Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review

Recently, the development and application of lane line departure warning systems have been in the market. For any of the systems, the key part of lane line tracking, lane line identification, or lane line departure warning is whether it can accurately and quickly detect lane lines. Since 1990s, they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Traffic and Transportation Engineering (English ed. Online) Jg. 7; H. 6; S. 748 - 774
Hauptverfasser: Weiwei Chen, Weixing Wang, Kevin Wang, Zhaoying Li, Huan Li, Sheng Liu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: KeAi Communications Co., Ltd 01.12.2020
Schlagworte:
ISSN:2095-7564
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, the development and application of lane line departure warning systems have been in the market. For any of the systems, the key part of lane line tracking, lane line identification, or lane line departure warning is whether it can accurately and quickly detect lane lines. Since 1990s, they have been studied and implemented for the situations defined by the good viewing conditions and the clear lane markings on road. After then, the accuracy for particular situations, the robustness for a wide range of scenarios, time efficiency and integration into higher-order tasks define visual lane line detection and tracking as a continuing research subject. At present, these kinds of lane marking line detection methods based on machine vision and image processing can be divided into two categories: the traditional image processing and semantic segmentation (includes deep learning) methods. The former mainly involves feature-based and model-based steps, and which can be classified into similarity- and discontinuity-based ones; and the model-based step includes different parametric straight line, curve or pattern models. The semantic segmentation includes different machine learning, neural network and deep learning methods, which is the new trend for the research and application of lane line departure warning systems. This paper describes and analyzes the lane line departure warning systems, image processing algorithms and semantic segmentation methods for lane line detection.
AbstractList Recently, the development and application of lane line departure warning systems have been in the market. For any of the systems, the key part of lane line tracking, lane line identification, or lane line departure warning is whether it can accurately and quickly detect lane lines. Since 1990s, they have been studied and implemented for the situations defined by the good viewing conditions and the clear lane markings on road. After then, the accuracy for particular situations, the robustness for a wide range of scenarios, time efficiency and integration into higher-order tasks define visual lane line detection and tracking as a continuing research subject. At present, these kinds of lane marking line detection methods based on machine vision and image processing can be divided into two categories: the traditional image processing and semantic segmentation (includes deep learning) methods. The former mainly involves feature-based and model-based steps, and which can be classified into similarity- and discontinuity-based ones; and the model-based step includes different parametric straight line, curve or pattern models. The semantic segmentation includes different machine learning, neural network and deep learning methods, which is the new trend for the research and application of lane line departure warning systems. This paper describes and analyzes the lane line departure warning systems, image processing algorithms and semantic segmentation methods for lane line detection.
Author Zhaoying Li
Huan Li
Weiwei Chen
Weixing Wang
Sheng Liu
Kevin Wang
Author_xml – sequence: 1
  fullname: Weiwei Chen
  organization: School of Information Engineering, Chang'an University, Xi'an 710064, China; Xi'an Aeronautical Polytechnic Institute, Xi'an 710089, China
– sequence: 2
  fullname: Weixing Wang
  organization: School of Information Engineering, Chang'an University, Xi'an 710064, China; Royal Institute of Technology, Stockholm 10044, Sweden; Corresponding author. School of Information Engineering, Chang'an University, Xi'an 710064, China. Tel.: +86 29 8233 4562
– sequence: 3
  fullname: Kevin Wang
  organization: Royal Institute of Technology, Stockholm 10044, Sweden
– sequence: 4
  fullname: Zhaoying Li
  organization: Audible Inc., Newark, NJ 07102, USA
– sequence: 5
  fullname: Huan Li
  organization: School of Information Engineering, Chang'an University, Xi'an 710064, China
– sequence: 6
  fullname: Sheng Liu
  organization: School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
BookMark eNotUMtOwzAQ9KFIFOgPcPIPJDiJHzG3quJRqRIXOEeOvQ6uEqeyDVUlPh63cNrRaGZ2dm_Qws8eELqvSFmRij_sy31KUNakPhMlIfUCLWsiWSEYp9doFaPrCSNMNlSKJfrZKQ_YwEGF9BUAH1Xwzg84nmKCKWLlDR7PktFddAl0crPHE6TP2UTcqwgGZ8JNagB8CLOGvCInnJ0RJuWT0xkME_ikzt5HvMYBvh0c79CVVWOE1f-8RR_PT--b12L39rLdrHeFprRNRSvb3tbUyh4YVJS1DbXKSi40aSojBW1qyXgGggopekq4tEwRbgShlWpkc4u2f7lmVvvuEHLXcOpm5boLMYehy-c7PUIngBNKZdUDp9QKK_NXW11zo2TdSM2bX6LHbyo
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e37880
crossref_primary_10_1155_2022_9308236
crossref_primary_10_1155_2022_4980725
crossref_primary_10_1007_s00530_024_01557_9
crossref_primary_10_1016_j_dsp_2024_104614
crossref_primary_10_1080_00207160_2024_2443498
crossref_primary_10_1080_10903127_2024_2315946
crossref_primary_10_3389_fpls_2023_1211409
crossref_primary_10_1155_2022_7919875
crossref_primary_10_1016_j_aap_2023_107037
crossref_primary_10_1680_jsmic_23_00056
crossref_primary_10_1016_j_techfore_2023_122778
crossref_primary_10_1109_ACCESS_2024_3422266
crossref_primary_10_1016_j_jsr_2023_11_014
crossref_primary_10_1111_mice_12829
crossref_primary_10_1109_TVT_2024_3408162
crossref_primary_10_1155_2022_5983045
crossref_primary_10_1007_s13177_022_00317_1
crossref_primary_10_1109_ACCESS_2025_3581367
crossref_primary_10_1016_j_measurement_2021_110176
crossref_primary_10_1117_1_JRS_18_048502
crossref_primary_10_1177_03611981241277752
crossref_primary_10_3389_fnins_2023_1275065
crossref_primary_10_1109_TCOMM_2024_3523974
ContentType Journal Article
DBID DOA
DOI 10.1016/j.jtte.2020.10.002
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 774
ExternalDocumentID oai_doaj_org_article_7e604491be644f7f91018c26da9239c6
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
CDYEO
GROUPED_DOAJ
ID FETCH-LOGICAL-c448t-898bf24f9be5e145834faf967c031d97432956d9774797b4069f5a06d7041a393
IEDL.DBID DOA
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600055300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-7564
IngestDate Fri Oct 03 12:53:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-898bf24f9be5e145834faf967c031d97432956d9774797b4069f5a06d7041a393
OpenAccessLink https://doaj.org/article/7e604491be644f7f91018c26da9239c6
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_7e604491be644f7f91018c26da9239c6
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Traffic and Transportation Engineering (English ed. Online)
PublicationYear 2020
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
SSID ssib050593497
ssib051367725
ssib021366128
ssib025759945
ssib044084162
ssib038075469
Score 2.3996708
SecondaryResourceType review_article
Snippet Recently, the development and application of lane line departure warning systems have been in the market. For any of the systems, the key part of lane line...
SourceID doaj
SourceType Open Website
StartPage 748
SubjectTerms Image analysis
Image processing
Lane departure warning
Lane line detection
Semantic segmentation
Traffic engineering
Title Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review
URI https://doaj.org/article/7e604491be644f7f91018c26da9239c6
Volume 7
WOSCitedRecordID wos000600055300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yePAiiorf5OC12KZJs_G2iosHWTwo7K3kU1bYumyrXvzxziTF7s2LtxLaQJtp5k1m5j1CrsYGnKovRGYUSpgJZjLlWJlZrZ3NvUaSpSg2IWez8XyunjakvrAmLNEDpw93LX2Vc64K48FzBxkUUkxZVjkN0ETZSLYNqGcjmAJLYkUJfmcA1gxlKNWQP0OWdcGrX0eOssu8GIjzBArd8SG_JpDYTEYFVwaYJJOi4n0HTioWe-si5ybDgXRGs6EAEF3VdI_s9hiTTtK77ZMt3xyQ70fdeOrA-6wxaUC_0pEITVTOLdWNo1j4ShF3wn1drNFqaJKYbim6O0dhYLGELYiuUoMBzoBPtn4JS7SwcPG67NuZmhs6oak15pC8TO-f7x6yXnohsxCvddlYjU1gPCjjhS8wt8qDDqqSFjYBBzFIySCwcggepZIG22eD0HnlZM4LXaryiIya98YfEwqAKcgyKCzA4VZ6VTpYQGng39fWs_KE3OKnqleJXaNGvus4AFZQ91ZQ_2UFp_8xyRnZwSVMxSrnZNStP_wF2baf3aJdX0YD-wGs98sH
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lane+departure+warning+systems+and+lane+line+detection+methods+based+on+image+processing+and+semantic+segmentation%3A+A+review&rft.jtitle=Journal+of+Traffic+and+Transportation+Engineering+%28English+ed.+Online%29&rft.au=Weiwei+Chen&rft.au=Weixing+Wang&rft.au=Kevin+Wang&rft.au=Zhaoying+Li&rft.date=2020-12-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2095-7564&rft.volume=7&rft.issue=6&rft.spage=748&rft.epage=774&rft_id=info:doi/10.1016%2Fj.jtte.2020.10.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e604491be644f7f91018c26da9239c6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-7564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-7564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-7564&client=summon