Quantum machine learning and quantum biomimetics: A perspective

Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more efficient machine learning calculations by means of quantum devices, while, on the other hand, to employ machine learning techniques to better con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology Jg. 1; H. 3; S. 33002 - 33012
1. Verfasser: Lamata, Lucas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.09.2020
Schlagworte:
ISSN:2632-2153, 2632-2153
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more efficient machine learning calculations by means of quantum devices, while, on the other hand, to employ machine learning techniques to better control quantum systems. Inside quantum machine learning, quantum reinforcement learning aims at developing 'intelligent' quantum agents that may interact with the outer world and adapt to it, with the strategy of achieving some final goal. Another paradigm inside quantum machine learning is that of quantum autoencoders, which may allow one for employing fewer resources in a quantum device via a training process. Moreover, the field of quantum biomimetics aims at establishing analogies between biological and quantum systems, to look for previously inadvertent connections that may enable useful applications. Two recent examples are the concepts of quantum artificial life, as well as of quantum memristors. In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.
AbstractList Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more efficient machine learning calculations by means of quantum devices, while, on the other hand, to employ machine learning techniques to better control quantum systems. Inside quantum machine learning, quantum reinforcement learning aims at developing ‘intelligent’ quantum agents that may interact with the outer world and adapt to it, with the strategy of achieving some final goal. Another paradigm inside quantum machine learning is that of quantum autoencoders, which may allow one for employing fewer resources in a quantum device via a training process. Moreover, the field of quantum biomimetics aims at establishing analogies between biological and quantum systems, to look for previously inadvertent connections that may enable useful applications. Two recent examples are the concepts of quantum artificial life, as well as of quantum memristors. In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.
Author Lamata, Lucas
Author_xml – sequence: 1
  givenname: Lucas
  orcidid: 0000-0002-9504-8685
  surname: Lamata
  fullname: Lamata, Lucas
  organization: Molecular y Nuclear, Universidad de Sevilla Departamento de Física Atómica, 41080 Sevilla, Spain
BookMark eNp9kctLxDAQxoOs4Lru3WPBgxerSfNo60WWxRcsiKDnkKZTzdKm3SQr-N_b0kVFZE8ZMr9vHt8co4ltLSB0SvAlwVl2lQiaxAnh9EoVeYbpAZp-f01-xUdo7v0aY5xwQnmCp-jmeats2DZRo_S7sRDVoJw19i1Stow2u2Rh2sY0EIz219Ei6sD5DnQwH3CCDitVe5jv3hl6vbt9WT7Eq6f7x-ViFWvGshBzwSkVvGKak1ywQhdVDqqgOaQYZyQHkaapTjUVOi-pFiUHKArGcgaUCZrSGTob63au3WzBB7lut872LWW_SyIyipOBEiOlXeu9g0pqE1QwrQ1OmVoSLAe_5GCIHAyRo1-9EP8Rds40yn3uk1yMEtN2P8Pswc__wZu634RIKnuiv4rsyop-Ac7AiJA
CODEN MLSTCK
CitedBy_id crossref_primary_10_1080_23746149_2023_2165452
crossref_primary_10_1002_qute_202300059
crossref_primary_10_1088_2058_9565_abfc94
crossref_primary_10_1109_TWC_2021_3102139
crossref_primary_10_3390_brainsci13020303
crossref_primary_10_1002_qute_202300219
crossref_primary_10_3389_fnins_2022_736642
crossref_primary_10_3390_photonics8020033
crossref_primary_10_1038_s42005_024_01763_x
crossref_primary_10_1515_nanoph_2022_0652
crossref_primary_10_1103_PhysRevResearch_3_L032049
crossref_primary_10_1109_ACCESS_2024_3506656
crossref_primary_10_3390_app11188589
crossref_primary_10_1007_s00500_022_07131_7
crossref_primary_10_1038_s41598_021_90534_7
crossref_primary_10_1103_PhysRevApplied_17_024002
crossref_primary_10_1038_s41598_021_96048_6
crossref_primary_10_1103_PhysRevApplied_16_044057
crossref_primary_10_1088_1367_2630_abf798
crossref_primary_10_3390_medsci12040067
crossref_primary_10_1002_qute_202300247
crossref_primary_10_1038_s41598_022_10677_z
crossref_primary_10_1103_PhysRevResearch_4_043056
crossref_primary_10_1038_s41566_022_00975_3
crossref_primary_10_1002_qute_202100053
crossref_primary_10_1103_PhysRevResearch_3_L032057
crossref_primary_10_1109_TPAMI_2022_3203157
crossref_primary_10_1103_PhysRevResearch_3_023051
crossref_primary_10_1007_s42484_022_00063_3
crossref_primary_10_1038_s41534_023_00766_w
crossref_primary_10_1088_2058_9565_abb8e5
crossref_primary_10_1002_qute_202300043
crossref_primary_10_1088_2058_9565_abb8e4
Cites_doi 10.1038/s41534-019-0201-8
10.1038/543171a
10.1103/PhysRevLett.83.3077
10.1007/s11128-014-0892-x
10.1002/qute.201800065
10.1088/2058-9565/ab60de
10.1103/PhysRevLett.123.230504
10.1038/s41534-017-0032-4
10.3389/frobt.2014.00008
10.1126/science.1245842
10.1103/PhysRevLett.116.090405
10.1515/qmetro-2017-0001
10.1038/srep04910
10.1038/s41567-018-0048-5
10.1103/PhysRevLett.122.060501
10.1088/2058-9565/aae22b
10.1002/qute.201900115
10.1088/2632-2153/ab43b4
10.1103/PhysRevX.9.011013
10.1038/s41598-017-01711-6
10.1209/0295-5075/125/30004
10.1080/00107514.2014.964942
10.1088/1361-6633/aab406
10.1103/PhysRevApplied.6.054005
10.1038/299802a0
10.1016/j.physrep.2019.03.001
10.1088/2632-2153/ab4e24
10.1063/1.5036596
10.1038/srep42044
10.1038/srep20956
10.1016/j.scib.2017.06.007
10.1038/s41534-019-0140-4
10.1109/TSMCB.2008.925743
10.1103/PhysRevApplied.6.014006
10.1038/nphys3029
10.1103/PhysRevB.98.224305
10.1038/nphys4035
10.1103/PhysRevLett.79.325
10.1088/2058-9565/aab859
10.22331/q-2018-08-06-79
10.1088/2058-9565/aa8072
10.1109/JPROC.2009.2021077
10.1038/nature14539
10.1038/nature16961
10.1103/PhysRevX.7.041052
10.1038/s41598-018-33125-3
10.1088/1367-2630/ab8aaf
10.1145/3313276.3316310
10.1038/srep11983
10.1103/PhysRevA.98.042315
10.1103/PhysRevX.8.031084
10.1162/106454601753238636
10.1103/RevModPhys.91.045002
10.1088/2058-9565/aabd98
10.1038/s41534-019-0198-z
10.1038/nature23474
10.22331/qv-2020-03-17-32
10.1103/PhysRevLett.103.150502
10.1103/PhysRevLett.116.230504
10.1142/S0219749918400105
10.1038/srep00302
10.1371/journal.pone.0200455
10.1103/PhysRevLett.116.110403
10.1103/PhysRevLett.114.200502
10.1038/srep29507
10.1038/nrg1637
10.1103/PhysRevX.8.021050
10.1088/1367-2630/ab5c5e
10.1209/0295-5075/97/20012
10.1103/PhysRevLett.117.130501
10.1038/scientificamerican1070-120
10.1038/nature10012
10.1007/s11128-014-0809-8
10.1103/PhysRevApplied.12.014037
10.1103/PhysRevX.4.031002
10.1103/PhysRevA.96.062327
10.22331/q-2020-01-20-224
10.1002/qute.201800074
10.1038/nature24270
10.1038/s41534-018-0118-7
10.1088/2058-9565/aada1f
10.1007/s42484-020-00016-8
10.1103/PhysRevX.5.031040
10.1103/PhysRevX.8.031086
10.1038/s41598-017-13378-0
10.1137/1.9781611975482.87
10.1002/qute.201900075
10.1103/PhysRevLett.113.130503
10.1103/PhysRevA.97.042315
10.1073/pnas.1714936115
10.1038/s42254-020-0230-4
10.1103/PhysRevLett.124.140502
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd
Copyright IOP Publishing Sep 2020
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd
– notice: Copyright IOP Publishing Sep 2020
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1088/2632-2153/ab9803
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Quantum machine learning and quantum biomimetics: A perspective
EISSN 2632-2153
ExternalDocumentID 10_1088_2632_2153_ab9803
mlstab9803
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación
  funderid: http://dx.doi.org/10.13039/501100004837
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c448t-5653365f4c51964bcbf9eab39e700819e6777c7c36c9d3c6d5eebb4494e346373
IEDL.DBID O3W
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660860700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2632-2153
IngestDate Fri Jul 25 03:43:57 EDT 2025
Tue Nov 18 22:45:17 EST 2025
Sat Nov 29 04:11:28 EST 2025
Wed Aug 21 03:38:34 EDT 2024
Thu Jan 07 14:56:17 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-5653365f4c51964bcbf9eab39e700819e6777c7c36c9d3c6d5eebb4494e346373
Notes MLST-100112.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9504-8685
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/ab9803
PQID 2512683027
PQPubID 4916454
PageCount 11
ParticipantIDs proquest_journals_2512683027
crossref_citationtrail_10_1088_2632_2153_ab9803
crossref_primary_10_1088_2632_2153_ab9803
iop_journals_10_1088_2632_2153_ab9803
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Werfel (mlstab9803bib105) 2014; 343
Carleo (mlstab9803bib52) 2019; 91
Melnikov (mlstab9803bib70) 2020; 3
Torlai (mlstab9803bib73) 2019; 123
Dunjko (mlstab9803bib11) 2020; 4
Schuld (mlstab9803bib9) 2018
Zhang (mlstab9803bib62) 2019; 5
Zahedinejad (mlstab9803bib46) 2016; 6
Luchnikov (mlstab9803bib69) 2020; 124
(mlstab9803bib2) 2020
Alvarez-Rodriguez (mlstab9803bib84) 2016; 6
Ding (mlstab9803bib29) 2019; 2
Agresti (mlstab9803bib76) 2019; 9
Fösel (mlstab9803bib53) 2018; 8
Carrasquilla (mlstab9803bib77) 2020
Bukov (mlstab9803bib55) 2018; 98
Mohseni (mlstab9803bib1) 2017; 543
Sweke (mlstab9803bib64) 2018
Rebentrost (mlstab9803bib13) 2014; 113
Cao (mlstab9803bib33) 2017
Rieffel (mlstab9803bib39) 2015; 14
Mehta (mlstab9803bib50) 2019; 810
Paparo (mlstab9803bib18) 2014; 4
Johnson (mlstab9803bib37) 2011; 473
Lamata (mlstab9803bib27) 2018; 4
Lloyd (mlstab9803bib14) 2014; 10
Carrasquilla (mlstab9803bib49) 2017; 13
Martin-Delgado (mlstab9803bib88) 2012; 2
Perdomo-Ortiz (mlstab9803bib44) 2018; 3
Melnikov (mlstab9803bib56) 2018; 115
Benedetti (mlstab9803bib42) 2017; 7
Fösel (mlstab9803bib65) 2020
Romero (mlstab9803bib25) 2017; 2
Mackeprang (mlstab9803bib58) 2020; 2
Langton (mlstab9803bib80) 1997
Dong (mlstab9803bib17) 2008; 38
Yu (mlstab9803bib23) 2019; 2
Silver (mlstab9803bib101) 2017; 550
Pepper (mlstab9803bib28) 2019; 122
Las Heras (mlstab9803bib47) 2016; 116
Arrazola (mlstab9803bib79) 2019
Bleh (mlstab9803bib91) 2012; 97
Abbott (mlstab9803bib89) 2008
Sutton (mlstab9803bib99) 2018
Oszmaniec (mlstab9803bib104) 2016; 116
Gilyén (mlstab9803bib15) 2019
Lamata (mlstab9803bib98) 2019; 2
Bukov (mlstab9803bib54) 2018; 8
Aguilar (mlstab9803bib81) 2014; 1
Innocenti (mlstab9803bib66) 2020; 22
Biamonte (mlstab9803bib6) 2017; 549
Benedetti (mlstab9803bib43) 2018; 3
Eisert (mlstab9803bib87) 1999; 83
Salmilehto (mlstab9803bib93) 2017; 7
Baeck (mlstab9803bib107) 1997
Cárdenas-López (mlstab9803bib21) 2018; 13
Alvarez-Rodriguez (mlstab9803bib103) 2015; 5
Dunjko (mlstab9803bib19) 2016; 117
Shrapnel (mlstab9803bib68) 2018; 16
Krenn (mlstab9803bib56) 2016; 116
Krenn (mlstab9803bib56) 2020
Kieferová (mlstab9803bib41) 2017; 96
Li (mlstab9803bib48) 2017; 4
Melnikov (mlstab9803bib71) 2019; 21
mlstab9803bib97
Preskill (mlstab9803bib109) 2018; 2
Albarrán-Arriagada (mlstab9803bib22) 2018; 98
Liu (mlstab9803bib75) 2020; 1
Schuld (mlstab9803bib8) 2015; 56
Albarrán-Arriagada (mlstab9803bib24) 2020; 1
Schuld (mlstab9803bib10) 2014; 13
Arrighi (mlstab9803bib90) 2010
Sanz (mlstab9803bib94) 2018; 3
LeCun (mlstab9803bib3) 2015; 521
Alvarez-Rodriguez (mlstab9803bib83) 2014; 4
Harrow (mlstab9803bib12) 2009; 103
Di Ventra (mlstab9803bib96) 2009; 97
Shevchenko (mlstab9803bib95) 2016; 6
Melnikov (mlstab9803bib57) 2020
Sheng (mlstab9803bib16) 2017; 62
Benner (mlstab9803bib108) 2005; 6
Xu (mlstab9803bib63) 2019; 5
