. In: Dizon AE, Chivers SJ, Perrin WF (eds) Molecular genetics of marine mammals, special publication 3. Society for Marine Mammalogy, Lawrence, p 49–65 – reference: GirondotMFreteyJLeatherback turtles, Dermochelys coriacea, nesting in French Guiana, 1978–1995Chelonian Conserv Biol19962204208 – reference: WallaceBPDiMatteoADHurleyBJFinkbeinerEMBoltenABChaloupkaMYHutchinsonBJRegional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scalesPLoS One20105e154652125300710.1371/journal.pone.0015465 – reference: Dutton PH (1996) Methods for collection and preservation of samples for sea turtle genetic studies. In: Bowen BW, Witzell WN (eds) Proceedings of the international symposium on sea turtle conservation genetics. NOAA technical memorandum NMFS-SEFSC-396. NOAA, Miami, p 17–24 – reference: BandeltHForsterPMedian-joining networks for inferring intraspecific phylogeniesMol Biol Evol19991637481033125010.1093/oxfordjournals.molbev.a0260361:CAS:528:DyaK1MXjvVGltA%3D%3D – reference: TaylorBLDizonAEFirst policy then science: why a management unit based solely on genetic criteria cannot workMol Ecol19998S11S161070354810.1046/j.1365-294X.1999.00797.x1:STN:280:DC%2BD3c7mvVWqsQ%3D%3D – reference: MeirmansPGHedrickPWAssessing population structure: Fst and related measuresMol Ecol Resour2011115182142909610.1111/j.1755-0998.2010.02927.x – reference: Monzón-ArgüelloCRicoCNaro-MacielEVaro-CruzNLópezPMarcoAL-JLFPopulation structure and conservation implications for the loggerhead sea turtle of the Cape Verde IslandsConserv Genet2010111871188410.1007/s10592-010-0079-7 – reference: LaCasella EL, Dutton PH (2008) Longer mtDNA sequences resolve leatherback stock structure. In: Rees AF, Frick M, Panagopoulou A, Williams K (eds.) Proceedings of the twenty-seventh annual symposium on sea turtle biology and conservation, p 128–129. NOAA technical memorandum NMFS-SEFSC-569. NOAA, Miami, p 262 – reference: Jensen MP, FitzSimmons NN, Dutton PH (in press) Molecular genetics of sea turtles. In: Musick J, Lohman K, Wyneken J (eds) The biology of sea turtles, vol 3. CRC Press, Boca Raton – reference: KarlSAToonenRJGrantWSBowenBWCommon misconceptions in molecular ecology: echoes of the modern synthesisMol Ecol201221417141892257471410.1111/j.1365-294X.2012.05576.x1:CAS:528:DC%2BC38Xht1CgsbfO – reference: ShamblinBMBoltenABBjorndalKADuttonPHNielsenJTAbreu-GroboisFAReichKJWitheringtonBEBagleyDAEhrhartLMTuckerADAddisonDSArenasAJohnsonCCarthyRRLamontMMDoddMGGainesMSLaCasellaENairnCJExpanded mitochondrial control region sequences increase resolution of stock structure among North Atlantic loggerhead turtle rookeriesMar Ecol Prog Ser2012469145160 – reference: BillesAFreteyJVerhageBHuijbregtsBGiffoniBProsdocimiLAlbaredaDAGeorgesJ-YTiwariMFirst evidence of leatherback movement from Africa to South AmericaMar Turtle News20061111314 – reference: LarssonLCCharlierJLaikreLRymanNStatistical power for detecting genetic divergence—organelle versus nuclear markersConserv Genet2009101255126410.1007/s10592-008-9693-z – reference: Dutton PH (1995) Molecular evolution of the sea turtles with special reference to the leatherback, Dermochelys coriacea. Ph.D. dissertation, Texas A&M University, College Station – reference: ShamblinBMDoddMGBagleyDAEhrhartLMTuckerADJohnsonCCarthyRRScarpinoRAMcMichaelEAddisonDSGenetic structure of the southeastern United States loggerhead turtle nesting aggregation: evidence of additional structure within the peninsular Florida recovery unitMar Biol201115811710.1007/s00227-010-1582-6 – reference: ExcoffierLLischerHELArlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and WindowsMol Ecol Resour2010105645672156505910.1111/j.1755-0998.2010.02847.x – reference: PosadaDCrandallKAIntraspecific gene genealogies: trees grafting into networksTrends Ecol Evol20011637451114614310.1016/S0169-5347(00)02026-7 – reference: Tapilatu RF, Dutton PH, Tiwari M, Wibbels T, Ferdinandus HV, Iwanggin WG, Nugroho BH (2013) Long-term decline of the western Pacific leatherback, Dermochelys coriacea; a globally important sea turtle population. Ecosphere (in press) – reference: DuttonDLDuttonPHChaloupkaMBoulonRHIncrease of a Caribbean leatherback turtle Dermochelys coriacea nesting population linked to long-term nest protectionBiol Conserv200512618619410.1016/j.biocon.2005.05.013 – reference: WittMJBaertBBroderickACFormiaAFreteyJGibudiAMounguenguiGAMMoussoundaCNougessonoSParnellRJRoumetDSounguetG-PVerhageSZogoAGodleyBJAerial surveying of the world’s largest leatherback turtle rookery: a more effective methodology for large-scale monitoringBiol Conserv20091421719172710.1016/j.biocon.2009.03.009 – reference: MesnickSTaylorBArcherFIMartienKSperm whale population structure in the eastern North Pacific inferred by the use of single nucleotide polymorphisms (SNPs), microsatellites and mitochondrial DNAMol Ecol Resour2011112782982142918110.1111/j.1755-0998.2010.02973.x – reference: TempletonARCrandallKASingCFA cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimationGenetics199213261963313852661:CAS:528:DyaK3sXhslSrsQ%3D%3D – reference: RobertsMASchwartzTSKarlSAGlobal population genetic structure and male-mediated gene flow in the green sea turtle (Chelonia mydas): analysis of microsatellite lociGenetics200416618571512640410.1534/genetics.166.4.18571:CAS:528:DC%2BD2cXkvF2gsrY%3D – reference: DiBattistaJDRochaLACraigMTFeldheimKABowenBWPhylogeography of two closely related Indo-Pacific butterflyfishes reveals divergent evolutionary histories and discordant results from mtDNA and microsatellitesJ Hered201210356176292288813310.1093/jhered/ess0561:CAS:528:DC%2BC38XhsFers7bI – reference: DuttonPHBowenBWOwensDWBarraganARDavisSKGlobal phylogeography of the leatherback turtle (Dermochelys coriacea)J Zool199924839740910.1111/j.1469-7998.1999.tb01038.x – reference: JostLGST and its relatives do not measure differentiationMol Ecol200817401540261923870310.1111/j.1365-294X.2008.03887.x – reference: MillerSADykesDDPoleskyHFA simple salting out procedure for extracting DNA from human nucleated cellsNucl Acids Res1988161215334421610.1093/nar/16.3.12151:CAS:528:DyaL1cXhsVKlsrs%3D – reference: BowenBWBassALSoaresLToonenRJConservation implications of complex population structure: lessons from the loggerhead turtle (Carettacaretta)Mol Ecol200514238924021596972210.1111/j.1365-294X.2005.02598.x1:CAS:528:DC%2BD2MXmvF2qsLc%3D – reference: MrosovskyNGodleyMHThoughts on climate change and sex ratio of sea turtlesMar Turtle News2010128711 – reference: WeirBSCockerhamCCEstimating F-statistics for the analysis of population structureEvolution1984381358137010.2307/2408641 – reference: DuttonPHFreyACharacterization of polymorphic microsatellite markers for the green turtle (Chelonia mydas)Mol Ecol Resour200993543562156464810.1111/j.1755-0998.2008.02443.x1:CAS:528:DC%2BD1MXjtFGlsr8%3D – reference: Velez-ZuazoXRamosWDVan DamRPDiezCEAbreu-GroboisFAMcMillanWODispersal, recruitment and migratory behaviour in a hawksbill sea turtle aggregationMol Ecol2008178398531820848710.1111/j.1365-294X.2007.03635.x1:CAS:528:DC%2BD1cXjt12htb0%3D – reference: RaymondMRoussetFAn exact test for population differentiationEvolution1995491280128310.2307/2410454 – reference: Abreu-Grobois FA, Horrocks JA, Formia A, Dutton PH, LeRoux RA, Velez-Zuazo X, Soares L, Meylan AB (2006) New mtDNA D-loop primers which work for a variety of marine turtle species may increase the resolution of mixed stock analysis. In: Frick M, Panagopoulous A, Rees AF Williams K (eds) Proceedings of the 26th annual symposium on sea turtle biology. NOAA, Myrtle Beach, p 179 – reference: O’Corry-CroweGMTaylorBLGelattTLoughlinTRBickhamJBasterretcheMPitcherKWDeMasterDPDemographic independence along ecosystem boundaries in Steller sea lions revealed by mtDNA analysis: implications for management of an endangered speciesCan J Zool2006841796180910.1139/z06-167 – reference: IUCN (2009) IUCN red list of threatened species. Version 2009.2. www.iucnredlist.org. Accessed 1 March 2010 – reference: WhitlockMCG′ST and D do not replace FSTMol Ecol201120108310912137561610.1111/j.1365-294X.2010.04996.x – reference: Liew HC (2011) Tragedy of the Malaysian leatherback population: what went wrong. In: Dutton PH, Squires D, Mahfuzuddin A (eds) Conservation and sustainable management of sea turtles in the Pacific Ocean. University of Hawaii Press, Hawaii, pp 97–106 – reference: LeRouxRADuttonPHAbreu-GroboisFALagueuxCJCampbellCLDelcroixEChevalierJHorrocksJAHillis-StarrZTroëngSHarrisonEStapletonSRe-examination of population structure and phylogeography of hawksbill turtles in the Wider Caribbean using longer mtDNA sequencesJ Hered20121036806820 – reference: CarrerasCPascualMCardonaLAguilarAMargaritoulisDReesAFTurkozanOLevyYGasithAAureggiMKhalilMThe genetic structure of the loggerhead sea turtle (Caretta caretta) in the Mediterranean as revealed by nuclear and mitochondrial DNA and its conservation implicationsConserv Genet2007876177510.1007/s10592-006-9224-81:CAS:528:DC%2BD2sXotFWqtrg%3D – reference: TroëngSChacónDDickBPossible decline in leatherback turtle Dermochelyscoriacea nesting along the coast of Caribbean Central AmericaOryx20043839540310.1017/S0030605304000766 – reference: HoffmanJIMatsonCWAmosWLoughlinTRBickhamJWDeep genetic subdivision within a continuously distributed and highly vagile marine mammal, the Steller’s sea lion (Eumetopias jubatus)Mol Ecol200615282128321691120310.1111/j.1365-294X.2006.02991.x1:CAS:528:DC%2BD28XhtVKnsbbE – reference: Taylor BL, Martien K, Morin P (2010) Identifying units to conserve using genetic data. In: Boyd IL, Bowen WD, Iverson SJ (eds) Marine mammal ecology and conservation—a handbook of techniques. Oxford University Press, Oxford, p 306–344 – reference: RymanNPalmSPOWSIM: a computer program for assessing statistical power when testing for genetic differentiationMol Ecol Notes2006660060210.1111/j.1471-8286.2006.01378.x – reference: Turtle Expert Working Group (2007) An assessment of the leatherback turtle population in the Atlantic Ocean. NOAA Technical Memorandum NMFS SEFSC-555 116. NOAA, Miami – reference: JamesMCEckertSAMyersRAMigratory and reproductive movements of male leatherback turtles (Dermochelyscoriacea)Mar Biol200514784585310.1007/s00227-005-1581-1 – reference: O’Corry-CroweGMSuydamRSRosenbergAFrostKJDizonAEPhylogeography, population structure and dispersal patterns of the beluga whale Delphinapterus leucas in the western Nearctic revealed by mitochondrial DNAMol Ecol1997695597010.1046/j.1365-294X.1997.00267.x – reference: WaplesRSGaggiottiOWhat is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivityMol Ecol200615141914391662980110.1111/j.1365-294X.2006.02890.x1:CAS:528:DC%2BD28XlsVCjur4%3D – reference: StewartKRSimsMMeylanABWitheringtonBEBrostBCrowderLBLeatherback nests increasing significantly in Florida, USA; trends assessed over 30 years using multilevel modelingEcol Appl2011212632732151690310.1890/09-1838.1 – reference: ChiversSJDizonAEGearinPJRobertsonKMSmall-scale population structure of eastern North Pacific harbour porpoises (Phocoena phocoena) indicated by molecular genetic analysesFish Sci20024111122 – reference: AviseJCConservation genetics in the marine realmJ Hered19988937738210.1093/jhered/89.5.377 – reference: RodenSEDuttonPHIsolation and characterization of 14 polymorphic microsatellite loci in the leatherback turtle (Dermochelys coriacea) and cross-species amplificationConserv Genet Resour20113495210.1007/s12686-010-9284-4 – reference: ExcoffierLSmousePEQuattroJMAnalysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction dataGenetics199213147949116442821:CAS:528:DyaK38XlsVCntro%3D – reference: TroëngSHarrisonEEvansDHaroADVargasELeatherback turtle nesting trends and threats at Tortuguero, Costa RicaChelonian Conserv Biol2007611712210.2744/1071-8443(2007)6[117:LTNTAT]2.0.CO;2 – reference: Chacón-ChaverriDEckertKLLeatherback sea turtle nesting at Gandoca Beach in Caribbean Costa Rica: management recommendations from fifteen years of conservationChelonian Conserv Biol2007610111010.2744/1071-8443(2007)6[101:LSTNAG]2.0.CO;2 – reference: AugustinusPGEThe influence of the trade winds on the coastal development of the Guianas at various scale levels: a synthesisMar Geol200420814515110.1016/j.margeo.2004.04.007 – reference: KarlSABowenBWEvolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (Genus Chelonia)Conserv Biol19991399099910.1046/j.1523-1739.1999.97352.x – reference: KarlSABowenBWAviseJCGlobal population genetic structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analyses of anonymous nuclear lociGenetics199213116317313505551:CAS:528:DyaK38XksVCqu74%3D – reference: WallaceBPDiMatteoADBoltenABChaloupkaMYHutchinsonBJGlobal conservation priorities for marine turtlesPLoS One201169e245102196985810.1371/journal.pone.00245101:CAS:528:DC%2BC3MXhtlCmtr%2FI – reference: DuttonPHHitipeuwCZeinMBensonSRAl-GhaisSMStatus and genetic structure of nesting populations of leatherback turtles (Dermochelys coriacea) in the Western PacificChelonian Conserv Biol200764710.2744/1071-8443(2007)6[47:SAGSON]2.0.CO;2 – reference: MoritzCDefining “evolutionarily significant units” for conservationTrends Ecol Evol199493733752123689610.1016/0169-5347(94)90057-41:STN:280:DC%2BC3M7itFWhsA%3D%3D – reference: R Development Core TeamR: a language and environment for statistical computing2011ViennaR Foundation for Statistical Computing – reference: RymanNPalmSAndréCCarvalhoGRDahlgrenTGJordePELaikreLLarssonLCPalméARuzzanteDEPower for detecting genetic divergence: differences between statistical methods and marker lociMol Ecol200615203120451678042210.1111/j.1365-294X.2006.02839.x1:CAS:528:DC%2BD28Xot1aisLs%3D – reference: VargasSMAraujoFCMonteiroDSEstimaSCAlmeidaAPSoaresLSSantosFRGenetic diversity and origin of leatherback turtles (Dermochelyscoriacea) from the Brazilian coastJ Hered2008992151825273110.1093/jhered/esm1201:CAS:528:DC%2BD1cXjsVCrt7w%3D – volume: 6 start-page: e24510 issue: 9 year: 2011 ident: 456_CR72 publication-title: PLoS One doi: 10.1371/journal.pone.0024510 – volume: 9 start-page: 373 year: 1994 ident: 456_CR42 publication-title: Trends Ecol Evol doi: 10.1016/0169-5347(94)90057-4 – volume: 278 start-page: 2338 year: 2011 ident: 456_CR77 publication-title: Proc R Soc B doi: 10.1098/rspb.2010.2467 – ident: 456_CR64 – volume: 16 start-page: 37 year: 1999 ident: 456_CR4 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026036 – volume: 89 start-page: 377 year: 1998 ident: 456_CR3 publication-title: J Hered doi: 10.1093/jhered/89.5.377 – ident: 456_CR68 – ident: 456_CR58 doi: 10.3354/meps09980 – ident: 456_CR26 – volume: 15 start-page: 2821 year: 2006 ident: 456_CR24 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2006.02991.x – volume: 21 start-page: 263 year: 2011 ident: 456_CR59 publication-title: Ecol Appl doi: 10.1890/09-1838.1 – volume: 132 start-page: 619 year: 1992 ident: 456_CR65 publication-title: Genetics doi: 10.1093/genetics/132.2.619 – volume: 16 start-page: 37 year: 2001 ident: 456_CR49 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(00)02026-7 – volume: 142 start-page: 1719 year: 2009 ident: 456_CR76 publication-title: Biol Conserv doi: 10.1016/j.biocon.2009.03.009 – volume: 10 start-page: 564 year: 2010 ident: 456_CR18 publication-title: Mol Ecol Resour doi: 10.1111/j.1755-0998.2010.02847.x – volume: 38 start-page: 1358 year: 1984 ident: 456_CR74 publication-title: Evolution doi: 10.2307/2408641 – volume: 17 start-page: 839 year: 2008 ident: 456_CR70 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2007.03635.x – ident: 456_CR12 – volume: 49 start-page: 1280 year: 1995 ident: 456_CR51 publication-title: Evolution doi: 10.2307/2410454 – volume: 147 start-page: 845 year: 2005 ident: 456_CR27 publication-title: Mar Biol doi: 10.1007/s00227-005-1581-1 – ident: 456_CR17 – volume: 11 start-page: 1871 year: 2010 ident: 456_CR41 publication-title: Conserv Genet doi: 10.1007/s10592-010-0079-7 – volume: 10 start-page: 1255 year: 2009 ident: 456_CR34 publication-title: Conserv Genet doi: 10.1007/s10592-008-9693-z – ident: 456_CR36 doi: 10.2307/j.ctt6wqgxv.10 – volume: 13 start-page: 990 year: 1999 ident: 456_CR30 publication-title: Conserv Biol doi: 10.1046/j.1523-1739.1999.97352.x – volume: 15 start-page: 2031 year: 2006 ident: 456_CR55 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2006.02839.x – volume: 21 start-page: 4171 year: 2012 ident: 456_CR32 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2012.05576.x – volume-title: R: a language and environment for statistical computing year: 2011 ident: 456_CR50 – volume: 6 start-page: 47 year: 2007 ident: 456_CR16 publication-title: Chelonian Conserv Biol doi: 10.2744/1071-8443(2007)6[47:SAGSON]2.0.CO;2 – volume: 16 start-page: 1215 year: 1988 ident: 456_CR40 publication-title: Nucl Acids Res doi: 10.1093/nar/16.3.1215 – volume: 84 start-page: 1796 year: 2006 ident: 456_CR47 publication-title: Can J Zool doi: 10.1139/z06-167 – volume: 11 start-page: 278 year: 2011 ident: 456_CR39 publication-title: Mol Ecol Resour doi: 10.1111/j.1755-0998.2010.02973.x – volume: 103 start-page: 617 issue: 5 year: 2012 ident: 456_CR10 publication-title: J Hered doi: 10.1093/jhered/ess056 – volume: 11 start-page: 5 year: 2011 ident: 456_CR38 publication-title: Mol Ecol Resour doi: 10.1111/j.1755-0998.2010.02927.x – volume: 66 start-page: 191 year: 1991 ident: 456_CR23 publication-title: Heredity doi: 10.1038/hdy.1991.24 – ident: 456_CR35 doi: 10.1093/jhered/ess055 – volume: 6 start-page: 600 year: 2006 ident: 456_CR54 publication-title: Mol Ecol Notes doi: 10.1111/j.1471-8286.2006.01378.x – ident: 456_CR61 doi: 10.1890/ES12-00348.1 – volume: 131 start-page: 163 year: 1992 ident: 456_CR31 publication-title: Genetics doi: 10.1093/genetics/131.1.163 – volume: 111 start-page: 13 year: 2006 ident: 456_CR5 publication-title: Mar Turtle News – volume: 17 start-page: 4015 year: 2008 ident: 456_CR29 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2008.03887.x – ident: 456_CR62 – volume: 99 start-page: 215 year: 2008 ident: 456_CR69 publication-title: J Hered doi: 10.1093/jhered/esm120 – volume: 128 start-page: 7 year: 2010 ident: 456_CR43 publication-title: Mar Turtle News – volume-title: Molecular cloning: a laboratory manual year: 1989 ident: 456_CR56 – volume: 4 start-page: 111 year: 2002 ident: 456_CR9 publication-title: Fish Sci – volume: 20 start-page: 1083 year: 2011 ident: 456_CR75 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2010.04996.x – ident: 456_CR33 – volume: 8 start-page: 761 year: 2007 ident: 456_CR7 publication-title: Conserv Genet doi: 10.1007/s10592-006-9224-8 – ident: 456_CR28 – ident: 456_CR37 – volume: 158 start-page: 1 year: 2011 ident: 456_CR57 publication-title: Mar Biol doi: 10.1007/s00227-010-1582-6 – volume: 126 start-page: 186 year: 2005 ident: 456_CR15 publication-title: Biol Conserv doi: 10.1016/j.biocon.2005.05.013 – volume: 3 start-page: 49 year: 2011 ident: 456_CR53 publication-title: Conserv Genet Resour doi: 10.1007/s12686-010-9284-4 – volume: 131 start-page: 479 year: 1992 ident: 456_CR19 publication-title: Genetics doi: 10.1093/genetics/131.2.479 – ident: 456_CR1 – volume: 5 start-page: e15465 year: 2010 ident: 456_CR71 publication-title: PLoS One doi: 10.1371/journal.pone.0015465 – volume: 248 start-page: 397 year: 1999 ident: 456_CR14 publication-title: J Zool doi: 10.1111/j.1469-7998.1999.tb01038.x – volume: 166 start-page: 1857 year: 2004 ident: 456_CR52 publication-title: Genetics doi: 10.1534/genetics.166.4.1857 – volume: 208 start-page: 145 year: 2004 ident: 456_CR2 publication-title: Mar Geol doi: 10.1016/j.margeo.2004.04.007 – volume: 8 start-page: S11 year: 1999 ident: 456_CR63 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.1999.00797.x – volume: 15 start-page: 1419 year: 2006 ident: 456_CR73 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2006.02890.x – volume: 9 start-page: 354 year: 2009 ident: 456_CR13 publication-title: Mol Ecol Resour doi: 10.1111/j.1755-0998.2008.02443.x – volume: 6 start-page: 117 year: 2007 ident: 456_CR67 publication-title: Chelonian Conserv Biol doi: 10.2744/1071-8443(2007)6[117:LTNTAT]2.0.CO;2 – volume: 2 start-page: 204 year: 1996 ident: 456_CR21 publication-title: Chelonian Conserv Biol – volume: 6 start-page: 955 year: 1997 ident: 456_CR46 publication-title: Mol Ecol doi: 10.1046/j.1365-294X.1997.00267.x – volume: 147 start-page: 1843 year: 1997 ident: 456_CR20 publication-title: Genetics doi: 10.1093/genetics/147.4.1843 – volume: 6 start-page: 101 year: 2007 ident: 456_CR8 publication-title: Chelonian Conserv Biol doi: 10.2744/1071-8443(2007)6[101:LSTNAG]2.0.CO;2 – ident: 456_CR11 – volume: 14 start-page: 2389 year: 2005 ident: 456_CR6 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2005.02598.x – volume: 48 start-page: 361 year: 1992 ident: 456_CR22 publication-title: Biometrics doi: 10.2307/2532296 – volume: 38 start-page: 395 year: 2004 ident: 456_CR66 publication-title: Oryx doi: 10.1017/S0030605304000766 |
| SSID | ssj0016271 |
| Score | 2.302716 |
| Snippet | This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (
Dermochelys
coriacea
), combining 17 microsatellite loci and... This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (Dermochelys coriacea), combining 17 microsatellite loci and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 625 |
| SubjectTerms | Animal Genetics and Genomics Biodiversity Biomedical and Life Sciences Brazil Conservation Biology/Ecology Dermochelys coriacea Ecology Endangered species Evolutionary Biology gene flow Gene loci Genetic markers Haplotypes Indian Ocean Life Sciences microsatellite repeats Mitochondrial DNA Nesting nesting sites Plant Genetics and Genomics Population differentiation Reptiles & amphibians Research Article Satellite DNA surveys Turtles Western Africa |
| SummonAdditionalLinks | – databaseName: Biological Science Database (ProQuest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiQu0PIQC6VyJQ60yMKJ8_IJrWgrDmi1hwr1Fjl-oBW72bJJkfYX8LeZiZNdQGIv3KLESRzN2P7GM_k-gDfCRkam0vFK-4RjvOG58jbnsfboAhqXrI7A9MvnfDIpbm7UtN9wa_qyymFO7CZquzS0R_4-kgg8FPGhf7j9zkk1irKrvYTGPTggloS4K92bbrIIWRwCLryTiyyOhqxm-HUupbpL0jZADMHFn-vSFmz-lR_tlp2rx__b4UN41ANONg4ecgR7rn4CD4IE5RqPLjva6vVT-DndaHkxRITmGwvcsncrx5aezQNWrDRewHPoYg17e4HzOkluzdcNRrEzbZw-Y7OaYUs2budotZlhRBKFy5BlVGP_lS3ai8mY6dqyBRUDNrrjBG0dW1Cl0Kp5BtdXl9cfP_FepoEbjO1armMnlFZOGouxpEZIUnijokqoyqbO504ZIYuO673SmY1srn1WiazwaYYziHwO-_Wydi-AeS1slRiMWRFYpAIfkcg8LxKvJQncFyMQg41K01OYk5LGvNySL5NZSzRrSWYtxQjON7fcBv6OXY2PB1OW_VBuyq0dR3C6uYyDkDIrunbLu9BGyQSh5442-EGSslz5CN4NTvXba_7VqZe7O_UKHsZBoQOd-Rj20TPca7hvfrSzZnXSjYdfZrQQ5w priority: 102 providerName: ProQuest |
| Title | Population stock structure of leatherback turtles (Dermochelyscoriacea) in the Atlantic revealed using mtDNA and microsatellite markers |
| URI | https://link.springer.com/article/10.1007/s10592-013-0456-0 https://www.proquest.com/docview/1356694794 https://www.proquest.com/docview/1356934435 https://www.proquest.com/docview/1501357517 |
| Volume | 14 |
| WOSCitedRecordID | wos000318893800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1572-9737 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016271 issn: 1566-0621 databaseCode: M7P dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1572-9737 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016271 issn: 1566-0621 databaseCode: 7X7 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9737 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016271 issn: 1566-0621 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9737 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016271 issn: 1566-0621 databaseCode: RSV dateStart: 20000301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9twCRetsGY6MYqI-0Bhiw5cRLHj90o2sNUVYBQ3yLHH6iiTacmIPUv4N_eOR8Fpg1pe4uSi-PYZ9-d7vz7AXxmJtA85pbmykUU4w1HpTOChsqhCig0WTWA6dUPMRqlk4kct-e4y67avUtJ1jv1o8Nusa-U9GwEaPUpxumbaO1Sz9dwfnG1Th0kYRNloZ9CWRIGXSrzT008NUYPHuZvSdHa1py9-a9evoXXrWtJBo0u7MALW-zCq4ZscoVXwxqgevUO7sdr1i6Cvp--IQ2K7O3SkoUjs8YrzBU-wHuoTCU5OsUd3JNrzVYlxqtTpa06JtOCoCQZVDOcn6kmHg4KDY4hvpr-msyr09GAqMKQuS_7K1WN_llZMvc1QctyDy7PhpffvtOWkIFqjOIqqkLLpJKWa4NRo0LnI3VaBjmTuYmtE1ZqxtMa1T1XiQmMUC7JWZK6OMG9gr-HjWJR2H0gTjGTRxqjU3QhYoZNRFyINHKKeyr7tAesm5hMt2DlnjNjlj3ALPuBznCgMz_QGevBl_UrPxukjueED7rZztpFW2YBR52RHnK_B4frx7jcfA5FFXZx28hIHqGT-YwM_hD3-SzRg5NOSx595m-d-vBP0h9hO2yoOVDbDmADFcV-gi19V03LZR9eionow-bX4Wh83vcVreN-vU5-AUdrCYk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAioX3ohAgUUCiYdWrL1-xAeEItKqVUPUQ4Rys9b7QFETp8QuKL-AX8N_ZMYbJ4BEbj1ws-y1vba_nZnPs_sNwAthAi1jaXmhXMSRbzieOZPyUDmEgEKX1QiYfh6kw2F3PM5Od-BnuxaGplW2NrEx1Gau6R_5u0Bi4JGRHvqH86-cqkZRdrUtoeFhcWKX35GyVe-P-_h9X4bh4cHo4xFfVRXgGqlIzVVoRaYyK7VB6qPQg3adzoJCZIWJrUttpoXsNtLkhUpMYFLlkkIkXRcnCHiJl70CV9GMp8T10vGa3wVJ6PkddpSLJAzaJKpfqRfTNE8qpYAhCxd_usFNbPtXOrbxcoe3_rP3cxtursJp1vP4vwM7trwL132BzSVuHTSi3Mt78ON0XamMYbyrz5hXzr1YWDZ3bOoj4ULhAdyHA6hir_rotaig2HRZIUefKG3VazYpGbZkvXqKmJxoRhJY6GQNoxUEX9is7g97TJWGzWiqY6UaxdPashnNg1pU92F0Ga_jAeyW89I-BOaUMEWkkZFj2BQLvEQk07QbOSUlBYIdEC0kcr0SaKc6IdN8Iy1NKMoRRTmhKBcdeLM-5dyrk2xrvN8iJ18ZqirfwKYDz9eH0cRQ3kiVdn7h22QywsB6Sxt8IEk5vLQDb1sM_3abf3Xq0fZOPYO9o9GnQT44Hp48hhuhr0WC42gfdhEl9glc09_qSbV42gxFBvklQ_sX_eFs2g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEB2VFBAv3FEDBRYJJC5ade319QGhQBJRtbIiVKG-Weu9oKiJU2IXlC_gm_g7Zr12AkjkrQ-8WfbaXttnd854Zs8APGfKkzzkmhbCBBT9DUNTo2LqC4MQEGiyGgHTz8dxliWnp-lkB352a2FsWmU3JzYTtVpI-4_8wONIPFKrh35g2rSIyXD87vwrtRWkbKS1K6fhIHKkV9_RfaveHg7xW7_w_fHo5MNH2lYYoBLdkpoKX7NUpJpLhW6QQGuaGJl6BUsLFWoT61QynjQy5YWIlKdiYaKCRYkJIwQ_x8tegd0YOUbQg933o2zyaR3CiHzn7WG3KYt8rwupunV7oU36tIUVkMBQ9qdR3DDdv4Kzjc0b3_qP39ZtuNkSbTJwI-MO7OjyLlxzpTdXuDVq5LpX9-DHZF3DjCATlmfEaepeLDVZGDJzHLkQeAD34dCqyMsh2jNbamy2qtB7nwqpxSsyLQm2JIN6hmidSmLFsdD8KmLXFnwh83qYDYgoFZnbJMhKNFqotSZzmyG1rO7DyWW8jgfQKxel3gNiBFNFINFXR0IVMrxEwOM4CYzg3FLEPrAOHrlspdttBZFZvhGdtojKEVG5RVTO-vB6fcq50y3Z1ni_Q1HeTmFVvoFQH56tD-PkYyNKotSLC9cm5QFS7i1t8IG4je7FfXjT4fm32_yrUw-3d-opXEdE58eH2dEjuOG7IiU4pPahhyDRj-Gq_FZPq-WTdlwSyC8Z278ANE52-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+stock+structure+of+leatherback+turtles+%28Dermochelyscoriacea%29+in+the+Atlantic+revealed+using+mtDNA+and+microsatellite+markers&rft.jtitle=Conservation+genetics&rft.au=Dutton%2C+Peter+H.&rft.au=Roden%2C+Suzanne+E.&rft.au=Stewart%2C+Kelly+R.&rft.au=LaCasella%2C+Erin&rft.date=2013-06-01&rft.pub=Springer+Netherlands&rft.issn=1566-0621&rft.eissn=1572-9737&rft.volume=14&rft.issue=3&rft.spage=625&rft.epage=636&rft_id=info:doi/10.1007%2Fs10592-013-0456-0&rft.externalDocID=10_1007_s10592_013_0456_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-0621&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-0621&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-0621&client=summon |