Quantum machine learning and quantum biomimetics: A perspective
Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more efficient machine learning calculations by means of quantum devices, while, on the other hand, to employ machine learning techniques to better con...
Gespeichert in:
| Veröffentlicht in: | Machine learning: science and technology Jg. 1; H. 3; S. 33002 - 33012 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Bristol
IOP Publishing
01.09.2020
|
| Schlagworte: | |
| ISSN: | 2632-2153, 2632-2153 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more efficient machine learning calculations by means of quantum devices, while, on the other hand, to employ machine learning techniques to better control quantum systems. Inside quantum machine learning, quantum reinforcement learning aims at developing 'intelligent' quantum agents that may interact with the outer world and adapt to it, with the strategy of achieving some final goal. Another paradigm inside quantum machine learning is that of quantum autoencoders, which may allow one for employing fewer resources in a quantum device via a training process. Moreover, the field of quantum biomimetics aims at establishing analogies between biological and quantum systems, to look for previously inadvertent connections that may enable useful applications. Two recent examples are the concepts of quantum artificial life, as well as of quantum memristors. In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community. |
|---|---|
| AbstractList | Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more efficient machine learning calculations by means of quantum devices, while, on the other hand, to employ machine learning techniques to better control quantum systems. Inside quantum machine learning, quantum reinforcement learning aims at developing ‘intelligent’ quantum agents that may interact with the outer world and adapt to it, with the strategy of achieving some final goal. Another paradigm inside quantum machine learning is that of quantum autoencoders, which may allow one for employing fewer resources in a quantum device via a training process. Moreover, the field of quantum biomimetics aims at establishing analogies between biological and quantum systems, to look for previously inadvertent connections that may enable useful applications. Two recent examples are the concepts of quantum artificial life, as well as of quantum memristors. In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community. |
| Author | Lamata, Lucas |
| Author_xml | – sequence: 1 givenname: Lucas orcidid: 0000-0002-9504-8685 surname: Lamata fullname: Lamata, Lucas organization: Molecular y Nuclear, Universidad de Sevilla Departamento de Física Atómica, 41080 Sevilla, Spain |
| BookMark | eNp9kctLxDAQxoOs4Lru3WPBgxerSfNo60WWxRcsiKDnkKZTzdKm3SQr-N_b0kVFZE8ZMr9vHt8co4ltLSB0SvAlwVl2lQiaxAnh9EoVeYbpAZp-f01-xUdo7v0aY5xwQnmCp-jmeats2DZRo_S7sRDVoJw19i1Stow2u2Rh2sY0EIz219Ei6sD5DnQwH3CCDitVe5jv3hl6vbt9WT7Eq6f7x-ViFWvGshBzwSkVvGKak1ywQhdVDqqgOaQYZyQHkaapTjUVOi-pFiUHKArGcgaUCZrSGTob63au3WzBB7lut872LWW_SyIyipOBEiOlXeu9g0pqE1QwrQ1OmVoSLAe_5GCIHAyRo1-9EP8Rds40yn3uk1yMEtN2P8Pswc__wZu634RIKnuiv4rsyop-Ac7AiJA |
| CODEN | MLSTCK |
| CitedBy_id | crossref_primary_10_1080_23746149_2023_2165452 crossref_primary_10_1002_qute_202300059 crossref_primary_10_1088_2058_9565_abfc94 crossref_primary_10_1109_TWC_2021_3102139 crossref_primary_10_3390_brainsci13020303 crossref_primary_10_1002_qute_202300219 crossref_primary_10_3389_fnins_2022_736642 crossref_primary_10_3390_photonics8020033 crossref_primary_10_1038_s42005_024_01763_x crossref_primary_10_1515_nanoph_2022_0652 crossref_primary_10_1103_PhysRevResearch_3_L032049 crossref_primary_10_1109_ACCESS_2024_3506656 crossref_primary_10_3390_app11188589 crossref_primary_10_1007_s00500_022_07131_7 crossref_primary_10_1038_s41598_021_90534_7 crossref_primary_10_1103_PhysRevApplied_17_024002 crossref_primary_10_1038_s41598_021_96048_6 crossref_primary_10_1103_PhysRevApplied_16_044057 crossref_primary_10_1088_1367_2630_abf798 crossref_primary_10_3390_medsci12040067 crossref_primary_10_1002_qute_202300247 crossref_primary_10_1038_s41598_022_10677_z crossref_primary_10_1103_PhysRevResearch_4_043056 crossref_primary_10_1038_s41566_022_00975_3 crossref_primary_10_1002_qute_202100053 crossref_primary_10_1103_PhysRevResearch_3_L032057 crossref_primary_10_1109_TPAMI_2022_3203157 crossref_primary_10_1103_PhysRevResearch_3_023051 crossref_primary_10_1007_s42484_022_00063_3 crossref_primary_10_1038_s41534_023_00766_w crossref_primary_10_1088_2058_9565_abb8e5 crossref_primary_10_1002_qute_202300043 crossref_primary_10_1088_2058_9565_abb8e4 |
| Cites_doi | 10.1038/s41534-019-0201-8 10.1038/543171a 10.1103/PhysRevLett.83.3077 10.1007/s11128-014-0892-x 10.1002/qute.201800065 10.1088/2058-9565/ab60de 10.1103/PhysRevLett.123.230504 10.1038/s41534-017-0032-4 10.3389/frobt.2014.00008 10.1126/science.1245842 10.1103/PhysRevLett.116.090405 10.1515/qmetro-2017-0001 10.1038/srep04910 10.1038/s41567-018-0048-5 10.1103/PhysRevLett.122.060501 10.1088/2058-9565/aae22b 10.1002/qute.201900115 10.1088/2632-2153/ab43b4 10.1103/PhysRevX.9.011013 10.1038/s41598-017-01711-6 10.1209/0295-5075/125/30004 10.1080/00107514.2014.964942 10.1088/1361-6633/aab406 10.1103/PhysRevApplied.6.054005 10.1038/299802a0 10.1016/j.physrep.2019.03.001 10.1088/2632-2153/ab4e24 10.1063/1.5036596 10.1038/srep42044 10.1038/srep20956 10.1016/j.scib.2017.06.007 10.1038/s41534-019-0140-4 10.1109/TSMCB.2008.925743 10.1103/PhysRevApplied.6.014006 10.1038/nphys3029 10.1103/PhysRevB.98.224305 10.1038/nphys4035 10.1103/PhysRevLett.79.325 10.1088/2058-9565/aab859 10.22331/q-2018-08-06-79 10.1088/2058-9565/aa8072 10.1109/JPROC.2009.2021077 10.1038/nature14539 10.1038/nature16961 10.1103/PhysRevX.7.041052 10.1038/s41598-018-33125-3 10.1088/1367-2630/ab8aaf 10.1145/3313276.3316310 10.1038/srep11983 10.1103/PhysRevA.98.042315 10.1103/PhysRevX.8.031084 10.1162/106454601753238636 10.1103/RevModPhys.91.045002 10.1088/2058-9565/aabd98 10.1038/s41534-019-0198-z 10.1038/nature23474 10.22331/qv-2020-03-17-32 10.1103/PhysRevLett.103.150502 10.1103/PhysRevLett.116.230504 10.1142/S0219749918400105 10.1038/srep00302 10.1371/journal.pone.0200455 10.1103/PhysRevLett.116.110403 10.1103/PhysRevLett.114.200502 10.1038/srep29507 10.1038/nrg1637 10.1103/PhysRevX.8.021050 10.1088/1367-2630/ab5c5e 10.1209/0295-5075/97/20012 10.1103/PhysRevLett.117.130501 10.1038/scientificamerican1070-120 10.1038/nature10012 10.1007/s11128-014-0809-8 10.1103/PhysRevApplied.12.014037 10.1103/PhysRevX.4.031002 10.1103/PhysRevA.96.062327 10.22331/q-2020-01-20-224 10.1002/qute.201800074 10.1038/nature24270 10.1038/s41534-018-0118-7 10.1088/2058-9565/aada1f 10.1007/s42484-020-00016-8 10.1103/PhysRevX.5.031040 10.1103/PhysRevX.8.031086 10.1038/s41598-017-13378-0 10.1137/1.9781611975482.87 10.1002/qute.201900075 10.1103/PhysRevLett.113.130503 10.1103/PhysRevA.97.042315 10.1073/pnas.1714936115 10.1038/s42254-020-0230-4 10.1103/PhysRevLett.124.140502 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by IOP Publishing Ltd Copyright IOP Publishing Sep 2020 |
| Copyright_xml | – notice: 2020 The Author(s). Published by IOP Publishing Ltd – notice: Copyright IOP Publishing Sep 2020 |
| DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1088/2632-2153/ab9803 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | Quantum machine learning and quantum biomimetics: A perspective |
| EISSN | 2632-2153 |
| ExternalDocumentID | 10_1088_2632_2153_ab9803 mlstab9803 |
| GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación funderid: http://dx.doi.org/10.13039/501100004837 |
| GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PIMPY TSCCA AAYXX AEINN AFFHD CITATION PHGZM PHGZT PQGLB 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c448t-5653365f4c51964bcbf9eab39e700819e6777c7c36c9d3c6d5eebb4494e346373 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660860700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2632-2153 |
| IngestDate | Fri Jul 25 03:43:57 EDT 2025 Tue Nov 18 22:45:17 EST 2025 Sat Nov 29 04:11:28 EST 2025 Wed Aug 21 03:38:34 EDT 2024 Thu Jan 07 14:56:17 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c448t-5653365f4c51964bcbf9eab39e700819e6777c7c36c9d3c6d5eebb4494e346373 |
| Notes | MLST-100112.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9504-8685 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/2632-2153/ab9803 |
| PQID | 2512683027 |
| PQPubID | 4916454 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2512683027 crossref_citationtrail_10_1088_2632_2153_ab9803 crossref_primary_10_1088_2632_2153_ab9803 iop_journals_10_1088_2632_2153_ab9803 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Machine learning: science and technology |
| PublicationTitleAbbrev | MLST |
| PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Werfel (mlstab9803bib105) 2014; 343 Carleo (mlstab9803bib52) 2019; 91 Melnikov (mlstab9803bib70) 2020; 3 Torlai (mlstab9803bib73) 2019; 123 Dunjko (mlstab9803bib11) 2020; 4 Schuld (mlstab9803bib9) 2018 Zhang (mlstab9803bib62) 2019; 5 Zahedinejad (mlstab9803bib46) 2016; 6 Luchnikov (mlstab9803bib69) 2020; 124 (mlstab9803bib2) 2020 Alvarez-Rodriguez (mlstab9803bib84) 2016; 6 Ding (mlstab9803bib29) 2019; 2 Agresti (mlstab9803bib76) 2019; 9 Fösel (mlstab9803bib53) 2018; 8 Carrasquilla (mlstab9803bib77) 2020 Bukov (mlstab9803bib55) 2018; 98 Mohseni (mlstab9803bib1) 2017; 543 Sweke (mlstab9803bib64) 2018 Rebentrost (mlstab9803bib13) 2014; 113 Cao (mlstab9803bib33) 2017 Rieffel (mlstab9803bib39) 2015; 14 Mehta (mlstab9803bib50) 2019; 810 Paparo (mlstab9803bib18) 2014; 4 Johnson (mlstab9803bib37) 2011; 473 Lamata (mlstab9803bib27) 2018; 4 Lloyd (mlstab9803bib14) 2014; 10 Carrasquilla (mlstab9803bib49) 2017; 13 Martin-Delgado (mlstab9803bib88) 2012; 2 Perdomo-Ortiz (mlstab9803bib44) 2018; 3 Melnikov (mlstab9803bib56) 2018; 115 Benedetti (mlstab9803bib42) 2017; 7 Fösel (mlstab9803bib65) 2020 Romero (mlstab9803bib25) 2017; 2 Mackeprang (mlstab9803bib58) 2020; 2 Langton (mlstab9803bib80) 1997 Dong (mlstab9803bib17) 2008; 38 Yu (mlstab9803bib23) 2019; 2 Silver (mlstab9803bib101) 2017; 550 Pepper (mlstab9803bib28) 2019; 122 Las Heras (mlstab9803bib47) 2016; 116 Arrazola (mlstab9803bib79) 2019 Bleh (mlstab9803bib91) 2012; 97 Abbott (mlstab9803bib89) 2008 Sutton (mlstab9803bib99) 2018 Oszmaniec (mlstab9803bib104) 2016; 116 Gilyén (mlstab9803bib15) 2019 Lamata (mlstab9803bib98) 2019; 2 Bukov (mlstab9803bib54) 2018; 8 Aguilar (mlstab9803bib81) 2014; 1 Innocenti (mlstab9803bib66) 2020; 22 Biamonte (mlstab9803bib6) 2017; 549 Benedetti (mlstab9803bib43) 2018; 3 Eisert (mlstab9803bib87) 1999; 83 Salmilehto (mlstab9803bib93) 2017; 7 Baeck (mlstab9803bib107) 1997 Cárdenas-López (mlstab9803bib21) 2018; 13 Alvarez-Rodriguez (mlstab9803bib103) 2015; 5 Dunjko (mlstab9803bib19) 2016; 117 Shrapnel (mlstab9803bib68) 2018; 16 Krenn (mlstab9803bib56) 2016; 116 Krenn (mlstab9803bib56) 2020 Kieferová (mlstab9803bib41) 2017; 96 Li (mlstab9803bib48) 2017; 4 Melnikov (mlstab9803bib71) 2019; 21 mlstab9803bib97 Preskill (mlstab9803bib109) 2018; 2 Albarrán-Arriagada (mlstab9803bib22) 2018; 98 Liu (mlstab9803bib75) 2020; 1 Schuld (mlstab9803bib8) 2015; 56 Albarrán-Arriagada (mlstab9803bib24) 2020; 1 Schuld (mlstab9803bib10) 2014; 13 Arrighi (mlstab9803bib90) 2010 Sanz (mlstab9803bib94) 2018; 3 LeCun (mlstab9803bib3) 2015; 521 Alvarez-Rodriguez (mlstab9803bib83) 2014; 4 Harrow (mlstab9803bib12) 2009; 103 Di Ventra (mlstab9803bib96) 2009; 97 Shevchenko (mlstab9803bib95) 2016; 6 Melnikov (mlstab9803bib57) 2020 Sheng (mlstab9803bib16) 2017; 62 Benner (mlstab9803bib108) 2005; 6 Xu (mlstab9803bib63) 2019; 5 Grover (mlstab9803bib102) 1997; 79 Gonzalez-Raya (mlstab9803bib34) 2019; 12 Alvarez-Rodriguez (mlstab9803bib36) 2017; 7 Tacchino (mlstab9803bib31) 2019; 5 Dittrich (mlstab9803bib106) 2001; 7 Wittek (mlstab9803bib5) 2014 Youssry (mlstab9803bib67) 2020; 5 Tang (mlstab9803bib78) 2019 Dunjko (mlstab9803bib7) 2018; 81 Pfeiffer (mlstab9803bib92) 2016; 6 Liu (mlstab9803bib51) 2018; 97 Sgroi (mlstab9803bib59) 2020 Wan (mlstab9803bib26) 2017; 3 Silver (mlstab9803bib100) 2016; 529 Zahedinejad (mlstab9803bib45) 2015; 114 Schäfer (mlstab9803bib61) 2002 Gonzalez-Raya (mlstab9803bib35) 2020; 4 Russell (mlstab9803bib4) 2009 Torlai (mlstab9803bib74) 2018; 14 Torrontegui (mlstab9803bib32) 2019; 125 Venturelli (mlstab9803bib38) 2015; 5 Kalantre (mlstab9803bib72) 2019; 5 Wootters (mlstab9803bib86) 1982; 299 Gardner (mlstab9803bib82) 1970; 223 Lamata (mlstab9803bib20) 2017; 7 Alvarez-Rodriguez (mlstab9803bib85) 2018; 8 Khoshaman (mlstab9803bib30) 2019; 4 Wallnöfer (mlstab9803bib60) 2019 Amin (mlstab9803bib40) 2018; 8 |
| References_xml | – year: 2014 ident: mlstab9803bib5 article-title: Quantum Machine Learning – volume: 5 start-page: 85 year: 2019 ident: mlstab9803bib62 article-title: When does reinforcement learning stand out in quantum control? A comparative study on state preparation publication-title: npj Quantum Inform. doi: 10.1038/s41534-019-0201-8 – volume: 543 start-page: 171 year: 2017 ident: mlstab9803bib1 article-title: Commercialize early quantum technologies publication-title: Nature doi: 10.1038/543171a – volume: 83 start-page: 3077 year: 1999 ident: mlstab9803bib87 article-title: Quantum games and quantum strategies publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.3077 – volume: 14 start-page: 1 year: 2015 ident: mlstab9803bib39 article-title: A case study in programming a quantum annealer for hard operational planning problems publication-title: Quantum Inf. Proc. doi: 10.1007/s11128-014-0892-x – volume: 2 year: 2019 ident: mlstab9803bib29 article-title: Experimental implementation of a quantum autoencoder via quantum adders publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201800065 – volume: 5 year: 2020 ident: mlstab9803bib67 article-title: Modeling and control of a reconfigurable photonic circuit using deep learning publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ab60de – volume: 123 year: 2019 ident: mlstab9803bib73 article-title: Integrating neural networks with a quantum simulator for state reconstruction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.230504 – volume: 3 start-page: 36 year: 2017 ident: mlstab9803bib26 article-title: Quantum generalisation of feedforward neural networks publication-title: npj Quantum Inform. doi: 10.1038/s41534-017-0032-4 – volume: 1 start-page: 8 year: 2014 ident: mlstab9803bib81 article-title: The past, present and future of artificial life publication-title: Front. Robot. AI doi: 10.3389/frobt.2014.00008 – volume: 343 start-page: 754 year: 2014 ident: mlstab9803bib105 article-title: Designing collective behavior in a termite-inspired robot construction team publication-title: Science doi: 10.1126/science.1245842 – volume: 116 year: 2016 ident: mlstab9803bib56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.090405 – volume: 4 start-page: 1 year: 2017 ident: mlstab9803bib48 article-title: Approximate quantum adders with genetic algorithms: An IBM quantum experience publication-title: Quantum Meas. Quantum Metrol. doi: 10.1515/qmetro-2017-0001 – volume: 4 start-page: 4910 year: 2014 ident: mlstab9803bib83 article-title: Biomimetic cloning of quantum observables publication-title: Sci. Rep. doi: 10.1038/srep04910 – volume: 14 start-page: 447 year: 2018 ident: mlstab9803bib74 article-title: Neural-network quantum state tomography publication-title: Nat. Phys. doi: 10.1038/s41567-018-0048-5 – volume: 122 year: 2019 ident: mlstab9803bib28 article-title: Experimental realization of a quantum autoencoder: The compression of Qutrits via machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.060501 – year: 2018 ident: mlstab9803bib99 – volume: 4 year: 2018 ident: mlstab9803bib27 article-title: Quantum autoencoders via quantum adders with genetic algorithms publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aae22b – volume: 3 year: 2020 ident: mlstab9803bib70 article-title: Machine learning transfer efficiencies for noisy quantum walks publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201900115 – volume: 1 year: 2020 ident: mlstab9803bib24 article-title: Reinforcement learning for semi-autonomous approximate quantum eigensolver publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/ab43b4 – volume: 9 year: 2019 ident: mlstab9803bib76 article-title: Pattern recognition techniques for boson sampling validation publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.011013 – volume: 7 start-page: 1609 year: 2017 ident: mlstab9803bib20 article-title: Basic protocols in quantum reinforcement learning with superconducting circuits publication-title: Sci. Rep. doi: 10.1038/s41598-017-01711-6 – volume: 125 year: 2019 ident: mlstab9803bib32 article-title: Unitary quantum perceptron as efficient universal approximator publication-title: EPL doi: 10.1209/0295-5075/125/30004 – year: 2018 ident: mlstab9803bib9 – volume: 56 start-page: 172 year: 2015 ident: mlstab9803bib8 article-title: An introduction to quantum machine learning publication-title: Contemp. Phys. doi: 10.1080/00107514.2014.964942 – volume: 81 year: 2018 ident: mlstab9803bib7 article-title: Machine learning & artificial intelligence in the quantum domain: a review of recent progress publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aab406 – volume: 6 year: 2016 ident: mlstab9803bib46 article-title: Designing high-fidelity single-shot three-qubit gates: a machine-learning approach publication-title: Phys. Rev. Applied doi: 10.1103/PhysRevApplied.6.054005 – volume: 299 start-page: 802 year: 1982 ident: mlstab9803bib86 article-title: A single quantum cannot be cloned publication-title: Nature doi: 10.1038/299802a0 – volume: 810 start-page: 1 year: 2019 ident: mlstab9803bib50 article-title: A high-bias, low-variance introduction to Machine Learning for physicists publication-title: Phys. Rep. doi: 10.1016/j.physrep.2019.03.001 – volume: 1 year: 2020 ident: mlstab9803bib75 article-title: Repetitive readout enhanced by machine learning publication-title: Mach. Learn.: Sci. Technol. doi: 10.1088/2632-2153/ab4e24 – volume: 3 year: 2018 ident: mlstab9803bib94 article-title: Invited article: Quantum memristors in quantum photonics publication-title: APL Phot. doi: 10.1063/1.5036596 – volume: 7 year: 2017 ident: mlstab9803bib93 article-title: Quantum memristors with superconducting circuits publication-title: Sci. Rep. doi: 10.1038/srep42044 – volume: 6 year: 2016 ident: mlstab9803bib84 article-title: Artificial life in quantum technologies publication-title: Sci. Rep. doi: 10.1038/srep20956 – volume: 62 start-page: 1025 year: 2017 ident: mlstab9803bib16 article-title: Distributed secure quantum machine learning publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.06.007 – volume: 5 start-page: 26 year: 2019 ident: mlstab9803bib31 article-title: An artificial neuron implemented on an actual quantum processor publication-title: npj Quantum Inf. doi: 10.1038/s41534-019-0140-4 – volume: 38 start-page: 1207 year: 2008 ident: mlstab9803bib17 article-title: Quantum Reinforcement Learning publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2008.925743 – ident: mlstab9803bib97 – volume: 6 year: 2016 ident: mlstab9803bib95 article-title: Qubit-based memcapacitors and meminductors publication-title: Phys. Rev. Applied doi: 10.1103/PhysRevApplied.6.014006 – volume: 10 start-page: 631 year: 2014 ident: mlstab9803bib14 article-title: Quantum principal component analysis publication-title: Nat. Phys. doi: 10.1038/nphys3029 – volume: 98 year: 2018 ident: mlstab9803bib55 article-title: Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.224305 – year: 2019 ident: mlstab9803bib60 article-title: Machine learning for long-distance quantum communication – year: 2020 ident: mlstab9803bib65 – volume: 13 start-page: 431 year: 2017 ident: mlstab9803bib49 article-title: Machine learning phases of matter publication-title: Nat. Phys. doi: 10.1038/nphys4035 – volume: 79 start-page: 325 year: 1997 ident: mlstab9803bib102 article-title: Quantum mechanics helps in searching for a needle in a haystack publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.325 – volume: 3 year: 2018 ident: mlstab9803bib44 article-title: Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aab859 – year: 2002 ident: mlstab9803bib61 article-title: A differentiable programming method for quantum control – volume: 2 start-page: 79 year: 2018 ident: mlstab9803bib109 article-title: Quantum Computing in the NISQ era and beyond publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – volume: 2 year: 2017 ident: mlstab9803bib25 article-title: Quantum autoencoders for efficient compression of quantum data publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aa8072 – volume: 97 start-page: 1717 year: 2009 ident: mlstab9803bib96 article-title: Circuit elements with memory: memristors, memcapacitors and meminductors publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2021077 – year: 2010 ident: mlstab9803bib90 article-title: A Quantum Game of Life – volume: 521 start-page: 436 year: 2015 ident: mlstab9803bib3 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 529 start-page: 484 year: 2016 ident: mlstab9803bib100 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – year: 1997 ident: mlstab9803bib80 – volume: 7 year: 2017 ident: mlstab9803bib42 article-title: Quantum-assisted learning of hardware-embedded probabilistic graphical models publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.7.041052 – volume: 8 year: 2018 ident: mlstab9803bib85 article-title: Quantum artificial life in an IBM quantum computer publication-title: Sci. Rep. doi: 10.1038/s41598-018-33125-3 – volume: 22 year: 2020 ident: mlstab9803bib66 article-title: Supervised learning of time-independent Hamiltonians for gate design publication-title: New J. Phys. doi: 10.1088/1367-2630/ab8aaf – year: 2018 ident: mlstab9803bib64 – year: 2019 ident: mlstab9803bib78 article-title: A quantum-inspired classical algorithm for recommendation systems doi: 10.1145/3313276.3316310 – volume: 5 year: 2015 ident: mlstab9803bib103 article-title: The forbidden quantum adder publication-title: Sci. Rep. doi: 10.1038/srep11983 – volume: 98 year: 2018 ident: mlstab9803bib22 article-title: Measurement-based adaptation protocol with quantum reinforcement learning publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.042315 – volume: 8 year: 2018 ident: mlstab9803bib53 article-title: Reinforcement learning with neural networks for quantum feedback publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.8.031084 – year: 2020 ident: mlstab9803bib77 – volume: 7 start-page: 225 year: 2001 ident: mlstab9803bib106 article-title: Artificial chemistries – a review publication-title: Artif. Life doi: 10.1162/106454601753238636 – volume: 91 year: 2019 ident: mlstab9803bib52 article-title: Machine learning and the physical sciences publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045002 – volume: 3 year: 2018 ident: mlstab9803bib43 article-title: Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aabd98 – year: 2020 ident: mlstab9803bib59 – volume: 5 start-page: 82 year: 2019 ident: mlstab9803bib63 article-title: Generalizable control for quantum parameter estimation through reinforcement learning publication-title: npj Quantum Inform. doi: 10.1038/s41534-019-0198-z – volume: 549 year: 2017 ident: mlstab9803bib6 article-title: Quantum machine learning publication-title: Nature doi: 10.1038/nature23474 – volume: 4 start-page: 32 year: 2020 ident: mlstab9803bib11 article-title: A non-review of Quantum Machine Learning: trends and explorations publication-title: Quantum doi: 10.22331/qv-2020-03-17-32 – volume: 103 year: 2009 ident: mlstab9803bib12 article-title: Quantum algorithm for linear systems of equations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.150502 – volume: 116 year: 2016 ident: mlstab9803bib47 article-title: Genetic algorithms for digital quantum simulations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.230504 – year: 2017 ident: mlstab9803bib33 – volume: 16 year: 2018 ident: mlstab9803bib68 article-title: Quantum Markovianity as a supervised learning task publication-title: Int. J. Quantum Info. doi: 10.1142/S0219749918400105 – volume: 2 start-page: 302 year: 2012 ident: mlstab9803bib88 article-title: On Quantum Effects in a Theory of Biological Evolution publication-title: Sci. Rep. doi: 10.1038/srep00302 – year: 1997 ident: mlstab9803bib107 – volume: 13 year: 2018 ident: mlstab9803bib21 article-title: Multiqubit and multilevel quantum reinforcement learning with quantum technologies publication-title: PLoS ONE doi: 10.1371/journal.pone.0200455 – volume: 116 year: 2016 ident: mlstab9803bib104 article-title: Creating a superposition of unknown quantum states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.110403 – volume: 114 year: 2015 ident: mlstab9803bib45 article-title: High-fidelity single-shot Toffoli gate via quantum control publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.200502 – year: 2008 ident: mlstab9803bib89 – volume: 6 start-page: 9507 year: 2016 ident: mlstab9803bib92 article-title: Quantum memristors publication-title: Sci. Rep. doi: 10.1038/srep29507 – volume: 6 start-page: 533 year: 2005 ident: mlstab9803bib108 article-title: Synthetic biology publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1637 – volume: 8 year: 2018 ident: mlstab9803bib40 article-title: Quantum Boltzmann Machine publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.8.021050 – volume: 21 year: 2019 ident: mlstab9803bib71 article-title: Predicting quantum advantage by quantum walk with convolutional neural networks publication-title: New J. Phys. doi: 10.1088/1367-2630/ab5c5e – year: 2020 ident: mlstab9803bib2 – volume: 97 year: 2012 ident: mlstab9803bib91 article-title: Quantum Game of Life publication-title: EPL doi: 10.1209/0295-5075/97/20012 – volume: 117 year: 2016 ident: mlstab9803bib19 article-title: Quantum-enhanced machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.130501 – volume: 223 start-page: 120 year: 1970 ident: mlstab9803bib82 article-title: The fantastic combinations of John Conway’s new solitaire game “life” publication-title: Sci. Am. doi: 10.1038/scientificamerican1070-120 – volume: 473 start-page: 194 year: 2011 ident: mlstab9803bib37 article-title: Quantum annealing with manufactured spins publication-title: Nature doi: 10.1038/nature10012 – volume: 13 start-page: 2567 year: 2014 ident: mlstab9803bib10 article-title: The quest for a quantum neural network publication-title: Quantum Inf. Process. doi: 10.1007/s11128-014-0809-8 – volume: 12 year: 2019 ident: mlstab9803bib34 article-title: Quantized Single-Ion-Channel Hodgkin-Huxley model for quantum neurons publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.014037 – volume: 4 year: 2014 ident: mlstab9803bib18 article-title: Quantum speedup for active learning agents publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.4.031002 – volume: 96 year: 2017 ident: mlstab9803bib41 article-title: Tomography and generative training with quantum Boltzmann machines publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.062327 – volume: 4 start-page: 224 year: 2020 ident: mlstab9803bib35 article-title: Quantized three-ion-channel neuron model for neural action potentials publication-title: Quantum doi: 10.22331/q-2020-01-20-224 – volume: 2 year: 2019 ident: mlstab9803bib23 article-title: Reconstruction of a Photonic Qubit State with Reinforcement Learning publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201800074 – volume: 550 start-page: 354 year: 2017 ident: mlstab9803bib101 article-title: Mastering the game of Go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – year: 2020 ident: mlstab9803bib57 – volume: 5 start-page: 6 year: 2019 ident: mlstab9803bib72 article-title: Machine learning techniques for state recognition and auto-tuning in quantum dots publication-title: npj Quantum Inform. doi: 10.1038/s41534-018-0118-7 – volume: 4 year: 2019 ident: mlstab9803bib30 article-title: Quantum variational autoencoder publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aada1f – volume: 2 start-page: 1 year: 2020 ident: mlstab9803bib58 article-title: A reinforcement learning approach for quantum state engineering Quantum Mach. Intell. doi: 10.1007/s42484-020-00016-8 – volume: 5 year: 2015 ident: mlstab9803bib38 article-title: Quantum optimization of fully connected spin glasses publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.5.031040 – volume: 8 year: 2018 ident: mlstab9803bib54 article-title: Reinforcement learning in different phases of quantum control publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.8.031086 – volume: 7 year: 2017 ident: mlstab9803bib36 article-title: Supervised quantum learning without measurements publication-title: Sci. Rep. doi: 10.1038/s41598-017-13378-0 – year: 2019 ident: mlstab9803bib15 article-title: Optimizing quantum optimization algorithms via faster quantum gradient computation doi: 10.1137/1.9781611975482.87 – volume: 2 year: 2019 ident: mlstab9803bib98 article-title: Quantum machine learning and bioinspired quantum technologies publication-title: Adv. Quantum Technol. doi: 10.1002/qute.201900075 – volume: 113 year: 2014 ident: mlstab9803bib13 article-title: Quantum Support vector machine for big data classification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.130503 – volume: 97 year: 2018 ident: mlstab9803bib51 article-title: Quantum machine learning for quantum anomaly detection publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.042315 – volume: 115 start-page: 1221 year: 2018 ident: mlstab9803bib56 article-title: Active learning machine learns to create new quantum experiments publication-title: PNAS doi: 10.1073/pnas.1714936115 – year: 2020 ident: mlstab9803bib56 article-title: Computer-inspired Quantum Experiments doi: 10.1038/s42254-020-0230-4 – year: 2019 ident: mlstab9803bib79 – volume: 124 year: 2020 ident: mlstab9803bib69 article-title: Machine learning non-markovian quantum dynamics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.140502 – year: 2009 ident: mlstab9803bib4 |
| SSID | ssj0002513520 |
| Score | 2.4325488 |
| SecondaryResourceType | review_article |
| Snippet | Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more... |
| SourceID | proquest crossref iop |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 33002 |
| SubjectTerms | Biomimetics Machine learning Memristors quantum artificial intelligence quantum artificial life quantum autoencoders quantum biomimetics quantum machine learning quantum memristors quantum reinforcement learning |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UPXgRnxFF04MePDS70G679UKIkXhQgokabs32sYYEloUFf7_t0oUYEy5mj50mm37TznQ6Mx8AtzFOWqEmDEnDE0QkT5FMaIwo0SQhsf1K_pTPF9bvx8MhH_iAW-HTKqszsTyo9VS5GHng7DB1zapYJ58hxxrlXlc9hcYu2LOeTculdL22B-sYi51j_YvQv07a_RS47uTIWjkcJJLHFVOWt0a7o2n-50gu7Uyv_t8_PAKH3sOE3ZVKHIMdk52AesXeAP1mPgWdt6Vd1eUETsp8SgM9gcQXTDINZ37QleePJq7SsXiAXZhvajPPwEfv6f3xGXk6BaTsHWyBrOuGMY1SoiLXhUsqmXKTSMwNKx0DQxljiilMFddYUR0ZIyUhnBhMKGb4HNSyaWYuACQyMty0NZfSkNCiHLdoxHFoTZ1up4o2QFAtq1C-17ijvBiL8s07joUDQjggxAqIBrhfz8hXfTa2yN5ZpITfbMUWOfhLbjIuFqIlsAgxtsohcp02QLPCciO3AfJy-_AVOGi763eZctYEtcV8aa7BvvpejIr5TamLP4mW5BY priority: 102 providerName: ProQuest |
| Title | Quantum machine learning and quantum biomimetics: A perspective |
| URI | https://iopscience.iop.org/article/10.1088/2632-2153/ab9803 https://www.proquest.com/docview/2512683027 |
| Volume | 1 |
| WOSCitedRecordID | wos000660860700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: K7- dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: PIMPY dateStart: 20200301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M2P dateStart: 20200301 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7x6IELrxY1FCIf2gMHN5vY60c5IEBBoJZ0W0ELJ2vt9VZIJKQk6ZHfznjXCUJUCAmtNFppx_Lq82PGj_kG4KNieTspuKTW65xyq0tqc6Go4AXPucKnyp_y65vs9dTFhc7mYHcWC3MzjFP_Z3ytiYJrCOOFONUKDOMULRVr5VarwPS5yBSacezM39nv2QYLGm50LpJ4NPm_go9M0TxW92Q-rozM0cqrfm8VlqNvSfZr1TWY84N1WJnmbSBxGL-FvR8TxHPSJ_3qJqUnMXXEH5IPCvI3fgyB-Vf9EOM4-kL2yfAhKvMdnB91zw6PaUykQB2uvsYUnTbGRFpylwb-LetsqX1umfaycgm8kFI66ZhwumBOFKn31nKuuWdcMMk2YGFwM_DvgXCbeu07hbbW8wTbV7VFqlmCRq7olE40oDXF1LjIMh6SXVyb6rRbKRPwMQEfU-PTgJ1ZiWHNsPGM7ieE3cRhNnpGjzzS61-PxqZtmEkYw55hhkXZgK1pWz_oBWdPBEY0ufnCmj7AUieswKtbZ1uwML6d-G144_6Nr0a3TVg86Payn81qpY_yq6QoTztZkHfdZtVjUSs7Oc0u7wHmaeUP |
| linkProvider | IOP Publishing |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD6CDmm8wGCbKLf5AR54sJrGjh0jTQgxEIhSgcQm3rz4kqkSbUPTgvhT_MbZqUOFJvWNhymPPomSnM_n-HL8fQB7KcnakaEcKysyTJXIscpYihk1NKOpuyr9lF8d3u2md3fiegFe6rMwvqyyjolVoDZD7dfIWz4PM09WxY-KB-xVo_zuai2hMYXFpX1-clO28vvFD-ff_Tg-O709OcdBVQBrNxUZYzeCIYQlOdWJJ6NSWuXCZooIy6v8aBnnXHNNmBaGaGYSa5WiVFBLKCOcuOcuwgfqmcV8qWB8_bqm497RjWeisBvq-m_Ls6Fjl1VJK1MirZW5QvZb7A2Lf1JAldfOVv-3P_IJVsIIGh1PIb8GC3awDqu1OgUKweozHN1MHGomfdSv6kUtCgIZf1A2MOghNHr6gV7fn-QsD9ExKmZnT7_Az3f5jK_QGAwHdgMQVYkVNjZCKUsjh-K0zRJBIpfKTZxr1oRW7UapA5e6l_S4l9WefppK73jpHS-njm_CwesdxZRHZI7tvkOGDMGknGOH3tj178uxbEsiI0IcGGVh8iZs19iZ2c2Aszm_-Rt8PL-96sjORfdyC5Zjv9RQlddtQ2M8mtgdWNKP41452q36AYLf7w2zvwA7QBc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MT5mQd98KGuW9J8-CKiDkWZCn7sLTRpKoNtTrv595u02cZQRJC-lPZCyu8uuUuT-x3AAcdxLUwIC5QRcUCUSAMVUx5QkpCYcHvl9VOeb1mzyVstce_rnOa5MG99P_Uf29uCKLiA0B-I41XHMB5YT4WrsRI8xNV-ks7CnOMpcWZ9h1_GP1ms87ZPQ789-VPjKXc0a7v8NifnjqZR_vcnLsOSjzHRWSG-AjOmtwrlUf0G5IfzGpw-DC2uwy7q5icqDfIlJF5R3EvQu3_pEvTbXZfrmJ2gM9SfZGeuw1Pj8vH8KvAFFQJtV2GDwAZvGNMoJTpyPFxKq1SYWGFhWB4aGMoY00xjqkWCNU0iY5QiRBCDCcUMb0Cp99Yzm4CIioww9UQoZUho9cxrNBI4tM4uqaeaVqA6wlVqzzbuil50ZL7rzbl0GEmHkSwwqsDRuEW_YNr4RfbQQi_9cMt-kUNTct1ONpA1iWWIsbUOadVSgZ2RvidyLuijjhmNbf2xp31YuL9oyNvr5s02LNbdojw_iLYDpcHH0OzCvP4ctLOPvdxAvwCiLONF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+machine+learning+and+quantum+biomimetics%3A+A+perspective&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Lamata%2C+Lucas&rft.date=2020-09-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1088%2F2632-2153%2Fab9803&rft.externalDocID=mlstab9803 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |