Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review
Recently, the development and application of lane line departure warning systems have been in the market. For any of the systems, the key part of lane line tracking, lane line identification, or lane line departure warning is whether it can accurately and quickly detect lane lines. Since 1990s, they...
Gespeichert in:
| Veröffentlicht in: | Journal of Traffic and Transportation Engineering (English ed. Online) Jg. 7; H. 6; S. 748 - 774 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
KeAi Communications Co., Ltd
01.12.2020
|
| Schlagworte: | |
| ISSN: | 2095-7564 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, the development and application of lane line departure warning systems have been in the market. For any of the systems, the key part of lane line tracking, lane line identification, or lane line departure warning is whether it can accurately and quickly detect lane lines. Since 1990s, they have been studied and implemented for the situations defined by the good viewing conditions and the clear lane markings on road. After then, the accuracy for particular situations, the robustness for a wide range of scenarios, time efficiency and integration into higher-order tasks define visual lane line detection and tracking as a continuing research subject. At present, these kinds of lane marking line detection methods based on machine vision and image processing can be divided into two categories: the traditional image processing and semantic segmentation (includes deep learning) methods. The former mainly involves feature-based and model-based steps, and which can be classified into similarity- and discontinuity-based ones; and the model-based step includes different parametric straight line, curve or pattern models. The semantic segmentation includes different machine learning, neural network and deep learning methods, which is the new trend for the research and application of lane line departure warning systems. This paper describes and analyzes the lane line departure warning systems, image processing algorithms and semantic segmentation methods for lane line detection. |
|---|---|
| AbstractList | Recently, the development and application of lane line departure warning systems have been in the market. For any of the systems, the key part of lane line tracking, lane line identification, or lane line departure warning is whether it can accurately and quickly detect lane lines. Since 1990s, they have been studied and implemented for the situations defined by the good viewing conditions and the clear lane markings on road. After then, the accuracy for particular situations, the robustness for a wide range of scenarios, time efficiency and integration into higher-order tasks define visual lane line detection and tracking as a continuing research subject. At present, these kinds of lane marking line detection methods based on machine vision and image processing can be divided into two categories: the traditional image processing and semantic segmentation (includes deep learning) methods. The former mainly involves feature-based and model-based steps, and which can be classified into similarity- and discontinuity-based ones; and the model-based step includes different parametric straight line, curve or pattern models. The semantic segmentation includes different machine learning, neural network and deep learning methods, which is the new trend for the research and application of lane line departure warning systems. This paper describes and analyzes the lane line departure warning systems, image processing algorithms and semantic segmentation methods for lane line detection. |
| Author | Zhaoying Li Huan Li Weiwei Chen Weixing Wang Sheng Liu Kevin Wang |
| Author_xml | – sequence: 1 fullname: Weiwei Chen organization: School of Information Engineering, Chang'an University, Xi'an 710064, China; Xi'an Aeronautical Polytechnic Institute, Xi'an 710089, China – sequence: 2 fullname: Weixing Wang organization: School of Information Engineering, Chang'an University, Xi'an 710064, China; Royal Institute of Technology, Stockholm 10044, Sweden; Corresponding author. School of Information Engineering, Chang'an University, Xi'an 710064, China. Tel.: +86 29 8233 4562 – sequence: 3 fullname: Kevin Wang organization: Royal Institute of Technology, Stockholm 10044, Sweden – sequence: 4 fullname: Zhaoying Li organization: Audible Inc., Newark, NJ 07102, USA – sequence: 5 fullname: Huan Li organization: School of Information Engineering, Chang'an University, Xi'an 710064, China – sequence: 6 fullname: Sheng Liu organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
| BookMark | eNotUMtOwzAQ9KFIFOgPcPIPJDiJHzG3quJRqRIXOEeOvQ6uEqeyDVUlPh63cNrRaGZ2dm_Qws8eELqvSFmRij_sy31KUNakPhMlIfUCLWsiWSEYp9doFaPrCSNMNlSKJfrZKQ_YwEGF9BUAH1Xwzg84nmKCKWLlDR7PktFddAl0crPHE6TP2UTcqwgGZ8JNagB8CLOGvCInnJ0RJuWT0xkME_ikzt5HvMYBvh0c79CVVWOE1f-8RR_PT--b12L39rLdrHeFprRNRSvb3tbUyh4YVJS1DbXKSi40aSojBW1qyXgGggopekq4tEwRbgShlWpkc4u2f7lmVvvuEHLXcOpm5boLMYehy-c7PUIngBNKZdUDp9QKK_NXW11zo2TdSM2bX6LHbyo |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e37880 crossref_primary_10_1155_2022_9308236 crossref_primary_10_1155_2022_4980725 crossref_primary_10_1007_s00530_024_01557_9 crossref_primary_10_1016_j_dsp_2024_104614 crossref_primary_10_1080_00207160_2024_2443498 crossref_primary_10_1080_10903127_2024_2315946 crossref_primary_10_3389_fpls_2023_1211409 crossref_primary_10_1155_2022_7919875 crossref_primary_10_1016_j_aap_2023_107037 crossref_primary_10_1680_jsmic_23_00056 crossref_primary_10_1016_j_techfore_2023_122778 crossref_primary_10_1109_ACCESS_2024_3422266 crossref_primary_10_1016_j_jsr_2023_11_014 crossref_primary_10_1111_mice_12829 crossref_primary_10_1109_TVT_2024_3408162 crossref_primary_10_1155_2022_5983045 crossref_primary_10_1007_s13177_022_00317_1 crossref_primary_10_1109_ACCESS_2025_3581367 crossref_primary_10_1016_j_measurement_2021_110176 crossref_primary_10_1117_1_JRS_18_048502 crossref_primary_10_1177_03611981241277752 crossref_primary_10_3389_fnins_2023_1275065 crossref_primary_10_1109_TCOMM_2024_3523974 |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.1016/j.jtte.2020.10.002 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 774 |
| ExternalDocumentID | oai_doaj_org_article_7e604491be644f7f91018c26da9239c6 |
| GroupedDBID | ALMA_UNASSIGNED_HOLDINGS CDYEO GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c448t-898bf24f9be5e145834faf967c031d97432956d9774797b4069f5a06d7041a393 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600055300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2095-7564 |
| IngestDate | Fri Oct 03 12:53:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-898bf24f9be5e145834faf967c031d97432956d9774797b4069f5a06d7041a393 |
| OpenAccessLink | https://doaj.org/article/7e604491be644f7f91018c26da9239c6 |
| PageCount | 27 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7e604491be644f7f91018c26da9239c6 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Traffic and Transportation Engineering (English ed. Online) |
| PublicationYear | 2020 |
| Publisher | KeAi Communications Co., Ltd |
| Publisher_xml | – name: KeAi Communications Co., Ltd |
| SSID | ssib050593497 ssib051367725 ssib021366128 ssib025759945 ssib044084162 ssib038075469 |
| Score | 2.3996708 |
| SecondaryResourceType | review_article |
| Snippet | Recently, the development and application of lane line departure warning systems have been in the market. For any of the systems, the key part of lane line... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 748 |
| SubjectTerms | Image analysis Image processing Lane departure warning Lane line detection Semantic segmentation Traffic engineering |
| Title | Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review |
| URI | https://doaj.org/article/7e604491be644f7f91018c26da9239c6 |
| Volume | 7 |
| WOSCitedRecordID | wos000600055300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePAiiorf5OC12KZJs_G2iosHWTwo7K3kU1bYumyrXvzxziTF7s2LtxLaQJtp5k1m5j1CrsYGnKovRGYUSpgJZjLlWJlZrZ3NvUaSpSg2IWez8XyunjakvrAmLNEDpw93LX2Vc64K48FzBxkUUkxZVjkN0ETZSLYNqGcjmAJLYkUJfmcA1gxlKNWQP0OWdcGrX0eOssu8GIjzBArd8SG_JpDYTEYFVwaYJJOi4n0HTioWe-si5ybDgXRGs6EAEF3VdI_s9hiTTtK77ZMt3xyQ70fdeOrA-6wxaUC_0pEITVTOLdWNo1j4ShF3wn1drNFqaJKYbim6O0dhYLGELYiuUoMBzoBPtn4JS7SwcPG67NuZmhs6oak15pC8TO-f7x6yXnohsxCvddlYjU1gPCjjhS8wt8qDDqqSFjYBBzFIySCwcggepZIG22eD0HnlZM4LXaryiIya98YfEwqAKcgyKCzA4VZ6VTpYQGng39fWs_KE3OKnqleJXaNGvus4AFZQ91ZQ_2UFp_8xyRnZwSVMxSrnZNStP_wF2baf3aJdX0YD-wGs98sH |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lane+departure+warning+systems+and+lane+line+detection+methods+based+on+image+processing+and+semantic+segmentation%3A+A+review&rft.jtitle=Journal+of+Traffic+and+Transportation+Engineering+%28English+ed.+Online%29&rft.au=Weiwei+Chen&rft.au=Weixing+Wang&rft.au=Kevin+Wang&rft.au=Zhaoying+Li&rft.date=2020-12-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2095-7564&rft.volume=7&rft.issue=6&rft.spage=748&rft.epage=774&rft_id=info:doi/10.1016%2Fj.jtte.2020.10.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e604491be644f7f91018c26da9239c6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-7564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-7564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-7564&client=summon |