Grover (mlstab9803bib102) 1997; 79
Gonzalez-Raya (mlstab9803bib34) 2019; 12
Alvarez-Rodriguez (mlstab9803bib36) 2017; 7
Tacchino (mlstab9803bib31) 2019; 5
Dittrich (mlstab9803bib106) 2001; 7
Wittek (mlstab9803bib5) 2014
Youssry (mlstab9803bib67) 2020; 5
Tang (mlstab9803bib78) 2019
Dunjko (mlstab9803bib7) 2018; 81
Pfeiffer (mlstab9803bib92) 2016; 6
Liu (mlstab9803bib51) 2018; 97
Sgroi (mlstab9803bib59) 2020
Wan (mlstab9803bib26) 2017; 3
Silver (mlstab9803bib100) 2016; 529
Zahedinejad (mlstab9803bib45) 2015; 114
Schäfer (mlstab9803bib61) 2002
Gonzalez-Raya (mlstab9803bib35) 2020; 4
Russell (mlstab9803bib4) 2009
Torlai (mlstab9803bib74) 2018; 14
Torrontegui (mlstab9803bib32) 2019; 125
Venturelli (mlstab9803bib38) 2015; 5
Kalantre (mlstab9803bib72) 2019; 5
Wootters (mlstab9803bib86) 1982; 299
Gardner (mlstab9803bib82) 1970; 223
Lamata (mlstab9803bib20) 2017; 7
Alvarez-Rodriguez (mlstab9803bib85) 2018; 8
Khoshaman (mlstab9803bib30) 2019; 4
Wallnöfer (mlstab9803bib60) 2019
Amin (mlstab9803bib40) 2018; 8
References_xml – year: 2014
  ident: mlstab9803bib5
  article-title: Quantum Machine Learning
– volume: 5
  start-page: 85
  year: 2019
  ident: mlstab9803bib62
  article-title: When does reinforcement learning stand out in quantum control? A comparative study on state preparation
  publication-title: npj Quantum Inform.
  doi: 10.1038/s41534-019-0201-8
– volume: 543
  start-page: 171
  year: 2017
  ident: mlstab9803bib1
  article-title: Commercialize early quantum technologies
  publication-title: Nature
  doi: 10.1038/543171a
– volume: 83
  start-page: 3077
  year: 1999
  ident: mlstab9803bib87
  article-title: Quantum games and quantum strategies
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.3077
– volume: 14
  start-page: 1
  year: 2015
  ident: mlstab9803bib39
  article-title: A case study in programming a quantum annealer for hard operational planning problems
  publication-title: Quantum Inf. Proc.
  doi: 10.1007/s11128-014-0892-x
– volume: 2
  year: 2019
  ident: mlstab9803bib29
  article-title: Experimental implementation of a quantum autoencoder via quantum adders
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201800065
– volume: 5
  year: 2020
  ident: mlstab9803bib67
  article-title: Modeling and control of a reconfigurable photonic circuit using deep learning
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab60de
– volume: 123
  year: 2019
  ident: mlstab9803bib73
  article-title: Integrating neural networks with a quantum simulator for state reconstruction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.230504
– volume: 3
  start-page: 36
  year: 2017
  ident: mlstab9803bib26
  article-title: Quantum generalisation of feedforward neural networks
  publication-title: npj Quantum Inform.
  doi: 10.1038/s41534-017-0032-4
– volume: 1
  start-page: 8
  year: 2014
  ident: mlstab9803bib81
  article-title: The past, present and future of artificial life
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2014.00008
– volume: 343
  start-page: 754
  year: 2014
  ident: mlstab9803bib105
  article-title: Designing collective behavior in a termite-inspired robot construction team
  publication-title: Science
  doi: 10.1126/science.1245842
– volume: 116
  year: 2016
  ident: mlstab9803bib56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.090405
– volume: 4
  start-page: 1
  year: 2017
  ident: mlstab9803bib48
  article-title: Approximate quantum adders with genetic algorithms: An IBM quantum experience
  publication-title: Quantum Meas. Quantum Metrol.
  doi: 10.1515/qmetro-2017-0001
– volume: 4
  start-page: 4910
  year: 2014
  ident: mlstab9803bib83
  article-title: Biomimetic cloning of quantum observables
  publication-title: Sci. Rep.
  doi: 10.1038/srep04910
– volume: 14
  start-page: 447
  year: 2018
  ident: mlstab9803bib74
  article-title: Neural-network quantum state tomography
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0048-5
– volume: 122
  year: 2019
  ident: mlstab9803bib28
  article-title: Experimental realization of a quantum autoencoder: The compression of Qutrits via machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.060501
– year: 2018
  ident: mlstab9803bib99
– volume: 4
  year: 2018
  ident: mlstab9803bib27
  article-title: Quantum autoencoders via quantum adders with genetic algorithms
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aae22b
– volume: 3
  year: 2020
  ident: mlstab9803bib70
  article-title: Machine learning transfer efficiencies for noisy quantum walks
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201900115
– volume: 1
  year: 2020
  ident: mlstab9803bib24
  article-title: Reinforcement learning for semi-autonomous approximate quantum eigensolver
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/ab43b4
– volume: 9
  year: 2019
  ident: mlstab9803bib76
  article-title: Pattern recognition techniques for boson sampling validation
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.011013
– volume: 7
  start-page: 1609
  year: 2017
  ident: mlstab9803bib20
  article-title: Basic protocols in quantum reinforcement learning with superconducting circuits
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01711-6
– volume: 125
  year: 2019
  ident: mlstab9803bib32
  article-title: Unitary quantum perceptron as efficient universal approximator
  publication-title: EPL
  doi: 10.1209/0295-5075/125/30004
– year: 2018
  ident: mlstab9803bib9
– volume: 56
  start-page: 172
  year: 2015
  ident: mlstab9803bib8
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2014.964942
– volume: 81
  year: 2018
  ident: mlstab9803bib7
  article-title: Machine learning & artificial intelligence in the quantum domain: a review of recent progress
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aab406
– volume: 6
  year: 2016
  ident: mlstab9803bib46
  article-title: Designing high-fidelity single-shot three-qubit gates: a machine-learning approach
  publication-title: Phys. Rev. Applied
  doi: 10.1103/PhysRevApplied.6.054005
– volume: 299
  start-page: 802
  year: 1982
  ident: mlstab9803bib86
  article-title: A single quantum cannot be cloned
  publication-title: Nature
  doi: 10.1038/299802a0
– volume: 810
  start-page: 1
  year: 2019
  ident: mlstab9803bib50
  article-title: A high-bias, low-variance introduction to Machine Learning for physicists
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2019.03.001
– volume: 1
  year: 2020
  ident: mlstab9803bib75
  article-title: Repetitive readout enhanced by machine learning
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/ab4e24
– volume: 3
  year: 2018
  ident: mlstab9803bib94
  article-title: Invited article: Quantum memristors in quantum photonics
  publication-title: APL Phot.
  doi: 10.1063/1.5036596
– volume: 7
  year: 2017
  ident: mlstab9803bib93
  article-title: Quantum memristors with superconducting circuits
  publication-title: Sci. Rep.
  doi: 10.1038/srep42044
– volume: 6
  year: 2016
  ident: mlstab9803bib84
  article-title: Artificial life in quantum technologies
  publication-title: Sci. Rep.
  doi: 10.1038/srep20956
– volume: 62
  start-page: 1025
  year: 2017
  ident: mlstab9803bib16
  article-title: Distributed secure quantum machine learning
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.06.007
– volume: 5
  start-page: 26
  year: 2019
  ident: mlstab9803bib31
  article-title: An artificial neuron implemented on an actual quantum processor
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-019-0140-4
– volume: 38
  start-page: 1207
  year: 2008
  ident: mlstab9803bib17
  article-title: Quantum Reinforcement Learning
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2008.925743
– ident: mlstab9803bib97
– volume: 6
  year: 2016
  ident: mlstab9803bib95
  article-title: Qubit-based memcapacitors and meminductors
  publication-title: Phys. Rev. Applied
  doi: 10.1103/PhysRevApplied.6.014006
– volume: 10
  start-page: 631
  year: 2014
  ident: mlstab9803bib14
  article-title: Quantum principal component analysis
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3029
– volume: 98
  year: 2018
  ident: mlstab9803bib55
  article-title: Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.224305
– year: 2019
  ident: mlstab9803bib60
  article-title: Machine learning for long-distance quantum communication
– year: 2020
  ident: mlstab9803bib65
– volume: 13
  start-page: 431
  year: 2017
  ident: mlstab9803bib49
  article-title: Machine learning phases of matter
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4035
– volume: 79
  start-page: 325
  year: 1997
  ident: mlstab9803bib102
  article-title: Quantum mechanics helps in searching for a needle in a haystack
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.325
– volume: 3
  year: 2018
  ident: mlstab9803bib44
  article-title: Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aab859
– year: 2002
  ident: mlstab9803bib61
  article-title: A differentiable programming method for quantum control
– volume: 2
  start-page: 79
  year: 2018
  ident: mlstab9803bib109
  article-title: Quantum Computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 2
  year: 2017
  ident: mlstab9803bib25
  article-title: Quantum autoencoders for efficient compression of quantum data
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aa8072
– volume: 97
  start-page: 1717
  year: 2009
  ident: mlstab9803bib96
  article-title: Circuit elements with memory: memristors, memcapacitors and meminductors
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2021077
– year: 2010
  ident: mlstab9803bib90
  article-title: A Quantum Game of Life
– volume: 521
  start-page: 436
  year: 2015
  ident: mlstab9803bib3
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 529
  start-page: 484
  year: 2016
  ident: mlstab9803bib100
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– year: 1997
  ident: mlstab9803bib80
– volume: 7
  year: 2017
  ident: mlstab9803bib42
  article-title: Quantum-assisted learning of hardware-embedded probabilistic graphical models
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.7.041052
– volume: 8
  year: 2018
  ident: mlstab9803bib85
  article-title: Quantum artificial life in an IBM quantum computer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33125-3
– volume: 22
  year: 2020
  ident: mlstab9803bib66
  article-title: Supervised learning of time-independent Hamiltonians for gate design
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab8aaf
– year: 2018
  ident: mlstab9803bib64
– year: 2019
  ident: mlstab9803bib78
  article-title: A quantum-inspired classical algorithm for recommendation systems
  doi: 10.1145/3313276.3316310
– volume: 5
  year: 2015
  ident: mlstab9803bib103
  article-title: The forbidden quantum adder
  publication-title: Sci. Rep.
  doi: 10.1038/srep11983
– volume: 98
  year: 2018
  ident: mlstab9803bib22
  article-title: Measurement-based adaptation protocol with quantum reinforcement learning
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.042315
– volume: 8
  year: 2018
  ident: mlstab9803bib53
  article-title: Reinforcement learning with neural networks for quantum feedback
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.8.031084
– year: 2020
  ident: mlstab9803bib77
– volume: 7
  start-page: 225
  year: 2001
  ident: mlstab9803bib106
  article-title: Artificial chemistries – a review
  publication-title: Artif. Life
  doi: 10.1162/106454601753238636
– volume: 91
  year: 2019
  ident: mlstab9803bib52
  article-title: Machine learning and the physical sciences
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 3
  year: 2018
  ident: mlstab9803bib43
  article-title: Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aabd98
– year: 2020
  ident: mlstab9803bib59
– volume: 5
  start-page: 82
  year: 2019
  ident: mlstab9803bib63
  article-title: Generalizable control for quantum parameter estimation through reinforcement learning
  publication-title: npj Quantum Inform.
  doi: 10.1038/s41534-019-0198-z
– volume: 549
  year: 2017
  ident: mlstab9803bib6
  article-title: Quantum machine learning
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 4
  start-page: 32
  year: 2020
  ident: mlstab9803bib11
  article-title: A non-review of Quantum Machine Learning: trends and explorations
  publication-title: Quantum
  doi: 10.22331/qv-2020-03-17-32
– volume: 103
  year: 2009
  ident: mlstab9803bib12
  article-title: Quantum algorithm for linear systems of equations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.150502
– volume: 116
  year: 2016
  ident: mlstab9803bib47
  article-title: Genetic algorithms for digital quantum simulations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.230504
– year: 2017
  ident: mlstab9803bib33
– volume: 16
  year: 2018
  ident: mlstab9803bib68
  article-title: Quantum Markovianity as a supervised learning task
  publication-title: Int. J. Quantum Info.
  doi: 10.1142/S0219749918400105
– volume: 2
  start-page: 302
  year: 2012
  ident: mlstab9803bib88
  article-title: On Quantum Effects in a Theory of Biological Evolution
  publication-title: Sci. Rep.
  doi: 10.1038/srep00302
– year: 1997
  ident: mlstab9803bib107
– volume: 13
  year: 2018
  ident: mlstab9803bib21
  article-title: Multiqubit and multilevel quantum reinforcement learning with quantum technologies
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0200455
– volume: 116
  year: 2016
  ident: mlstab9803bib104
  article-title: Creating a superposition of unknown quantum states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.110403
– volume: 114
  year: 2015
  ident: mlstab9803bib45
  article-title: High-fidelity single-shot Toffoli gate via quantum control
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.200502
– year: 2008
  ident: mlstab9803bib89
– volume: 6
  start-page: 9507
  year: 2016
  ident: mlstab9803bib92
  article-title: Quantum memristors
  publication-title: Sci. Rep.
  doi: 10.1038/srep29507
– volume: 6
  start-page: 533
  year: 2005
  ident: mlstab9803bib108
  article-title: Synthetic biology
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1637
– volume: 8
  year: 2018
  ident: mlstab9803bib40
  article-title: Quantum Boltzmann Machine
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.8.021050
– volume: 21
  year: 2019
  ident: mlstab9803bib71
  article-title: Predicting quantum advantage by quantum walk with convolutional neural networks
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab5c5e
– year: 2020
  ident: mlstab9803bib2
– volume: 97
  year: 2012
  ident: mlstab9803bib91
  article-title: Quantum Game of Life
  publication-title: EPL
  doi: 10.1209/0295-5075/97/20012
– volume: 117
  year: 2016
  ident: mlstab9803bib19
  article-title: Quantum-enhanced machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.130501
– volume: 223
  start-page: 120
  year: 1970
  ident: mlstab9803bib82
  article-title: The fantastic combinations of John Conway’s new solitaire game “life”
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1070-120
– volume: 473
  start-page: 194
  year: 2011
  ident: mlstab9803bib37
  article-title: Quantum annealing with manufactured spins
  publication-title: Nature
  doi: 10.1038/nature10012
– volume: 13
  start-page: 2567
  year: 2014
  ident: mlstab9803bib10
  article-title: The quest for a quantum neural network
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-014-0809-8
– volume: 12
  year: 2019
  ident: mlstab9803bib34
  article-title: Quantized Single-Ion-Channel Hodgkin-Huxley model for quantum neurons
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.014037
– volume: 4
  year: 2014
  ident: mlstab9803bib18
  article-title: Quantum speedup for active learning agents
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.4.031002
– volume: 96
  year: 2017
  ident: mlstab9803bib41
  article-title: Tomography and generative training with quantum Boltzmann machines
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.062327
– volume: 4
  start-page: 224
  year: 2020
  ident: mlstab9803bib35
  article-title: Quantized three-ion-channel neuron model for neural action potentials
  publication-title: Quantum
  doi: 10.22331/q-2020-01-20-224
– volume: 2
  year: 2019
  ident: mlstab9803bib23
  article-title: Reconstruction of a Photonic Qubit State with Reinforcement Learning
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201800074
– volume: 550
  start-page: 354
  year: 2017
  ident: mlstab9803bib101
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– year: 2020
  ident: mlstab9803bib57
– volume: 5
  start-page: 6
  year: 2019
  ident: mlstab9803bib72
  article-title: Machine learning techniques for state recognition and auto-tuning in quantum dots
  publication-title: npj Quantum Inform.
  doi: 10.1038/s41534-018-0118-7
– volume: 4
  year: 2019
  ident: mlstab9803bib30
  article-title: Quantum variational autoencoder
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aada1f
– volume: 2
  start-page: 1
  year: 2020
  ident: mlstab9803bib58
  article-title: A reinforcement learning approach for quantum state engineering Quantum Mach. Intell.
  doi: 10.1007/s42484-020-00016-8
– volume: 5
  year: 2015
  ident: mlstab9803bib38
  article-title: Quantum optimization of fully connected spin glasses
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.5.031040
– volume: 8
  year: 2018
  ident: mlstab9803bib54
  article-title: Reinforcement learning in different phases of quantum control
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.8.031086
– volume: 7
  year: 2017
  ident: mlstab9803bib36
  article-title: Supervised quantum learning without measurements
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13378-0
– year: 2019
  ident: mlstab9803bib15
  article-title: Optimizing quantum optimization algorithms via faster quantum gradient computation
  doi: 10.1137/1.9781611975482.87
– volume: 2
  year: 2019
  ident: mlstab9803bib98
  article-title: Quantum machine learning and bioinspired quantum technologies
  publication-title: Adv. Quantum Technol.
  doi: 10.1002/qute.201900075
– volume: 113
  year: 2014
  ident: mlstab9803bib13
  article-title: Quantum Support vector machine for big data classification
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.130503
– volume: 97
  year: 2018
  ident: mlstab9803bib51
  article-title: Quantum machine learning for quantum anomaly detection
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.042315
– volume: 115
  start-page: 1221
  year: 2018
  ident: mlstab9803bib56
  article-title: Active learning machine learns to create new quantum experiments
  publication-title: PNAS
  doi: 10.1073/pnas.1714936115
– year: 2020
  ident: mlstab9803bib56
  article-title: Computer-inspired Quantum Experiments
  doi: 10.1038/s42254-020-0230-4
– year: 2019
  ident: mlstab9803bib79
– volume: 124
  year: 2020
  ident: mlstab9803bib69
  article-title: Machine learning non-markovian quantum dynamics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.140502
– year: 2009
  ident: mlstab9803bib4
SSID ssj0002513520
Score 2.4325488
SecondaryResourceType review_article
Snippet Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33002
SubjectTerms Biomimetics
Machine learning
Memristors
quantum artificial intelligence
quantum artificial life
quantum autoencoders
quantum biomimetics
quantum machine learning
quantum memristors
quantum reinforcement learning
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UPXgRnxFF04MePDS70G679UKIkXhQgokabs32sYYEloUFf7_t0oUYEy5mj50mm37TznQ6Mx8AtzFOWqEmDEnDE0QkT5FMaIwo0SQhsf1K_pTPF9bvx8MhH_iAW-HTKqszsTyo9VS5GHng7DB1zapYJ58hxxrlXlc9hcYu2LOeTculdL22B-sYi51j_YvQv07a_RS47uTIWjkcJJLHFVOWt0a7o2n-50gu7Uyv_t8_PAKH3sOE3ZVKHIMdk52AesXeAP1mPgWdt6Vd1eUETsp8SgM9gcQXTDINZ37QleePJq7SsXiAXZhvajPPwEfv6f3xGXk6BaTsHWyBrOuGMY1SoiLXhUsqmXKTSMwNKx0DQxljiilMFddYUR0ZIyUhnBhMKGb4HNSyaWYuACQyMty0NZfSkNCiHLdoxHFoTZ1up4o2QFAtq1C-17ijvBiL8s07joUDQjggxAqIBrhfz8hXfTa2yN5ZpITfbMUWOfhLbjIuFqIlsAgxtsohcp02QLPCciO3AfJy-_AVOGi763eZctYEtcV8aa7BvvpejIr5TamLP4mW5BY
  priority: 102
  providerName: ProQuest
Title Quantum machine learning and quantum biomimetics: A perspective
URI https://iopscience.iop.org/article/10.1088/2632-2153/ab9803
https://www.proquest.com/docview/2512683027
Volume 1
WOSCitedRecordID wos000660860700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: K7-
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: PIMPY
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M2P
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7x6IELrxY1FCIf2gMHN5vY60c5IEBBoJZ0W0ELJ2vt9VZIJKQk6ZHfznjXCUJUCAmtNFppx_Lq82PGj_kG4KNieTspuKTW65xyq0tqc6Go4AXPucKnyp_y65vs9dTFhc7mYHcWC3MzjFP_Z3ytiYJrCOOFONUKDOMULRVr5VarwPS5yBSacezM39nv2QYLGm50LpJ4NPm_go9M0TxW92Q-rozM0cqrfm8VlqNvSfZr1TWY84N1WJnmbSBxGL-FvR8TxHPSJ_3qJqUnMXXEH5IPCvI3fgyB-Vf9EOM4-kL2yfAhKvMdnB91zw6PaUykQB2uvsYUnTbGRFpylwb-LetsqX1umfaycgm8kFI66ZhwumBOFKn31nKuuWdcMMk2YGFwM_DvgXCbeu07hbbW8wTbV7VFqlmCRq7olE40oDXF1LjIMh6SXVyb6rRbKRPwMQEfU-PTgJ1ZiWHNsPGM7ieE3cRhNnpGjzzS61-PxqZtmEkYw55hhkXZgK1pWz_oBWdPBEY0ufnCmj7AUieswKtbZ1uwML6d-G144_6Nr0a3TVg86Payn81qpY_yq6QoTztZkHfdZtVjUSs7Oc0u7wHmaeUP
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD6CDmm8wGCbKLf5AR54sJrGjh0jTQgxEIhSgcQm3rz4kqkSbUPTgvhT_MbZqUOFJvWNhymPPomSnM_n-HL8fQB7KcnakaEcKysyTJXIscpYihk1NKOpuyr9lF8d3u2md3fiegFe6rMwvqyyjolVoDZD7dfIWz4PM09WxY-KB-xVo_zuai2hMYXFpX1-clO28vvFD-ff_Tg-O709OcdBVQBrNxUZYzeCIYQlOdWJJ6NSWuXCZooIy6v8aBnnXHNNmBaGaGYSa5WiVFBLKCOcuOcuwgfqmcV8qWB8_bqm497RjWeisBvq-m_Ls6Fjl1VJK1MirZW5QvZb7A2Lf1JAldfOVv-3P_IJVsIIGh1PIb8GC3awDqu1OgUKweozHN1MHGomfdSv6kUtCgIZf1A2MOghNHr6gV7fn-QsD9ExKmZnT7_Az3f5jK_QGAwHdgMQVYkVNjZCKUsjh-K0zRJBIpfKTZxr1oRW7UapA5e6l_S4l9WefppK73jpHS-njm_CwesdxZRHZI7tvkOGDMGknGOH3tj178uxbEsiI0IcGGVh8iZs19iZ2c2Aszm_-Rt8PL-96sjORfdyC5Zjv9RQlddtQ2M8mtgdWNKP41452q36AYLf7w2zvwA7QBc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MT5mQd98KGuW9J8-CKiDkWZCn7sLTRpKoNtTrv595u02cZQRJC-lPZCyu8uuUuT-x3AAcdxLUwIC5QRcUCUSAMVUx5QkpCYcHvl9VOeb1mzyVstce_rnOa5MG99P_Uf29uCKLiA0B-I41XHMB5YT4WrsRI8xNV-ks7CnOMpcWZ9h1_GP1ms87ZPQ789-VPjKXc0a7v8NifnjqZR_vcnLsOSjzHRWSG-AjOmtwrlUf0G5IfzGpw-DC2uwy7q5icqDfIlJF5R3EvQu3_pEvTbXZfrmJ2gM9SfZGeuw1Pj8vH8KvAFFQJtV2GDwAZvGNMoJTpyPFxKq1SYWGFhWB4aGMoY00xjqkWCNU0iY5QiRBCDCcUMb0Cp99Yzm4CIioww9UQoZUho9cxrNBI4tM4uqaeaVqA6wlVqzzbuil50ZL7rzbl0GEmHkSwwqsDRuEW_YNr4RfbQQi_9cMt-kUNTct1ONpA1iWWIsbUOadVSgZ2RvidyLuijjhmNbf2xp31YuL9oyNvr5s02LNbdojw_iLYDpcHH0OzCvP4ctLOPvdxAvwCiLONF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+machine+learning+and+quantum+biomimetics%3A+A+perspective&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Lamata%2C+Lucas&rft.date=2020-09-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1088%2F2632-2153%2Fab9803&rft.externalDocID=mlstab9803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon