Level-set based adaptive-active contour segmentation technique with long short-term memory for diabetic retinopathy classification

Diabetic Retinopathy (DR) is a major type of eye defect that is caused by abnormalities in the blood vessels within the retinal tissue. Early detection by automatic approach using modern methodologies helps prevent consequences like vision loss. So, this research has developed an effective segmentat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in bioengineering and biotechnology Jg. 11; S. 1286966
Hauptverfasser: Bhansali, Ashok, Patra, Rajkumar, Abouhawwash, Mohamed, Askar, S. S., Awasthy, Mohan, Rao, K. B. V. Brahma
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media SA 19.12.2023
Frontiers Media S.A
Schlagworte:
ISSN:2296-4185, 2296-4185
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Diabetic Retinopathy (DR) is a major type of eye defect that is caused by abnormalities in the blood vessels within the retinal tissue. Early detection by automatic approach using modern methodologies helps prevent consequences like vision loss. So, this research has developed an effective segmentation approach known as Level-set Based Adaptive-active Contour Segmentation (LBACS) to segment the images by improving the boundary conditions and detecting the edges using Level Set Method with Improved Boundary Indicator Function (LSMIBIF) and Adaptive-Active Counter Model (AACM). For evaluating the DR system, the information is collected from the publically available datasets named as Indian Diabetic Retinopathy Image Dataset (IDRiD) and Diabetic Retinopathy Database 1 (DIARETDB 1). Then the collected images are pre-processed using a Gaussian filter, edge detection sharpening, Contrast enhancement, and Luminosity enhancement to eliminate the noises/interferences, and data imbalance that exists in the available dataset. After that, the noise-free data are processed for segmentation by using the Level set-based active contour segmentation technique. Then, the segmented images are given to the feature extraction stage where Gray Level Co-occurrence Matrix (GLCM), Local ternary, and binary patterns are employed to extract the features from the segmented image. Finally, extracted features are given as input to the classification stage where Long Short-Term Memory (LSTM) is utilized to categorize various classes of DR. The result analysis evidently shows that the proposed LBACS-LSTM achieved better results in overall metrics. The accuracy of the proposed LBACS-LSTM for IDRiD and DIARETDB 1 datasets is 99.43% and 97.39%, respectively which is comparably higher than the existing approaches such as Three-dimensional semantic model, Delimiting Segmentation Approach Using Knowledge Learning (DSA-KL), K-Nearest Neighbor (KNN), Computer aided method and Chronological Tunicate Swarm Algorithm with Stacked Auto Encoder (CTSA-SAE).
AbstractList Diabetic Retinopathy (DR) is a major type of eye defect that is caused by abnormalities in the blood vessels within the retinal tissue. Early detection by automatic approach using modern methodologies helps prevent consequences like vision loss. So, this research has developed an effective segmentation approach known as Level-set Based Adaptive-active Contour Segmentation (LBACS) to segment the images by improving the boundary conditions and detecting the edges using Level Set Method with Improved Boundary Indicator Function (LSMIBIF) and Adaptive-Active Counter Model (AACM). For evaluating the DR system, the information is collected from the publically available datasets named as Indian Diabetic Retinopathy Image Dataset (IDRiD) and Diabetic Retinopathy Database 1 (DIARETDB 1). Then the collected images are pre-processed using a Gaussian filter, edge detection sharpening, Contrast enhancement, and Luminosity enhancement to eliminate the noises/interferences, and data imbalance that exists in the available dataset. After that, the noise-free data are processed for segmentation by using the Level set-based active contour segmentation technique. Then, the segmented images are given to the feature extraction stage where Gray Level Co-occurrence Matrix (GLCM), Local ternary, and binary patterns are employed to extract the features from the segmented image. Finally, extracted features are given as input to the classification stage where Long Short-Term Memory (LSTM) is utilized to categorize various classes of DR. The result analysis evidently shows that the proposed LBACS-LSTM achieved better results in overall metrics. The accuracy of the proposed LBACS-LSTM for IDRiD and DIARETDB 1 datasets is 99.43% and 97.39%, respectively which is comparably higher than the existing approaches such as Three-dimensional semantic model, Delimiting Segmentation Approach Using Knowledge Learning (DSA-KL), K-Nearest Neighbor (KNN), Computer aided method and Chronological Tunicate Swarm Algorithm with Stacked Auto Encoder (CTSA-SAE).
Diabetic Retinopathy (DR) is a major type of eye defect that is caused by abnormalities in the blood vessels within the retinal tissue. Early detection by automatic approach using modern methodologies helps prevent consequences like vision loss. So, this research has developed an effective segmentation approach known as Level-set Based Adaptive-active Contour Segmentation (LBACS) to segment the images by improving the boundary conditions and detecting the edges using Level Set Method with Improved Boundary Indicator Function (LSMIBIF) and Adaptive-Active Counter Model (AACM). For evaluating the DR system, the information is collected from the publically available datasets named as Indian Diabetic Retinopathy Image Dataset (IDRiD) and Diabetic Retinopathy Database 1 (DIARETDB 1). Then the collected images are pre-processed using a Gaussian filter, edge detection sharpening, Contrast enhancement, and Luminosity enhancement to eliminate the noises/interferences, and data imbalance that exists in the available dataset. After that, the noise-free data are processed for segmentation by using the Level set-based active contour segmentation technique. Then, the segmented images are given to the feature extraction stage where Gray Level Co-occurrence Matrix (GLCM), Local ternary, and binary patterns are employed to extract the features from the segmented image. Finally, extracted features are given as input to the classification stage where Long Short-Term Memory (LSTM) is utilized to categorize various classes of DR. The result analysis evidently shows that the proposed LBACS-LSTM achieved better results in overall metrics. The accuracy of the proposed LBACS-LSTM for IDRiD and DIARETDB 1 datasets is 99.43% and 97.39%, respectively which is comparably higher than the existing approaches such as Three-dimensional semantic model, Delimiting Segmentation Approach Using Knowledge Learning (DSA-KL), K-Nearest Neighbor (KNN), Computer aided method and Chronological Tunicate Swarm Algorithm with Stacked Auto Encoder (CTSA-SAE).Diabetic Retinopathy (DR) is a major type of eye defect that is caused by abnormalities in the blood vessels within the retinal tissue. Early detection by automatic approach using modern methodologies helps prevent consequences like vision loss. So, this research has developed an effective segmentation approach known as Level-set Based Adaptive-active Contour Segmentation (LBACS) to segment the images by improving the boundary conditions and detecting the edges using Level Set Method with Improved Boundary Indicator Function (LSMIBIF) and Adaptive-Active Counter Model (AACM). For evaluating the DR system, the information is collected from the publically available datasets named as Indian Diabetic Retinopathy Image Dataset (IDRiD) and Diabetic Retinopathy Database 1 (DIARETDB 1). Then the collected images are pre-processed using a Gaussian filter, edge detection sharpening, Contrast enhancement, and Luminosity enhancement to eliminate the noises/interferences, and data imbalance that exists in the available dataset. After that, the noise-free data are processed for segmentation by using the Level set-based active contour segmentation technique. Then, the segmented images are given to the feature extraction stage where Gray Level Co-occurrence Matrix (GLCM), Local ternary, and binary patterns are employed to extract the features from the segmented image. Finally, extracted features are given as input to the classification stage where Long Short-Term Memory (LSTM) is utilized to categorize various classes of DR. The result analysis evidently shows that the proposed LBACS-LSTM achieved better results in overall metrics. The accuracy of the proposed LBACS-LSTM for IDRiD and DIARETDB 1 datasets is 99.43% and 97.39%, respectively which is comparably higher than the existing approaches such as Three-dimensional semantic model, Delimiting Segmentation Approach Using Knowledge Learning (DSA-KL), K-Nearest Neighbor (KNN), Computer aided method and Chronological Tunicate Swarm Algorithm with Stacked Auto Encoder (CTSA-SAE).
Author Abouhawwash, Mohamed
Rao, K. B. V. Brahma
Askar, S. S.
Patra, Rajkumar
Bhansali, Ashok
Awasthy, Mohan
AuthorAffiliation 4 Department of Mathematics , Faculty of Science , Mansoura University , Mansoura , Egypt
1 Deptartment of Computer Engineering and Applications , GLA University , Mathura , India
5 Department of Statistics and Operations Research , College of Science , King Saud University , Riyadh , Saudi Arabia
2 Department of Computer Science and Engineering , CMR Technical Campus , Hyderabad , India
6 Department of Engineering and Technology , Bharati Vidyapeeth Deemed to be University , Navi Mumbai , India
7 Department of Computer Science and Engineering , Koneru Lakshmaiah Education Foundation , Guntur , India
3 Department of Computational Mathematics, Science and Engineering (CMSE) , College of Engineering , Michigan State University , East Lansing , MI , United States
AuthorAffiliation_xml – name: 1 Deptartment of Computer Engineering and Applications , GLA University , Mathura , India
– name: 5 Department of Statistics and Operations Research , College of Science , King Saud University , Riyadh , Saudi Arabia
– name: 4 Department of Mathematics , Faculty of Science , Mansoura University , Mansoura , Egypt
– name: 3 Department of Computational Mathematics, Science and Engineering (CMSE) , College of Engineering , Michigan State University , East Lansing , MI , United States
– name: 6 Department of Engineering and Technology , Bharati Vidyapeeth Deemed to be University , Navi Mumbai , India
– name: 7 Department of Computer Science and Engineering , Koneru Lakshmaiah Education Foundation , Guntur , India
– name: 2 Department of Computer Science and Engineering , CMR Technical Campus , Hyderabad , India
Author_xml – sequence: 1
  givenname: Ashok
  surname: Bhansali
  fullname: Bhansali, Ashok
– sequence: 2
  givenname: Rajkumar
  surname: Patra
  fullname: Patra, Rajkumar
– sequence: 3
  givenname: Mohamed
  surname: Abouhawwash
  fullname: Abouhawwash, Mohamed
– sequence: 4
  givenname: S. S.
  surname: Askar
  fullname: Askar, S. S.
– sequence: 5
  givenname: Mohan
  surname: Awasthy
  fullname: Awasthy, Mohan
– sequence: 6
  givenname: K. B. V. Brahma
  surname: Rao
  fullname: Rao, K. B. V. Brahma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38169636$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhiNUREvpH-CALHHhksUfiZOcEKr4qLQSFzhbY3uy61ViL7a31V755Xg_qFounpH9-pnRzPu6uvDBY1W9ZXQhRD98HLULuOCUiwXjvRykfFFdcT7IumF9e_Ekv6xuUtpQShlvu7bnr6pL0bPyQ8ir6s8S73GqE2aiIaElYGGb3T3WYA6BmOBz2EWScDWjz5Bd8CSjWXv3e4fkweU1mYJfkbQOMdcZ40xmnEPckzFEYh1ozM6QWE4ftpDXe2ImSMmNzhxpb6qXI0wJb87xuvr19cvP2-_18se3u9vPy9o0TZ_rru-M6bCzPcBA2TggHdD2HYCUvBEWLe0YtqbRojHjwC0z3EJJDOqGtlpcV3cnrg2wUdvoZoh7FcCp40WIKwWxtDqhkro1KOnINHTNyFrdD2bEsVTTBqERhfXpxNru9IzWlMlEmJ5Bn794t1arcK8YLSsQ7YHw4UyIoQwyZTW7ZHCawGPYJcUHRtkgKJdF-v4_6aZsxJdZKcE7QZtOigPw3dOWHnv5t-si4CeBiSGliOOjhFF18JQ6ekodPKXOnhJ_Aan2xLA
Cites_doi 10.1155/2021/6644071
10.1007/s12652-021-02923-5
10.1016/j.compbiomed.2021.104725
10.1093/comjnl/bxac059
10.1016/j.artmed.2020.102001
10.1016/j.ijleo.2019.163328
10.1016/j.ultramic.2022.113674
10.1007/978-981-16-5689-7_54
10.1007/s11042-022-12492-0
10.22266/ijies2022.0228.13
10.3390/jpm12091454
10.1109/ACCESS.2022.3157632
10.3390/data3030025
10.3390/diagnostics12122918
10.1016/j.ijcce.2023.02.002
10.1155/2023/4537253
10.1007/s11042-023-14606-8
10.1007/s00500-023-08690-z
10.1007/s00521-022-07471-3
10.1109/ACCESS.2022.3163247
10.1155/2022/1133575
10.1007/s11042-020-09793-7
10.3390/diagnostics13051001
10.1002/ima.22482
10.3390/fractalfract7080598
10.1109/TMI.2022.3143833
10.3390/diagnostics13010124
10.3390/app13053255
10.1007/s00530-023-01078-x
10.1016/j.jestch.2020.07.008
10.1038/s41598-023-36311-0
10.1007/s10462-023-10532-1
10.1007/s00500-023-08930-2
10.1007/s11042-023-14785-4
10.1109/JTEHM.2023.3282104
10.1016/j.enconman.2022.116022
10.1007/s40747-021-00630-4
10.1007/s42600-022-00200-8
10.1002/ima.22797
10.3390/jcm12010385
10.3390/app13053108
10.1109/CCWC57344.2023.10099069
ContentType Journal Article
Copyright Copyright © 2023 Bhansali, Patra, Abouhawwash, Askar, Awasthy and Rao.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Bhansali, Patra, Abouhawwash, Askar, Awasthy and Rao. 2023 Bhansali, Patra, Abouhawwash, Askar, Awasthy and Rao
Copyright_xml – notice: Copyright © 2023 Bhansali, Patra, Abouhawwash, Askar, Awasthy and Rao.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Bhansali, Patra, Abouhawwash, Askar, Awasthy and Rao. 2023 Bhansali, Patra, Abouhawwash, Askar, Awasthy and Rao
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3389/fbioe.2023.1286966
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Bhansali et al
EISSN 2296-4185
ExternalDocumentID oai_doaj_org_article_6b5ce60f1ba74f15b89cfefd87bcea43
PMC10758353
38169636
10_3389_fbioe_2023_1286966
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
ACXDI
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
K9.
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c448t-787cc7e7d8aa901f9e09ed87aa66243ded071e5c4b34cf92d1c2daf92ceb405b3
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133967700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-4185
IngestDate Fri Oct 03 12:42:38 EDT 2025
Thu Aug 21 18:41:39 EDT 2025
Fri Sep 05 08:50:02 EDT 2025
Mon Nov 24 21:40:48 EST 2025
Thu Jan 02 22:35:32 EST 2025
Sat Nov 29 05:43:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords adaptive-active counter model
level set method with improved boundary indicator function
gray level co-occurrence matrix
diabetic retinopathy
long short term memory
Language English
License Copyright © 2023 Bhansali, Patra, Abouhawwash, Askar, Awasthy and Rao.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-787cc7e7d8aa901f9e09ed87aa66243ded071e5c4b34cf92d1c2daf92ceb405b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Parameshachari B. D, Nitte Meenakshi Institute of Technology, India
Reviewed by: Mohammed Rashad Baker, University of Kirkuk, Iraq
Sathyanarayana N, Vemana Institute of Technology, India
Luca Di Nunzio, Policlinico Tor Vergata, Italy
OpenAccessLink https://www.proquest.com/docview/3273047633?pq-origsite=%requestingapplication%
PMID 38169636
PQID 3273047633
PQPubID 7426804
ParticipantIDs doaj_primary_oai_doaj_org_article_6b5ce60f1ba74f15b89cfefd87bcea43
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10758353
proquest_miscellaneous_2910193026
proquest_journals_3273047633
pubmed_primary_38169636
crossref_primary_10_3389_fbioe_2023_1286966
PublicationCentury 2000
PublicationDate 2023-12-19
PublicationDateYYYYMMDD 2023-12-19
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationTitleAlternate Front Bioeng Biotechnol
PublicationYear 2023
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Guo (B16) 2022; 8
Hasan (B17) 2021; 111
Sandhya (B35) 2022; 2022
B22
Yan (B45) 2022; 12
Math (B26) 2021; 80
Shaukat (B37) 2022; 12
Atwany (B5) 2022; 10
Ewees (B13) 2022; 268
Porwal (B32) 2018; 3
Sule (B39) 2022; 10
Jaskirat (B19) 2023; 2023
Jebaseeli (B20) 2019; 199
Mondal (B27) 2023; 13
Chandni (B7) 2022
González-Ruiz (B15) 2023; 246
Li (B24) 2022
Sundaram (B40) 2023; 13
Usman (B43) 2023; 4
Xu (B44) 2021; 2021
Ali (B3) 2023; 11
Dayana (B10); 81
Dayana (B12) 2023; 29
Dayana (B11); 34
Rachapudi (B34) 2023; 82
Udayaraju (B41) 2023
Kadan (B21) 2021; 31
Shanthini (B36) 2021
Ullah (B42) 2023; 13
Alam (B2) 2023; 12
Beham (B6) 2023
Nikoloulopoulou (B29) 2023; 13
Huang (B18) 2022; 41
Maaliw (B25) 2023
Patel (B31) 2023; 33
Kaur (B23) 2022; 66
Garifullin (B14) 2021; 136
Atli (B4) 2021; 24
Da Rocha (B9) 2022; 38
Özçelik (B30) 2023; 7
Pundikal (B33) 2022; 15
Nallasivan (B28) 2021; 25
Alajlan (B1) 2023
Chen (B8) 2023; 82
Shaukat (B38) 2023; 13
References_xml – volume: 2021
  start-page: 6644071
  year: 2021
  ident: B44
  article-title: Ffu-net: feature fusion u-net for lesion segmentation of diabetic retinopathy
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2021/6644071
– year: 2021
  ident: B36
  article-title: Threshold segmentation based multi-layer analysis for detecting diabetic retinopathy using convolution neural network
  publication-title: J. Ambient. Intell. Hum. Comput
  doi: 10.1007/s12652-021-02923-5
– volume: 136
  start-page: 104725
  year: 2021
  ident: B14
  article-title: Deep Bayesian baseline for segmenting diabetic retinopathy lesions: advances and challenges
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104725
– volume: 66
  start-page: 2011
  year: 2022
  ident: B23
  article-title: Automated computer-aided diagnosis of diabetic retinopathy based on segmentation and classification using K-nearest neighbor algorithm in retinal images
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxac059
– volume: 111
  start-page: 102001
  year: 2021
  ident: B17
  article-title: DRNet: segmentation and localization of optic disc and Fovea from diabetic retinopathy image
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.102001
– volume: 199
  start-page: 163328
  year: 2019
  ident: B20
  article-title: Retinal blood vessel segmentation from diabetic retinopathy images using tandem PCNN model and deep learning based SVM
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163328
– volume: 246
  start-page: 113674
  year: 2023
  ident: B15
  article-title: Structure-preserving Gaussian denoising of FIB-SEM volumes
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2022.113674
– start-page: 613
  volume-title: Advances in data and information sciences: proceedings of ICDIS 2021
  year: 2022
  ident: B7
  article-title: Fundus image enhancement using EAL-CLAHE technique
  doi: 10.1007/978-981-16-5689-7_54
– volume: 81
  start-page: 20611
  ident: B10
  article-title: An enhanced swarm optimization-based deep neural network for diabetic retinopathy classification in fundus images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12492-0
– volume: 15
  start-page: 130
  year: 2022
  ident: B33
  article-title: Microaneurysms detection using grey wolf optimizer and modified K-nearest neighbor for early diagnosis of diabetic retinopathy
  publication-title: Int. J. Intell. Eng. Syst.
  doi: 10.22266/ijies2022.0228.13
– volume: 12
  start-page: 1454
  year: 2022
  ident: B37
  article-title: Three-dimensional semantic segmentation of diabetic retinopathy lesions and grading using transfer learning
  publication-title: J. Personalized Med.
  doi: 10.3390/jpm12091454
– volume: 10
  start-page: 28642
  year: 2022
  ident: B5
  article-title: Deep learning techniques for diabetic retinopathy classification: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3157632
– volume: 3
  start-page: 25
  year: 2018
  ident: B32
  article-title: Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research
  publication-title: Data
  doi: 10.3390/data3030025
– volume: 12
  start-page: 2918
  year: 2022
  ident: B45
  article-title: MSLF-Net: a multi-scale and multi-level feature fusion net for diabetic retinopathy segmentation
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12122918
– volume: 4
  start-page: 78
  year: 2023
  ident: B43
  article-title: Diabetic retinopathy detection using principal component analysis multi-label feature extraction and classification
  publication-title: Int. J. Cognitive Comput. Eng.
  doi: 10.1016/j.ijcce.2023.02.002
– volume: 2023
  start-page: 4537253
  year: 2023
  ident: B19
  article-title: Automated detection and segmentation of exudates for the screening of background retinopathy
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2023/4537253
– volume: 82
  start-page: 27949
  year: 2023
  ident: B34
  article-title: Diabetic retinopathy detection by optimized deep learning model
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-14606-8
– year: 2023
  ident: B41
  article-title: A combined U-Net and multi-class support vector machine learning models for diabetic retinopathy macula edema segmentation and classification DME
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08690-z
– volume: 34
  start-page: 18663
  ident: B11
  article-title: Deep learning enabled optimized feature selection and classification for grading diabetic retinopathy severity in the fundus image
  publication-title: Neural comput. Appl.
  doi: 10.1007/s00521-022-07471-3
– volume: 10
  start-page: 38202
  year: 2022
  ident: B39
  article-title: A survey of deep learning for retinal blood vessel segmentation methods: taxonomy, trends, challenges and future directions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3163247
– start-page: 146
  year: 2022
  ident: B24
  article-title: Segmentation, classification, and quality assessment of UW-octa images for the diagnosis of diabetic retinopathy
– volume: 2022
  start-page: 1
  year: 2022
  ident: B35
  article-title: Pixel-boundary-dependent segmentation method for early detection of diabetic retinopathy
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/1133575
– volume: 80
  start-page: 5173
  year: 2021
  ident: B26
  article-title: Adaptive machine learning classification for diabetic retinopathy
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-09793-7
– volume: 25
  start-page: 13594
  year: 2021
  ident: B28
  article-title: Diabetic retinopathy segmentation and classification using deep learning approach
  publication-title: Ann. Rom. Soc. Cell Biol.
– volume: 13
  start-page: 1001
  year: 2023
  ident: B40
  article-title: Diabetic retinopathy and diabetic macular edema detection using ensemble based convolutional neural networks
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13051001
– volume: 31
  start-page: 1009
  year: 2021
  ident: B21
  article-title: Optimized hybrid classifier for diagnosing diabetic retinopathy: iterative blood vessel segmentation process
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22482
– volume: 7
  start-page: 598
  year: 2023
  ident: B30
  article-title: Overcoming nonlinear dynamics in diabetic retinopathy classification: a robust AI-based model with chaotic swarm intelligence optimization and recurrent long short-term memory
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract7080598
– volume: 41
  start-page: 1596
  year: 2022
  ident: B18
  article-title: RTNet: relation transformer network for diabetic retinopathy multi-lesion segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3143833
– volume: 13
  start-page: 124
  year: 2023
  ident: B27
  article-title: EDLDR: an ensemble deep learning technique for detection and classification of diabetic retinopathy
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13010124
– volume: 13
  start-page: 3255
  year: 2023
  ident: B29
  article-title: A convolutional autoencoder approach for boosting the specificity of retinal blood vessels segmentation
  publication-title: Appl. Sci.
  doi: 10.3390/app13053255
– volume: 29
  start-page: 1629
  year: 2023
  ident: B12
  article-title: Feature fusion and optimization integrated refined deep residual network for diabetic retinopathy severity classification using fundus image
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-023-01078-x
– volume: 24
  start-page: 271
  year: 2021
  ident: B4
  article-title: Sine-Net: a fully convolutional deep learning architecture for retinal blood vessel segmentation
  publication-title: Eng. Sci. Technol. Int. J.
  doi: 10.1016/j.jestch.2020.07.008
– volume: 13
  start-page: 9087
  year: 2023
  ident: B42
  article-title: SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36311-0
– ident: B22
– start-page: 1
  year: 2023
  ident: B1
  article-title: ESOA-HGRU: egret swarm optimization algorithm-based hybrid gated recurrent unit for classification of diabetic retinopathy
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10532-1
– year: 2023
  ident: B6
  article-title: An optimized deep-learning algorithm for the automated detection of diabetic retinopathy
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08930-2
– volume: 82
  start-page: 26919
  year: 2023
  ident: B8
  article-title: DR-Net: diabetic Retinopathy detection with fusion multi-lesion segmentation and classification
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-14785-4
– volume: 11
  start-page: 341
  year: 2023
  ident: B3
  article-title: A hybrid convolutional neural network model for automatic diabetic retinopathy classification from fundus images
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2023.3282104
– volume: 268
  start-page: 116022
  year: 2022
  ident: B13
  article-title: HBO-LSTM: optimized long short term memory with heap-based optimizer for wind power forecasting
  publication-title: Energy Convers. manage.
  doi: 10.1016/j.enconman.2022.116022
– volume: 8
  start-page: 1681
  year: 2022
  ident: B16
  article-title: CARNet: cascade attentive RefineNet for multi-lesion segmentation of diabetic retinopathy images
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00630-4
– volume: 38
  start-page: 761
  year: 2022
  ident: B9
  article-title: Diabetic retinopathy classification using VGG16 neural network
  publication-title: Res. Biomed. Eng.
  doi: 10.1007/s42600-022-00200-8
– volume: 33
  start-page: 246
  year: 2023
  ident: B31
  article-title: Automated screening of glaucoma stages from retinal fundus images using BPS and LBP based GLCM features
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22797
– volume: 12
  start-page: 385
  year: 2023
  ident: B2
  article-title: Segmentation-assisted fully convolutional neural network enhances deep learning performance to identify proliferative diabetic retinopathy
  publication-title: J. Clin. Med. Res.
  doi: 10.3390/jcm12010385
– volume: 13
  start-page: 3108
  year: 2023
  ident: B38
  article-title: Classification and segmentation of diabetic retinopathy: a systemic review
  publication-title: Appl. Sci.
  doi: 10.3390/app13053108
– year: 2023
  ident: B25
  article-title: An enhanced segmentation and deep learning architecture for early diabetic retinopathy detection
  doi: 10.1109/CCWC57344.2023.10099069
SSID ssj0001257582
Score 2.2667377
Snippet Diabetic Retinopathy (DR) is a major type of eye defect that is caused by abnormalities in the blood vessels within the retinal tissue. Early detection by...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1286966
SubjectTerms Accuracy
adaptive-active counter model
Algorithms
Bioengineering and Biotechnology
Blood vessels
Boundary conditions
Classification
Deep learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
gray level co-occurrence matrix
Image processing
level set method with improved boundary indicator function
Long short-term memory
Neural networks
Optimization
Retinopathy
Segmentation
Visual impairment
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4kAPiNJStlDkStyqQBJ74_hYKlAPCPUAEjfLjzGsBMmKLJW48suZccKyW1Xiwi2Kk8iZl7-xx58ZO9BOBoTxEdMSDZkUFuOgUzLzKhAfuRAyJp7ZM3V-Xl9d6T8LR31RTVhPD9wL7qhyYw9VHgtnlYzF2NXaR4ihVs6DlYnnM1d6IZnqZ1cQhtRlv0sGszB9FN2kJVrMUhxiSK50okV8HYkSYf__UOa_xZILo8_pJtsYYCP_2Xf3I1uBZot9WCAT_MSezqj-J-tgxmloCtwGO6VgltkU0zhVpeN3eAfXd8OOo4bPOVw5zcjy27a55t0NYvKMYja_o0LcR47IlveztBPPad9j09JRxo_cE_imaqP0tc_s8vTk4tfvbDhhIfOYls0y9FbvFahQW4vAIGrINaBora2qUooAAREIjL10Qvqoy1D4Mli88OAQ6TmxzVabtoEdxhFI5aqSABVoKaLUThUaX66Dtr4QfsR-vEjbTHsiDYMJCOnGJN0Y0o0ZdDNix6SQ-ZNEgp1uoGmYwTTMW6YxYnsv6jSDZ3ZGIF7LJUZVbP4-b0afooUS20D70JkSMRQCW0xPR-xLr_15T2ihFYMWttRLdrHU1eWWZnKTeLsx0x4j4BVf3-Pndtk6CYwqawq9x1Zn9w_wja35v7NJd7-fvOEZgG4WtA
  priority: 102
  providerName: Directory of Open Access Journals
Title Level-set based adaptive-active contour segmentation technique with long short-term memory for diabetic retinopathy classification
URI https://www.ncbi.nlm.nih.gov/pubmed/38169636
https://www.proquest.com/docview/3273047633
https://www.proquest.com/docview/2910193026
https://pubmed.ncbi.nlm.nih.gov/PMC10758353
https://doaj.org/article/6b5ce60f1ba74f15b89cfefd87bcea43
Volume 11
WOSCitedRecordID wos001133967700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: M7P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: 7X7
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: PIMPY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYXQ5w4L0QWCojcUNhm9iN4xNiUVcgLVWEQCony89uJTYpTRdpLxz45cw4abdFiAsXK4qTaJTxjL8Zjz8T8lIa7gDGBwhLpE850-AHjeCpFQ75yBnjIfLMnonJpJxOZdUn3Nq-rHLtE6Ojdo3FHPkxg3l2yMEa2JvF9xRPjcLV1f4IjT1ygCwJeSzdq7ZyLABGyrzbKwOxmDwOZt4gOWbOXoNjLmQkR7yejyJt_9-w5p8lk1tz0Ond_5X-HrnTo0_6thsu98kNXz8gt7c4CR-SX2dYRpS2fkVxhnNUO71An5jq6BopFrfDd2jrZxf9xqWabqhgKSZ26bemntH2HKB9iq6fXmA97xUFgEy7ZO_cUtw-WTd4IvIVtYjhsWgpfu0R-XI6_vzufdof1JBaiO5WKRi9tcILV2oN-CJIP5TelULrosg5c94BkPEjyw3jNsjcZTZ3Gi6sNwAYDTsk-3VT-yeEAh4bioJ7X3jJWeDSiEzCy6WT2mbMJuTVWl1q0fFxKIhjULkqKlehclWv3IScoEY3TyKXdrzRLGeqN01VmJH1xTBkRgsespEppQ0-gPzGes1ZQo7WOlW9gbfqWqEJebHpBtPE9RZd--ayVTlAMcDHEOUm5HE3fDaS4Hot-D7oKXcG1o6ouz31_DzSf0PAPgLczJ7-W65n5Bb-Ciy9yeQR2V8tL_1zctP-WM3b5YDsiamIbTkgByfjSfVpEPMRg2hC2P4cQ0_14WP19TcdEyn1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4ECiwSnJBp7N3Y3gNCvKpGTaMcilROy76cRqJ2iFNQrvwgfiMzfqQJQtx64GZ5k9Vq_e038-3OzgA8l0Y4dOMzlCXSB4Jr5EGTiMAmjvKRcy6yKs_sMBmN0uNjOd6CX-1dGAqrbDmxImpXWNoj3-VoZ3sCVwN_M_sWUNUoOl1tS2jUsDjwyx8o2crXgw_4fV9E0d7Ho_f7QVNVILAoRRYBItTaxCcu1RqNYSZ9T3qXJlrHcSS48w6tru9bYbiwmYxcaCOn8cF6g96N4djvJdgWBPYObI8Hh-PPa7s66P6kUX07B9Wf3M3MtKB0nBF_haYgllU6xnMLWBUK-Jt3-2eQ5prV27vxv83XTbje-Nfsbb0gbsGWz2_DtbWsi3fg55ACpYLSLxjZcMe00zNi_UBX5M8ofB_7YaWfnDZXs3K2SnbLaOuafS3yCStPULwEZNzYKUUsLxlKAFZvZ08towuieUE1n5fMkkqhsKyqt7vw6UIm4R508iL3D4Chx9lLYuF97KXgmZAmCSX-OXVS25DbLrxs4aFmdcYRhUqNwKQqMCkCk2rA1IV3hKDVLylbePWimE9UQz4qNn3r414WGp2ILOybVNrMZzh-Y70WvAs7LYZUQ2GlOgdQF56tmpF86ERJ5744K1WEziYqANTxXbhfw3U1EjqRRnbHlnQDyBtD3WzJpydVgvMQ_VhUBvzhv8f1FK7sHx0O1XAwOngEV2laKNAolDvQWczP_GO4bL8vpuX8SbNMGXy5aKT_Bsglg8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Level-set+based+adaptive-active+contour+segmentation+technique+with+long+short-term+memory+for+diabetic+retinopathy+classification&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Bhansali%2C+Ashok&rft.au=Patra%2C+Rajkumar&rft.au=Abouhawwash%2C+Mohamed&rft.au=Askar%2C+S+S&rft.date=2023-12-19&rft.pub=Frontiers+Media+SA&rft.eissn=2296-4185&rft.volume=11&rft.spage=1286966&rft_id=info:doi/10.3389%2Ffbioe.2023.1286966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon