Probabilistic occupancy forecasting for risk-aware optimal ventilation through autoencoder Bayesian deep neural networks

Ventilation plays a noteworthy role in maintaining a healthy, comfortable and energy-efficient indoor environment and mitigating the risk of aerosol transmission and disease infection (e.g., SARS-COV-2). In most commercial and office buildings, demand-controlled ventilation (DCV) systems are widely...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Building and environment Ročník 219; s. 109207
Hlavní autoři: Zhuang, Chaoqun, Choudhary, Ruchi, Mavrogianni, Anna
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2022
The Authors. Published by Elsevier Ltd
Témata:
ISSN:0360-1323, 1873-684X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ventilation plays a noteworthy role in maintaining a healthy, comfortable and energy-efficient indoor environment and mitigating the risk of aerosol transmission and disease infection (e.g., SARS-COV-2). In most commercial and office buildings, demand-controlled ventilation (DCV) systems are widely utilized to conserve energy based on occupancy. However, as the presence of occupants is often inherently stochastic, accurate occupancy prediction is challenging. This study, therefore, proposes an autoencoder Bayesian Long Short-term Memory neural network (LSTM) model for probabilistic occupancy prediction, taking account of model misspecification, epistemic uncertainty, and aleatoric uncertainty. Performances of the proposed models are evaluated using real data in an educational building at the University of Cambridge, UK. The models trained on data of one open-plan space are used to predict occupant numbers for other spaces (with similar layout and function) in the same building. The probabilistic occupant profiles are then used for estimating optimal ventilation rates for two scenarios (i.e., normal DCV mode for energy conservation and anti-infection mode for virus transmission prevention). Results show that, during the test period, for the 1-h ahead prediction, the proposed model achieved better performance with up to 5.8% mean absolute percentage error reduction than the traditional LSTM model. More flexible alternatives for ventilation can be offered by the proposed risk-aware decision-making schemes serving different purposes under real operation. The findings from this study provide new occupancy forecasting solutions and explore the potential of probabilistic decision making for building ventilation optimization. oDeveloped autoencoder Bayesian deep learning models for probabilistic occupancy forecasting.oTook account of model misspecification, epistemic uncertainty and aleatoric uncertainty.oAchieved 5.8% mean absolute percentage error reduction than the baseline model in the test period.oDeveloped risk-aware decision-making schemes for energy conservation and infection prevention.
AbstractList Ventilation plays a noteworthy role in maintaining a healthy, comfortable and energy-efficient indoor environment and mitigating the risk of aerosol transmission and disease infection (e.g., SARS-COV-2). In most commercial and office buildings, demand-controlled ventilation (DCV) systems are widely utilized to conserve energy based on occupancy. However, as the presence of occupants is often inherently stochastic, accurate occupancy prediction is challenging. This study, therefore, proposes an autoencoder Bayesian Long Short-term Memory neural network (LSTM) model for probabilistic occupancy prediction, taking account of model misspecification, epistemic uncertainty, and aleatoric uncertainty. Performances of the proposed models are evaluated using real data in an educational building at the University of Cambridge, UK. The models trained on data of one open-plan space are used to predict occupant numbers for other spaces (with similar layout and function) in the same building. The probabilistic occupant profiles are then used for estimating optimal ventilation rates for two scenarios (i.e., normal DCV mode for energy conservation and anti-infection mode for virus transmission prevention). Results show that, during the test period, for the 1-h ahead prediction, the proposed model achieved better performance with up to 5.8% mean absolute percentage error reduction than the traditional LSTM model. More flexible alternatives for ventilation can be offered by the proposed risk-aware decision-making schemes serving different purposes under real operation. The findings from this study provide new occupancy forecasting solutions and explore the potential of probabilistic decision making for building ventilation optimization.
Ventilation plays a noteworthy role in maintaining a healthy, comfortable and energy-efficient indoor environment and mitigating the risk of aerosol transmission and disease infection (e.g., SARS-COV-2). In most commercial and office buildings, demand-controlled ventilation (DCV) systems are widely utilized to conserve energy based on occupancy. However, as the presence of occupants is often inherently stochastic, accurate occupancy prediction is challenging. This study, therefore, proposes an autoencoder Bayesian Long Short-term Memory neural network (LSTM) model for probabilistic occupancy prediction, taking account of model misspecification, epistemic uncertainty, and aleatoric uncertainty. Performances of the proposed models are evaluated using real data in an educational building at the University of Cambridge, UK. The models trained on data of one open-plan space are used to predict occupant numbers for other spaces (with similar layout and function) in the same building. The probabilistic occupant profiles are then used for estimating optimal ventilation rates for two scenarios (i.e., normal DCV mode for energy conservation and anti-infection mode for virus transmission prevention). Results show that, during the test period, for the 1-h ahead prediction, the proposed model achieved better performance with up to 5.8% mean absolute percentage error reduction than the traditional LSTM model. More flexible alternatives for ventilation can be offered by the proposed risk-aware decision-making schemes serving different purposes under real operation. The findings from this study provide new occupancy forecasting solutions and explore the potential of probabilistic decision making for building ventilation optimization.Ventilation plays a noteworthy role in maintaining a healthy, comfortable and energy-efficient indoor environment and mitigating the risk of aerosol transmission and disease infection (e.g., SARS-COV-2). In most commercial and office buildings, demand-controlled ventilation (DCV) systems are widely utilized to conserve energy based on occupancy. However, as the presence of occupants is often inherently stochastic, accurate occupancy prediction is challenging. This study, therefore, proposes an autoencoder Bayesian Long Short-term Memory neural network (LSTM) model for probabilistic occupancy prediction, taking account of model misspecification, epistemic uncertainty, and aleatoric uncertainty. Performances of the proposed models are evaluated using real data in an educational building at the University of Cambridge, UK. The models trained on data of one open-plan space are used to predict occupant numbers for other spaces (with similar layout and function) in the same building. The probabilistic occupant profiles are then used for estimating optimal ventilation rates for two scenarios (i.e., normal DCV mode for energy conservation and anti-infection mode for virus transmission prevention). Results show that, during the test period, for the 1-h ahead prediction, the proposed model achieved better performance with up to 5.8% mean absolute percentage error reduction than the traditional LSTM model. More flexible alternatives for ventilation can be offered by the proposed risk-aware decision-making schemes serving different purposes under real operation. The findings from this study provide new occupancy forecasting solutions and explore the potential of probabilistic decision making for building ventilation optimization.
Ventilation plays a noteworthy role in maintaining a healthy, comfortable and energy-efficient indoor environment and mitigating the risk of aerosol transmission and disease infection (e.g., SARS-COV-2). In most commercial and office buildings, demand-controlled ventilation (DCV) systems are widely utilized to conserve energy based on occupancy. However, as the presence of occupants is often inherently stochastic, accurate occupancy prediction is challenging. This study, therefore, proposes an autoencoder Bayesian Long Short-term Memory neural network (LSTM) model for probabilistic occupancy prediction, taking account of model misspecification, epistemic uncertainty, and aleatoric uncertainty. Performances of the proposed models are evaluated using real data in an educational building at the University of Cambridge, UK. The models trained on data of one open-plan space are used to predict occupant numbers for other spaces (with similar layout and function) in the same building. The probabilistic occupant profiles are then used for estimating optimal ventilation rates for two scenarios (i.e., normal DCV mode for energy conservation and anti-infection mode for virus transmission prevention). Results show that, during the test period, for the 1-h ahead prediction, the proposed model achieved better performance with up to 5.8% mean absolute percentage error reduction than the traditional LSTM model. More flexible alternatives for ventilation can be offered by the proposed risk-aware decision-making schemes serving different purposes under real operation. The findings from this study provide new occupancy forecasting solutions and explore the potential of probabilistic decision making for building ventilation optimization. oDeveloped autoencoder Bayesian deep learning models for probabilistic occupancy forecasting.oTook account of model misspecification, epistemic uncertainty and aleatoric uncertainty.oAchieved 5.8% mean absolute percentage error reduction than the baseline model in the test period.oDeveloped risk-aware decision-making schemes for energy conservation and infection prevention.
ArticleNumber 109207
Author Choudhary, Ruchi
Mavrogianni, Anna
Zhuang, Chaoqun
Author_xml – sequence: 1
  givenname: Chaoqun
  orcidid: 0000-0002-4050-3740
  surname: Zhuang
  fullname: Zhuang, Chaoqun
  email: czhuang@turing.ac.uk, cz378@cam.ac.uk
  organization: Data-centric Engineering, The Alan Turing Institute, London, United Kingdom
– sequence: 2
  givenname: Ruchi
  surname: Choudhary
  fullname: Choudhary, Ruchi
  organization: Data-centric Engineering, The Alan Turing Institute, London, United Kingdom
– sequence: 3
  givenname: Anna
  orcidid: 0000-0002-5104-1238
  surname: Mavrogianni
  fullname: Mavrogianni, Anna
  organization: Institute for Environmental Design and Engineering, Bartlett Faculty of the Built Environment, University College London, London, United Kingdom
BookMark eNqFkU9v1DAQxS3USmxbvgLykUsW_0ucSAgBVWmRKpUDSNwsx57sepu1g-1s2W-Pl20P9NKT7fH8nt7MO0MnPnhA6C0lS0po836z7Gc3WvC7JSOMlWLHiHyFFrSVvGpa8esELQhvSEU546_RWUobUsCOiwX68z2GXvdudCk7g4Mx86S92eMhRDC6FP3qcMfRpftKP-gIOEzZbfWId-CzG3V2weO8jmFerbGecwBvgoWIv-g9JKc9tgAT9jDHAnnIDyHepwt0OugxwZvH8xz9_Hr14_Kmur27_nb5-bYyQrS5aiXU1jDRDJoQ2bWt7Ia6H4YaeD90lgory6vpu9rQnsmWdrYeDDDKhDCEAz9HH4-609xvwZriudhQUywjxL0K2qn_f7xbq1XYqa6uuZCkCLx7FIjh9wwpq61LBsZRewhzUkyyWghey660fji2mhhSijAo4_K__RRlNypK1CExtVFPialDYuqYWMGbZ_iTyxfBT0cQyiJ3DqJKxpUUwLoSYlY2uJck_gK41Ly1
CitedBy_id crossref_primary_10_1016_j_buildenv_2023_110808
crossref_primary_10_1016_j_buildenv_2023_110807
crossref_primary_10_1016_j_apenergy_2022_120288
crossref_primary_10_1016_j_aei_2025_103654
crossref_primary_10_1016_j_autcon_2024_105894
crossref_primary_10_1109_JSEN_2023_3287565
crossref_primary_10_3390_buildings15050816
crossref_primary_10_1016_j_buildenv_2023_110233
crossref_primary_10_1016_j_buildenv_2023_110375
crossref_primary_10_1016_j_enbuild_2025_115468
crossref_primary_10_5334_bc_497
crossref_primary_10_1016_j_apenergy_2023_120889
crossref_primary_10_1108_DTA_03_2023_0063
crossref_primary_10_1007_s12273_025_1292_0
crossref_primary_10_1016_j_enbuild_2025_115352
crossref_primary_10_1016_j_jobe_2023_107109
Cites_doi 10.1016/S0360-1323(97)00075-9
10.1016/j.enbuild.2021.110860
10.1016/j.enbuild.2017.05.031
10.1016/j.scs.2018.09.031
10.1016/j.buildenv.2018.07.006
10.1016/j.enbuild.2017.04.014
10.1016/j.scs.2021.103256
10.1016/j.energy.2020.118100
10.1016/j.buildenv.2019.01.052
10.1016/j.enbuild.2019.06.043
10.1016/j.enbuild.2021.110883
10.1016/j.scs.2020.102390
10.1109/HPCC-SmartCity-DSS.2017.7
10.1016/j.enbuild.2018.09.002
10.1177/0143624420911810
10.1016/j.enbuild.2018.11.025
10.1016/j.enbuild.2011.12.029
10.3390/sym11080956
10.1016/j.buildenv.2021.107588
10.1109/FIIW.2011.6476826
10.1111/j.1600-0668.2009.00623.x
10.1016/j.enbuild.2021.111345
10.1016/j.apenergy.2014.02.057
10.1080/19401493.2011.577810
10.3390/app112110291
10.1007/978-1-4842-3516-4_2
10.1109/TITS.2011.2165705
10.1016/j.apenergy.2021.118297
10.1007/s00521-020-04926-3
10.1002/we.1798
10.1016/j.enbuild.2016.12.056
10.1016/j.energy.2019.05.138
10.1016/j.buildenv.2015.06.009
10.1016/j.ins.2013.07.030
10.1016/j.enbuild.2014.11.065
10.1177/1420326X9900800605
10.1016/j.buildenv.2017.08.003
10.1093/japr/2.4.314
10.1016/j.enbuild.2021.110826
10.1016/j.apenergy.2019.114451
10.1016/j.apenergy.2017.12.002
10.1177/0011392121990030
10.1007/s12206-021-0140-0
10.1016/j.buildenv.2016.01.026
10.1016/j.scs.2022.103719
10.1016/j.enbuild.2020.109965
10.1016/j.enbuild.2014.11.078
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.buildenv.2022.109207
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
EndPage 109207
ExternalDocumentID PMC9553470
10_1016_j_buildenv_2022_109207
S0360132322004437
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
SEW
VH1
WUQ
ZMT
~HD
7X8
5PM
ID FETCH-LOGICAL-c448t-87e5dc246fa00798879f5bff5e3bf9d14d7bff6b95c1b27819d5fce21244c03e3
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808297800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Tue Sep 30 17:19:32 EDT 2025
Sun Sep 28 09:42:02 EDT 2025
Sat Nov 29 07:21:48 EST 2025
Tue Nov 18 21:33:56 EST 2025
Fri Feb 23 02:40:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Occupancy prediction
COVID-19
Ventilation
Bayesian deep neural network
Autoencoder
Language English
License This is an open access article under the CC BY license.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c448t-87e5dc246fa00798879f5bff5e3bf9d14d7bff6b95c1b27819d5fce21244c03e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4050-3740
0000-0002-5104-1238
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9553470
PQID 2725443579
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9553470
proquest_miscellaneous_2725443579
crossref_citationtrail_10_1016_j_buildenv_2022_109207
crossref_primary_10_1016_j_buildenv_2022_109207
elsevier_sciencedirect_doi_10_1016_j_buildenv_2022_109207
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2022
Publisher Elsevier Ltd
The Authors. Published by Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
– name: The Authors. Published by Elsevier Ltd
References Heo, Choudhary, Augenbroe (bib69) 2012; 47
Kim, Srebric (bib33) 2017; 138
Chan, Burnett, Chow (bib63) 1998; 33
Jiefan, Peng, Zhihong, Yongbao, Ying, Zhe (bib22) 2018; 180
Ng, Persily, Emmerich (bib55) 2015; 88
Candanedo, Feldheim, Deramaix (bib15) 2017; 148
Scott, Brush, Krumm, Meyers, Hazas, Hodges (bib19) 2011
Qolomany B, Al-Fuqaha A, Benhaddou D, Gupta A. Role of Deep LSTM Neural Networks and Wi-Fi Networks in Support of Occupancy Prediction in Smart Buildings. Proc - 2017 IEEE 19th Intl Conf High Perform Comput Commun HPCC 2017, 2017 IEEE 15th Intl Conf Smart City, SmartCity 2017 2017 IEEE 3rd Intl Conf Data Sci Syst DSS 2017 2018;2018-Janua:50–7.
(bib2) 2012
Simmons, Lott (bib64) 1993; 2
(bib11) 2020
(bib13) 2019
Salimi, Liu, Hammad (bib16) 2019; 152
Zhuang, Wang (bib30) 2020; 261
D'Oca, Hong (bib25) 2015; 88
Joshi, Owens, Shah, Munasinghe (bib51) 2021
Chang, Chen, Lai, Lin, Pai (bib27) 2021; 11
Sha, Zhang, Qi (bib5) 2021; 74
Dong, Lam (bib32) 2011; 4
Li, Han, Zhao, Gao (bib70) 2021; 39
Wang, Huang, Feng, Cao, Haghighat (bib31) 2021; 240
Guzman, Rueda, Romero, Biscans, Agbossou, Cardenas (bib36) 2018; 2018
Park, Lee, Kang, Choi, Lee (bib47) 2021; 35
Sun, Hao, Chen, Liu (bib20) 2020; 206
Gal, Ghahramani (bib48) 2016; 3
Jain, Smith, Culligan, Taylor (bib24) 2014; 123
Wang, Feng, Chen, Zhao, Cheng, Zou (bib41) 2017; 145
.
bib9
Ekwevugbe, Brown, Pakka, Fan (bib35) 2013
Roselyn, Uthra, Raj, Devaraj, Bharadwaj, Krishna Kaki (bib66) 2019; 44
Peng, Rysanek, Nagy, Schlüter (bib21) 2018; 211
Chao, Chen (bib43) 2014; 2014
(bib1) 2016
Xu, Hu, Fan (bib49) 2022; 46
Gupta, Lin, Chen (bib60) 2010; 20
Nguyen, Michaelis, Al-Hamadi, Tornow, Meinecke (bib42) 2012; 13
Office for National Statistics (bib61) 2021
Deng, Chen (bib38) 2021; 238
Jin, Yan, Chong, Dong, An (bib14) 2021; 251
Kim, Kang, Ryu, Song (bib28) 2019; 199
Burak Gunay, O'Brien, Beausoleil-Morrison (bib17) 2015; 93
Fugate D, Fuhr P, Kuruganti T. Instrumentation systems for commercial building energy efficiency. 2011 Futur Instrum Int Work FIIW 2011 - Proc 2011:21–4.
Sun, Zhai (bib4) 2020; 62
bib12
bib10
Mtibaa, Nguyen, Azam, Papachristou, Venne, Cheriet (bib46) 2020; 32
Pedersen, Demurtas, Zahle (bib57) 2015; 18
Nerlich, Jaspal (bib59) 2021; 69
(bib8) 2020
Wang, Hong, Piette (bib34) 2019; 181
Ng (bib56) 2016; 56
Zhuang, Shan, Wang (bib3) 2021; 191
Senge, Bösner, Dembczyński, Haasenritter, Hirsch, Donner-Banzhoff (bib44) 2014; 255
Sun, Zhao, Zou (bib65) 2020; 216
Chen, Piedad, Kuo (bib26) 2019; 11
Manaswi (bib52) 2018
Gkantonas, de Oliveira, Mesquita, Zabotti, Mastorakos (bib62) 2020
Wang, Huang, Fu, Gao, Chen (bib6) 2022; 80
Ward, Wong, Chong, Choudhary, Ramasamy (bib39) 2021; 237
Men, Wang, Zou (bib67) 2020; 41
Wang, Chen, Song (bib53) 2017; 124
Zaatari, Novoselac, Siegel (bib58) 2016; 100
Razavi, Gharipour, Fleury, Akpan (bib23) 2019; 183
Wang, Burnett, Chong (bib40) 2003; 8
Li, Wu, Peng, Cai (bib7) 2022; 307
(bib54) 2014
Liu, Lin, Liu, Zhang, Rong, Yang (bib68) 2018; 143
Kendall, Gal (bib50) 2017
Li, Han, Zhao, Zhang, Xue (bib18) 2021; 33
Zhu, Laptev (bib45) 2017; 2017- Novem
Razavi (10.1016/j.buildenv.2022.109207_bib23) 2019; 183
Sha (10.1016/j.buildenv.2022.109207_bib5) 2021; 74
Kim (10.1016/j.buildenv.2022.109207_bib33) 2017; 138
Li (10.1016/j.buildenv.2022.109207_bib70) 2021; 39
Sun (10.1016/j.buildenv.2022.109207_bib20) 2020; 206
Men (10.1016/j.buildenv.2022.109207_bib67) 2020; 41
(10.1016/j.buildenv.2022.109207_bib8) 2020
Simmons (10.1016/j.buildenv.2022.109207_bib64) 1993; 2
Peng (10.1016/j.buildenv.2022.109207_bib21) 2018; 211
Chen (10.1016/j.buildenv.2022.109207_bib26) 2019; 11
Nguyen (10.1016/j.buildenv.2022.109207_bib42) 2012; 13
Sun (10.1016/j.buildenv.2022.109207_bib65) 2020; 216
Salimi (10.1016/j.buildenv.2022.109207_bib16) 2019; 152
Liu (10.1016/j.buildenv.2022.109207_bib68) 2018; 143
Nerlich (10.1016/j.buildenv.2022.109207_bib59) 2021; 69
Wang (10.1016/j.buildenv.2022.109207_bib6) 2022; 80
D'Oca (10.1016/j.buildenv.2022.109207_bib25) 2015; 88
Wang (10.1016/j.buildenv.2022.109207_bib41) 2017; 145
Manaswi (10.1016/j.buildenv.2022.109207_bib52) 2018
Senge (10.1016/j.buildenv.2022.109207_bib44) 2014; 255
10.1016/j.buildenv.2022.109207_bib29
Kendall (10.1016/j.buildenv.2022.109207_bib50) 2017
Roselyn (10.1016/j.buildenv.2022.109207_bib66) 2019; 44
Gal (10.1016/j.buildenv.2022.109207_bib48) 2016; 3
Jain (10.1016/j.buildenv.2022.109207_bib24) 2014; 123
Zhuang (10.1016/j.buildenv.2022.109207_bib3) 2021; 191
Li (10.1016/j.buildenv.2022.109207_bib7) 2022; 307
Wang (10.1016/j.buildenv.2022.109207_bib31) 2021; 240
Sun (10.1016/j.buildenv.2022.109207_bib4) 2020; 62
Ng (10.1016/j.buildenv.2022.109207_bib55) 2015; 88
Kim (10.1016/j.buildenv.2022.109207_bib28) 2019; 199
Wang (10.1016/j.buildenv.2022.109207_bib34) 2019; 181
Zaatari (10.1016/j.buildenv.2022.109207_bib58) 2016; 100
Jin (10.1016/j.buildenv.2022.109207_bib14) 2021; 251
Wang (10.1016/j.buildenv.2022.109207_bib53) 2017; 124
Ekwevugbe (10.1016/j.buildenv.2022.109207_bib35) 2013
Chang (10.1016/j.buildenv.2022.109207_bib27) 2021; 11
Dong (10.1016/j.buildenv.2022.109207_bib32) 2011; 4
Guzman (10.1016/j.buildenv.2022.109207_bib36) 2018; 2018
Zhu (10.1016/j.buildenv.2022.109207_bib45) 2017; 2017- Novem
Office for National Statistics (10.1016/j.buildenv.2022.109207_bib61) 2021
Chao (10.1016/j.buildenv.2022.109207_bib43) 2014; 2014
(10.1016/j.buildenv.2022.109207_bib2) 2012
Candanedo (10.1016/j.buildenv.2022.109207_bib15) 2017; 148
Burak Gunay (10.1016/j.buildenv.2022.109207_bib17) 2015; 93
Wang (10.1016/j.buildenv.2022.109207_bib40) 2003; 8
Jiefan (10.1016/j.buildenv.2022.109207_bib22) 2018; 180
Joshi (10.1016/j.buildenv.2022.109207_bib51) 2021
Ng (10.1016/j.buildenv.2022.109207_bib56) 2016; 56
Park (10.1016/j.buildenv.2022.109207_bib47) 2021; 35
Ward (10.1016/j.buildenv.2022.109207_bib39) 2021; 237
Chan (10.1016/j.buildenv.2022.109207_bib63) 1998; 33
(10.1016/j.buildenv.2022.109207_bib1) 2016
Gupta (10.1016/j.buildenv.2022.109207_bib60) 2010; 20
Xu (10.1016/j.buildenv.2022.109207_bib49) 2022; 46
Deng (10.1016/j.buildenv.2022.109207_bib38) 2021; 238
(10.1016/j.buildenv.2022.109207_bib54) 2014
Gkantonas (10.1016/j.buildenv.2022.109207_bib62) 2020
Zhuang (10.1016/j.buildenv.2022.109207_bib30) 2020; 261
Heo (10.1016/j.buildenv.2022.109207_bib69) 2012; 47
(10.1016/j.buildenv.2022.109207_bib13) 2019
Mtibaa (10.1016/j.buildenv.2022.109207_bib46) 2020; 32
Li (10.1016/j.buildenv.2022.109207_bib18) 2021; 33
Scott (10.1016/j.buildenv.2022.109207_bib19) 2011
10.1016/j.buildenv.2022.109207_bib37
Pedersen (10.1016/j.buildenv.2022.109207_bib57) 2015; 18
References_xml – volume: 88
  start-page: 395
  year: 2015
  end-page: 408
  ident: bib25
  article-title: Occupancy schedules learning process through a data mining framework
  publication-title: Energy Build.
– volume: 41
  start-page: 745
  year: 2020
  end-page: 757
  ident: bib67
  article-title: Experimental study on tracer gas method for building infiltration rate measurement
  publication-title: Build. Serv. Eng. Technol.
– volume: 191
  year: 2021
  ident: bib3
  article-title: Coordinated demand-controlled ventilation strategy for energy-efficient operation in multi-zone cleanroom air-conditioning systems
  publication-title: Build. Environ.
– volume: 88
  start-page: 316
  year: 2015
  end-page: 323
  ident: bib55
  article-title: Improving infiltration modeling in commercial building energy models
  publication-title: Energy Build.
– volume: 80
  start-page: 103719
  year: 2022
  ident: bib6
  article-title: Metabolism-based ventilation monitoring and control method for COVID-19 risk mitigation in gymnasiums and alike places
  publication-title: Sustain. Cities Soc.
– volume: 240
  start-page: 110883
  year: 2021
  ident: bib31
  article-title: Occupant-density-detection based energy efficient ventilation system: prevention of infection transmission
  publication-title: Energy Build.
– volume: 2017- Novem
  year: 2017
  ident: bib45
  article-title: Deep and confident prediction for time series at uber
  publication-title: IEEE Int. Conf. Data Min. Work. ICDMW
– year: 2020
  ident: bib8
  publication-title: Chartered Institution of Building Services Engineers (CIBSE). Coronavirus, SARS-CoV-2, COVID-19 and HVAC Systems
– volume: 152
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib16
  article-title: Occupancy prediction model for open-plan offices using real-time location system and inhomogeneous Markov chain
  publication-title: Build. Environ.
– volume: 2018
  year: 2018
  ident: bib36
  article-title: Enabling winter behavior analysis on electrically heated residential buildings by smart sub-metering
  publication-title: Proc. IEEE Int. Conf. Ind. Technol.
– volume: 148
  start-page: 327
  year: 2017
  end-page: 341
  ident: bib15
  article-title: A methodology based on Hidden Markov Models for occupancy detection and a case study in a low energy residential building
  publication-title: Energy Build.
– volume: 11
  start-page: 956
  year: 2019
  ident: bib26
  article-title: Energy consumption load forecasting using a level-based random forest classifier
  publication-title: Symmetry (Basel)
– year: 2014
  ident: bib54
  article-title: Guideline 14-2014 -- Measurement of Energy, Demand, and Water Savings
– volume: 255
  start-page: 16
  year: 2014
  end-page: 29
  ident: bib44
  article-title: Reliable classification: learning classifiers that distinguish aleatoric and epistemic uncertainty
  publication-title: Inf. Sci.
– volume: 181
  start-page: 29
  year: 2019
  end-page: 42
  ident: bib34
  article-title: Predicting plug loads with occupant count data through a deep learning approach
  publication-title: Energy
– volume: 183
  start-page: 195
  year: 2019
  end-page: 208
  ident: bib23
  article-title: Occupancy detection of residential buildings using smart meter data: a large-scale study
  publication-title: Energy Build.
– volume: 216
  year: 2020
  ident: bib65
  article-title: A review of building occupancy measurement systems
  publication-title: Energy Build.
– year: 2019
  ident: bib13
  article-title: Ventilation in Buildings
– volume: 11
  year: 2021
  ident: bib27
  article-title: Forecasting hotel room occupancy using long short-term memory networks with sentiment analysis and scores of customer online reviews
  publication-title: Appl. Sci.
– year: 2017
  ident: bib50
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 199
  start-page: 216
  year: 2019
  end-page: 222
  ident: bib28
  article-title: Real-time occupancy prediction in a large exhibition hall using deep learning approach
  publication-title: Energy Build.
– volume: 8
  start-page: 377
  year: 2003
  end-page: 391
  ident: bib40
  article-title: Experimental validation of CO
  publication-title: Indoor Built Environ.
– ident: bib12
  article-title: Roadmap to improve and ensure good indoor ventilation in the context of COVID-19 2021
– volume: 3
  start-page: 1651
  year: 2016
  end-page: 1660
  ident: bib48
  article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning
  publication-title: 33rd Int. Conf. Mach. Learn. ICML 2016
– volume: 32
  start-page: 17569
  year: 2020
  end-page: 17585
  ident: bib46
  article-title: LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings
  publication-title: Neural Comput. Appl.
– volume: 238
  year: 2021
  ident: bib38
  article-title: Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems
  publication-title: Energy Build.
– volume: 33
  start-page: 303
  year: 1998
  end-page: 314
  ident: bib63
  article-title: Energy use for ventilation systems in underground car parks
  publication-title: Build. Environ.
– volume: 47
  start-page: 550
  year: 2012
  end-page: 560
  ident: bib69
  article-title: Calibration of building energy models for retrofit analysis under uncertainty
  publication-title: Energy Build.
– ident: bib9
  article-title: COVID-19 guidance document, How to operate and use building services in order to prevent the spread of the coronavirus disease (COVID-19) virus (SARS-CoV-2) in workplaces 2020:1–6
– ident: bib10
  article-title: Guidance for building operations during the COVID-19 pandemic n.d
– volume: 35
  start-page: 795
  year: 2021
  end-page: 803
  ident: bib47
  article-title: Predictive model for PV power generation using RNN (LSTM)
  publication-title: J. Mech. Sci. Technol.
– year: 2020
  ident: bib11
  article-title: Addressing COVID-19 in buildings module 15 meg sears PhD in collaboration with and approved by the Canadian committee for indoor air quality
– volume: 20
  start-page: 31
  year: 2010
  end-page: 39
  ident: bib60
  article-title: Characterizing exhaled airflow from breathing and talking
  publication-title: Indoor Air
– year: 2012
  ident: bib2
  article-title: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics
  publication-title: Eur Stand
– volume: 33
  year: 2021
  ident: bib18
  article-title: Modeling for indoor temperature prediction based on time-delay and Elman neural network in air conditioning system
  publication-title: J. Build. Eng.
– volume: 237
  year: 2021
  ident: bib39
  article-title: A study on the transferability of computational models of building electricity load patterns across climatic zones
  publication-title: Energy Build.
– volume: 251
  year: 2021
  ident: bib14
  article-title: Building occupancy forecasting: a systematical and critical review
  publication-title: Energy Build.
– volume: 46
  year: 2022
  ident: bib49
  article-title: Probabilistic electrical load forecasting for buildings using Bayesian deep neural networks
  publication-title: J. Build. Eng.
– volume: 56
  start-page: 70
  year: 2016
  end-page: 72
  ident: bib56
  article-title: Infiltration in energy modeling : a simple equation made better
  publication-title: ASHRAE J.
– year: 2021
  ident: bib61
  article-title: Coronavirus (COVID-19) Latest Insights: Work
– volume: 261
  year: 2020
  ident: bib30
  article-title: Risk-based online robust optimal control of air-conditioning systems for buildings requiring strict humidity control considering measurement uncertainties
  publication-title: Appl. Energy
– volume: 2014
  year: 2014
  ident: bib43
  article-title: An intelligent traffic flow control system based on radio frequency identification and wireless sensor networks
  publication-title: Int. J. Distributed Sens. Netw.
– volume: 69
  start-page: 566
  year: 2021
  end-page: 583
  ident: bib59
  article-title: Social representations of ‘social distancing’ in response to COVID-19 in the UK media
  publication-title: Curr. Sociol.
– volume: 4
  start-page: 359
  year: 2011
  end-page: 369
  ident: bib32
  article-title: Building energy and comfort management through occupant behaviour pattern detection based on a large-scale environmental sensor network
  publication-title: J. Build Perform Simul.
– volume: 143
  start-page: 163
  year: 2018
  end-page: 177
  ident: bib68
  article-title: Evaluation of air infiltration in a hub airport terminal: on-site measurement and numerical simulation
  publication-title: Build. Environ.
– volume: 93
  start-page: 71
  year: 2015
  end-page: 85
  ident: bib17
  article-title: Development of an occupancy learning algorithm for terminal heating and cooling units
  publication-title: Build. Environ.
– volume: 18
  start-page: 1933
  year: 2015
  end-page: 1952
  ident: bib57
  article-title: Calibration of a spinner anemometer for yaw misalignment measurements
  publication-title: Wind Energy
– volume: 100
  start-page: 186
  year: 2016
  end-page: 196
  ident: bib58
  article-title: Impact of ventilation and filtration strategies on energy consumption and exposures in retail stores
  publication-title: Build. Environ.
– volume: 2
  start-page: 314
  year: 1993
  end-page: 323
  ident: bib64
  article-title: Automatic fan control to reduce fan run time during warm weather ventilation
  publication-title: J. Appl. Poultry Res.
– year: 2016
  ident: bib1
  publication-title: ASHRAE 62.1-2016. Ventilation for Acceptable Indoor Air Quality
– volume: 123
  start-page: 168
  year: 2014
  end-page: 178
  ident: bib24
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl. Energy
– volume: 138
  start-page: 591
  year: 2017
  end-page: 600
  ident: bib33
  article-title: Impact of occupancy rates on the building electricity consumption in commercial buildings
  publication-title: Energy Build.
– reference: Fugate D, Fuhr P, Kuruganti T. Instrumentation systems for commercial building energy efficiency. 2011 Futur Instrum Int Work FIIW 2011 - Proc 2011:21–4.
– start-page: 1
  year: 2020
  end-page: 13
  ident: bib62
  article-title: airborne.cam: a Risk Calculator of SARS-CoV-2 Aerosol Transmission under Well-Mixed Ventilation Conditions
– reference: Qolomany B, Al-Fuqaha A, Benhaddou D, Gupta A. Role of Deep LSTM Neural Networks and Wi-Fi Networks in Support of Occupancy Prediction in Smart Buildings. Proc - 2017 IEEE 19th Intl Conf High Perform Comput Commun HPCC 2017, 2017 IEEE 15th Intl Conf Smart City, SmartCity 2017 2017 IEEE 3rd Intl Conf Data Sci Syst DSS 2017 2018;2018-Janua:50–7.
– volume: 307
  year: 2022
  ident: bib7
  article-title: Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality
  publication-title: Appl. Energy
– volume: 206
  year: 2020
  ident: bib20
  article-title: Data-driven occupant-behavior analytics for residential buildings
  publication-title: Energy
– start-page: 31
  year: 2018
  end-page: 43
  ident: bib52
  article-title: Understanding and working with Keras
  publication-title: Deep Learn with Appl Using Python
– start-page: 4165
  year: 2021
  end-page: 4168
  ident: bib51
  article-title: Analysis of preprocessing techniques, Keras tuner, and transfer learning on cloud street image data
  publication-title: Proc. - 2021 IEEE Int. Conf. Big Data, Big Data 2021
– reference: .
– year: 2011
  ident: bib19
  article-title: PreHeat: controlling home heating using occupancy prediction
  publication-title: UbiComp’11 - Proc 2011 ACM Conf Ubiquitous Comput
– volume: 44
  start-page: 85
  year: 2019
  end-page: 98
  ident: bib66
  article-title: Development and implementation of novel sensor fusion algorithm for occupancy detection and automation in energy efficient buildings
  publication-title: Sustain. Cities Soc.
– volume: 74
  start-page: 103256
  year: 2021
  ident: bib5
  article-title: Optimal control of high-rise building mechanical ventilation system for achieving low risk of COVID-19 transmission and ventilative cooling
  publication-title: Sustain. Cities Soc.
– volume: 211
  start-page: 1343
  year: 2018
  end-page: 1358
  ident: bib21
  article-title: Using machine learning techniques for occupancy-prediction-based cooling control in office buildings
  publication-title: Appl. Energy
– volume: 180
  start-page: 135
  year: 2018
  end-page: 145
  ident: bib22
  article-title: Extracting typical occupancy data of different buildings from mobile positioning data
  publication-title: Energy Build.
– year: 2013
  ident: bib35
  article-title: Real-time building occupancy sensing using neural-network based sensor network
  publication-title: IEEE Int. Conf. Digit. Ecosyst. Technol.
– volume: 145
  start-page: 155
  year: 2017
  end-page: 162
  ident: bib41
  article-title: Predictive control of indoor environment using occupant number detected by video data and CO2 concentration
  publication-title: Energy Build.
– volume: 13
  start-page: 154
  year: 2012
  end-page: 165
  ident: bib42
  article-title: Stereo-camera-based urban environment perception using occupancy grid and object tracking
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 62
  start-page: 102390
  year: 2020
  ident: bib4
  article-title: The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission
  publication-title: Sustain. Cities Soc.
– volume: 124
  start-page: 130
  year: 2017
  end-page: 142
  ident: bib53
  article-title: Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic Markov Time-Window Inference approach
  publication-title: Build. Environ.
– volume: 39
  year: 2021
  ident: bib70
  article-title: Online model for indoor temperature control based on building thermal process of air conditioning system
  publication-title: J. Build. Eng.
– year: 2019
  ident: 10.1016/j.buildenv.2022.109207_bib13
– start-page: 1
  year: 2020
  ident: 10.1016/j.buildenv.2022.109207_bib62
– volume: 33
  start-page: 303
  year: 1998
  ident: 10.1016/j.buildenv.2022.109207_bib63
  article-title: Energy use for ventilation systems in underground car parks
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(97)00075-9
– volume: 39
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib70
  article-title: Online model for indoor temperature control based on building thermal process of air conditioning system
  publication-title: J. Build. Eng.
– volume: 238
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib38
  article-title: Reinforcement learning of occupant behavior model for cross-building transfer learning to various HVAC control systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110860
– volume: 148
  start-page: 327
  year: 2017
  ident: 10.1016/j.buildenv.2022.109207_bib15
  article-title: A methodology based on Hidden Markov Models for occupancy detection and a case study in a low energy residential building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.05.031
– volume: 44
  start-page: 85
  year: 2019
  ident: 10.1016/j.buildenv.2022.109207_bib66
  article-title: Development and implementation of novel sensor fusion algorithm for occupancy detection and automation in energy efficient buildings
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.09.031
– volume: 143
  start-page: 163
  year: 2018
  ident: 10.1016/j.buildenv.2022.109207_bib68
  article-title: Evaluation of air infiltration in a hub airport terminal: on-site measurement and numerical simulation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.07.006
– volume: 145
  start-page: 155
  year: 2017
  ident: 10.1016/j.buildenv.2022.109207_bib41
  article-title: Predictive control of indoor environment using occupant number detected by video data and CO2 concentration
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.04.014
– volume: 74
  start-page: 103256
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib5
  article-title: Optimal control of high-rise building mechanical ventilation system for achieving low risk of COVID-19 transmission and ventilative cooling
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.103256
– year: 2012
  ident: 10.1016/j.buildenv.2022.109207_bib2
  article-title: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics
  publication-title: Eur Stand
– volume: 206
  year: 2020
  ident: 10.1016/j.buildenv.2022.109207_bib20
  article-title: Data-driven occupant-behavior analytics for residential buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118100
– volume: 152
  start-page: 1
  year: 2019
  ident: 10.1016/j.buildenv.2022.109207_bib16
  article-title: Occupancy prediction model for open-plan offices using real-time location system and inhomogeneous Markov chain
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.01.052
– volume: 199
  start-page: 216
  year: 2019
  ident: 10.1016/j.buildenv.2022.109207_bib28
  article-title: Real-time occupancy prediction in a large exhibition hall using deep learning approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.06.043
– volume: 240
  start-page: 110883
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib31
  article-title: Occupant-density-detection based energy efficient ventilation system: prevention of infection transmission
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110883
– volume: 62
  start-page: 102390
  year: 2020
  ident: 10.1016/j.buildenv.2022.109207_bib4
  article-title: The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102390
– ident: 10.1016/j.buildenv.2022.109207_bib29
  doi: 10.1109/HPCC-SmartCity-DSS.2017.7
– volume: 180
  start-page: 135
  year: 2018
  ident: 10.1016/j.buildenv.2022.109207_bib22
  article-title: Extracting typical occupancy data of different buildings from mobile positioning data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.09.002
– volume: 41
  start-page: 745
  year: 2020
  ident: 10.1016/j.buildenv.2022.109207_bib67
  article-title: Experimental study on tracer gas method for building infiltration rate measurement
  publication-title: Build. Serv. Eng. Technol.
  doi: 10.1177/0143624420911810
– volume: 183
  start-page: 195
  year: 2019
  ident: 10.1016/j.buildenv.2022.109207_bib23
  article-title: Occupancy detection of residential buildings using smart meter data: a large-scale study
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.11.025
– volume: 2018
  year: 2018
  ident: 10.1016/j.buildenv.2022.109207_bib36
  article-title: Enabling winter behavior analysis on electrically heated residential buildings by smart sub-metering
  publication-title: Proc. IEEE Int. Conf. Ind. Technol.
– volume: 47
  start-page: 550
  year: 2012
  ident: 10.1016/j.buildenv.2022.109207_bib69
  article-title: Calibration of building energy models for retrofit analysis under uncertainty
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.12.029
– volume: 11
  start-page: 956
  year: 2019
  ident: 10.1016/j.buildenv.2022.109207_bib26
  article-title: Energy consumption load forecasting using a level-based random forest classifier
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym11080956
– volume: 46
  year: 2022
  ident: 10.1016/j.buildenv.2022.109207_bib49
  article-title: Probabilistic electrical load forecasting for buildings using Bayesian deep neural networks
  publication-title: J. Build. Eng.
– volume: 191
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib3
  article-title: Coordinated demand-controlled ventilation strategy for energy-efficient operation in multi-zone cleanroom air-conditioning systems
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107588
– ident: 10.1016/j.buildenv.2022.109207_bib37
  doi: 10.1109/FIIW.2011.6476826
– volume: 33
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib18
  article-title: Modeling for indoor temperature prediction based on time-delay and Elman neural network in air conditioning system
  publication-title: J. Build. Eng.
– volume: 20
  start-page: 31
  year: 2010
  ident: 10.1016/j.buildenv.2022.109207_bib60
  article-title: Characterizing exhaled airflow from breathing and talking
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2009.00623.x
– volume: 251
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib14
  article-title: Building occupancy forecasting: a systematical and critical review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111345
– volume: 123
  start-page: 168
  year: 2014
  ident: 10.1016/j.buildenv.2022.109207_bib24
  article-title: Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.02.057
– volume: 4
  start-page: 359
  year: 2011
  ident: 10.1016/j.buildenv.2022.109207_bib32
  article-title: Building energy and comfort management through occupant behaviour pattern detection based on a large-scale environmental sensor network
  publication-title: J. Build Perform Simul.
  doi: 10.1080/19401493.2011.577810
– volume: 11
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib27
  article-title: Forecasting hotel room occupancy using long short-term memory networks with sentiment analysis and scores of customer online reviews
  publication-title: Appl. Sci.
  doi: 10.3390/app112110291
– volume: 3
  start-page: 1651
  year: 2016
  ident: 10.1016/j.buildenv.2022.109207_bib48
  article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning
– start-page: 31
  year: 2018
  ident: 10.1016/j.buildenv.2022.109207_bib52
  article-title: Understanding and working with Keras
  publication-title: Deep Learn with Appl Using Python
  doi: 10.1007/978-1-4842-3516-4_2
– volume: 13
  start-page: 154
  year: 2012
  ident: 10.1016/j.buildenv.2022.109207_bib42
  article-title: Stereo-camera-based urban environment perception using occupancy grid and object tracking
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2011.2165705
– volume: 307
  year: 2022
  ident: 10.1016/j.buildenv.2022.109207_bib7
  article-title: Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118297
– volume: 32
  start-page: 17569
  year: 2020
  ident: 10.1016/j.buildenv.2022.109207_bib46
  article-title: LSTM-based indoor air temperature prediction framework for HVAC systems in smart buildings
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04926-3
– volume: 18
  start-page: 1933
  year: 2015
  ident: 10.1016/j.buildenv.2022.109207_bib57
  article-title: Calibration of a spinner anemometer for yaw misalignment measurements
  publication-title: Wind Energy
  doi: 10.1002/we.1798
– start-page: 4165
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib51
  article-title: Analysis of preprocessing techniques, Keras tuner, and transfer learning on cloud street image data
– volume: 138
  start-page: 591
  year: 2017
  ident: 10.1016/j.buildenv.2022.109207_bib33
  article-title: Impact of occupancy rates on the building electricity consumption in commercial buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.12.056
– volume: 181
  start-page: 29
  year: 2019
  ident: 10.1016/j.buildenv.2022.109207_bib34
  article-title: Predicting plug loads with occupant count data through a deep learning approach
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.138
– year: 2014
  ident: 10.1016/j.buildenv.2022.109207_bib54
– volume: 93
  start-page: 71
  year: 2015
  ident: 10.1016/j.buildenv.2022.109207_bib17
  article-title: Development of an occupancy learning algorithm for terminal heating and cooling units
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.06.009
– volume: 56
  start-page: 70
  year: 2016
  ident: 10.1016/j.buildenv.2022.109207_bib56
  article-title: Infiltration in energy modeling : a simple equation made better
  publication-title: ASHRAE J.
– year: 2017
  ident: 10.1016/j.buildenv.2022.109207_bib50
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 255
  start-page: 16
  year: 2014
  ident: 10.1016/j.buildenv.2022.109207_bib44
  article-title: Reliable classification: learning classifiers that distinguish aleatoric and epistemic uncertainty
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.07.030
– year: 2016
  ident: 10.1016/j.buildenv.2022.109207_bib1
– volume: 2014
  year: 2014
  ident: 10.1016/j.buildenv.2022.109207_bib43
  article-title: An intelligent traffic flow control system based on radio frequency identification and wireless sensor networks
  publication-title: Int. J. Distributed Sens. Netw.
– volume: 88
  start-page: 395
  year: 2015
  ident: 10.1016/j.buildenv.2022.109207_bib25
  article-title: Occupancy schedules learning process through a data mining framework
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.11.065
– year: 2013
  ident: 10.1016/j.buildenv.2022.109207_bib35
  article-title: Real-time building occupancy sensing using neural-network based sensor network
  publication-title: IEEE Int. Conf. Digit. Ecosyst. Technol.
– volume: 8
  start-page: 377
  year: 2003
  ident: 10.1016/j.buildenv.2022.109207_bib40
  article-title: Experimental validation of CO2-based occupancy detection for demand-controlled ventilation
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X9900800605
– volume: 124
  start-page: 130
  year: 2017
  ident: 10.1016/j.buildenv.2022.109207_bib53
  article-title: Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic Markov Time-Window Inference approach
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.08.003
– volume: 2
  start-page: 314
  year: 1993
  ident: 10.1016/j.buildenv.2022.109207_bib64
  article-title: Automatic fan control to reduce fan run time during warm weather ventilation
  publication-title: J. Appl. Poultry Res.
  doi: 10.1093/japr/2.4.314
– volume: 237
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib39
  article-title: A study on the transferability of computational models of building electricity load patterns across climatic zones
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110826
– volume: 261
  year: 2020
  ident: 10.1016/j.buildenv.2022.109207_bib30
  article-title: Risk-based online robust optimal control of air-conditioning systems for buildings requiring strict humidity control considering measurement uncertainties
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114451
– volume: 211
  start-page: 1343
  year: 2018
  ident: 10.1016/j.buildenv.2022.109207_bib21
  article-title: Using machine learning techniques for occupancy-prediction-based cooling control in office buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.002
– year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib61
– volume: 2017- Novem
  year: 2017
  ident: 10.1016/j.buildenv.2022.109207_bib45
  article-title: Deep and confident prediction for time series at uber
– volume: 69
  start-page: 566
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib59
  article-title: Social representations of ‘social distancing’ in response to COVID-19 in the UK media
  publication-title: Curr. Sociol.
  doi: 10.1177/0011392121990030
– year: 2020
  ident: 10.1016/j.buildenv.2022.109207_bib8
– volume: 35
  start-page: 795
  year: 2021
  ident: 10.1016/j.buildenv.2022.109207_bib47
  article-title: Predictive model for PV power generation using RNN (LSTM)
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-021-0140-0
– volume: 100
  start-page: 186
  year: 2016
  ident: 10.1016/j.buildenv.2022.109207_bib58
  article-title: Impact of ventilation and filtration strategies on energy consumption and exposures in retail stores
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.01.026
– volume: 80
  start-page: 103719
  year: 2022
  ident: 10.1016/j.buildenv.2022.109207_bib6
  article-title: Metabolism-based ventilation monitoring and control method for COVID-19 risk mitigation in gymnasiums and alike places
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.103719
– volume: 216
  year: 2020
  ident: 10.1016/j.buildenv.2022.109207_bib65
  article-title: A review of building occupancy measurement systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109965
– year: 2011
  ident: 10.1016/j.buildenv.2022.109207_bib19
  article-title: PreHeat: controlling home heating using occupancy prediction
– volume: 88
  start-page: 316
  year: 2015
  ident: 10.1016/j.buildenv.2022.109207_bib55
  article-title: Improving infiltration modeling in commercial building energy models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.11.078
SSID ssj0016934
Score 2.4901571
Snippet Ventilation plays a noteworthy role in maintaining a healthy, comfortable and energy-efficient indoor environment and mitigating the risk of aerosol...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109207
SubjectTerms Autoencoder
Bayesian deep neural network
COVID-19
Occupancy prediction
Ventilation
Title Probabilistic occupancy forecasting for risk-aware optimal ventilation through autoencoder Bayesian deep neural networks
URI https://dx.doi.org/10.1016/j.buildenv.2022.109207
https://www.proquest.com/docview/2725443579
https://pubmed.ncbi.nlm.nih.gov/PMC9553470
Volume 219
WOSCitedRecordID wos000808297800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6jgd4QHyKDpiMxNuUkiZxbD-OagiQmCo0pL5FcWKrm0ZStUnpfhl_j-vYzocADZB4iVJXTqLck-tr-9xzEXqt4pBSIWBawiPiRTLyPSaY8uKAqxTGu8yXrCk2Qc_P2XLJF6PRd5cLs7umRcH2e77-r6aGNjC2Tp39C3O3F4UGOAejwxHMDsc_MvxiA5-oprxqBeaTslER1umVEJ3KLN1WjjqpSeVe-k0zv0rwG1_BVg330ZDj2gI-aV2VWuxSa068TW9kk3SZS7k-0VKY0KkwRPLtYHvYFttutiZ6uXTdMnVt16nnqxSGphah81VZ56vU7O1_1oVauiXz3QbctC6xZIiYpuy3W7EIOnarwVhTbbquVuVmO23J_0203SbZdIwmk9jlezBpNn5QGj_NaOjFzJA7nSN3zte44pnPA1NQ1w7sXcNPw4ZZwbiaCv124K1M9WNP-1cYSHIvPs05IWFE_QN0GFDCyRgdnn44W35sN7BiHlrlMvPsveT0X9_md3FRb94zZO32wqCLB-i-nb_gU4O7h2gki0foXk_V8jHaDxCIWwTiHgL1Oe4QiC0CcQ-B2CIQ9xCIHQKxRiA2CMQOgU_Ql3dnF_P3ni3w4WVRxCoYiSXJsyCKVQqhKofxjisilCIyFIrnsyin8CsWnGQzEVAIXnOiMhnomDTzQxk-ReOiLOQzhBmEmszPAzETKpKUcaJ4GOciBGckIDqbIOJeb5JZ9XtdhOU6cTTHq8SZJdFmSYxZJuhN229t9F9u7cGd9RIbxZroNAG03dr3lTN3Am5e792lhSzrbRJQrSUYEsoniA5w0D6WFoof_lNcrhrBeAvWo3_u-Rzd7T7kF2hcbWr5Et3JdtXldnOMDuiSHdsv4Ad0-fKo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+occupancy+forecasting+for+risk-aware+optimal+ventilation+through+autoencoder+Bayesian+deep+neural+networks&rft.jtitle=Building+and+environment&rft.au=Zhuang%2C+Chaoqun&rft.au=Choudhary%2C+Ruchi&rft.au=Mavrogianni%2C+Anna&rft.date=2022-07-01&rft.pub=The+Authors.+Published+by+Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=219&rft.spage=109207&rft.epage=109207&rft_id=info:doi/10.1016%2Fj.buildenv.2022.109207&rft.externalDocID=PMC9553470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon