Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts

Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Society reviews Jg. 47; H. 11; S. 4112
Hauptverfasser: Debecker, Damien P, Le Bras, Solène, Boissière, Cédric, Chaumonnot, Alexandra, Sanchez, Clément
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.01.2018
ISSN:1460-4744, 1460-4744
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in various relevant chemical reactions like isomerisation, hydrogenation, olefin metathesis, pollutant total oxidation, selective oxidation, CO2 methanation, etc. A short survey of patents and industrial applications is also presented. Our objective is to demonstrate the tremendous possibilities offered by the coupling between bottom up synthesis routes and these aerosol processing technologies which will most probably represent a major route of innovation in the mushrooming field of catalyst preparation research.
AbstractList Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in various relevant chemical reactions like isomerisation, hydrogenation, olefin metathesis, pollutant total oxidation, selective oxidation, CO2 methanation, etc. A short survey of patents and industrial applications is also presented. Our objective is to demonstrate the tremendous possibilities offered by the coupling between bottom up synthesis routes and these aerosol processing technologies which will most probably represent a major route of innovation in the mushrooming field of catalyst preparation research.
Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in various relevant chemical reactions like isomerisation, hydrogenation, olefin metathesis, pollutant total oxidation, selective oxidation, CO2 methanation, etc. A short survey of patents and industrial applications is also presented. Our objective is to demonstrate the tremendous possibilities offered by the coupling between bottom up synthesis routes and these aerosol processing technologies which will most probably represent a major route of innovation in the mushrooming field of catalyst preparation research.Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in various relevant chemical reactions like isomerisation, hydrogenation, olefin metathesis, pollutant total oxidation, selective oxidation, CO2 methanation, etc. A short survey of patents and industrial applications is also presented. Our objective is to demonstrate the tremendous possibilities offered by the coupling between bottom up synthesis routes and these aerosol processing technologies which will most probably represent a major route of innovation in the mushrooming field of catalyst preparation research.
Author Sanchez, Clément
Debecker, Damien P
Boissière, Cédric
Le Bras, Solène
Chaumonnot, Alexandra
Author_xml – sequence: 1
  givenname: Damien P
  surname: Debecker
  fullname: Debecker, Damien P
  email: damien.debecker@uclouvain.be
  organization: Université catholique de Louvain, Institute of Condensed Matter and Nanosciences, Place Louis Pasteur, 1, box L4.01.09, 1348 Louvain-La-Neuve, Belgium. damien.debecker@uclouvain.be
– sequence: 2
  givenname: Solène
  surname: Le Bras
  fullname: Le Bras, Solène
– sequence: 3
  givenname: Cédric
  surname: Boissière
  fullname: Boissière, Cédric
– sequence: 4
  givenname: Alexandra
  surname: Chaumonnot
  fullname: Chaumonnot, Alexandra
– sequence: 5
  givenname: Clément
  surname: Sanchez
  fullname: Sanchez, Clément
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29658544$$D View this record in MEDLINE/PubMed
BookMark eNpNUMtOwzAQtFARpYULH4B85BKwHT9iblXFS6rEBQ6cIsfetEapXWK3qH9PVIrEaUe7M6OZnaBRiAEQuqLklpJS31llEyFSq-UJOqdckoIrzkf_8BhNUvokhFIl2RkaMy1FJTg_Rx8z6GOKHd700UJKPizvscHfPjgcW-xDiDuTfQwDxHkFuPXQHU7G7Uyw4PAK8uCxhABxm7A12XT7lNMFOm1Nl-DyOKfo_fHhbf5cLF6fXuazRWE5r3LBoTSUyUa6UophVVImnG6g1a0rlakY4VARpaVtWkEoZ4Iqql3ppFO2HNhTdPPrOzT42kLK9donC11nDoFqRphQWrNBOkXXR-q2WYOrN71fm35f_72D_QBY-2LC
CitedBy_id crossref_primary_10_1016_j_micromeso_2021_111090
crossref_primary_10_3390_catal11020196
crossref_primary_10_1007_s10971_019_05175_0
crossref_primary_10_1016_j_optmat_2022_112201
crossref_primary_10_3390_toxins17080378
crossref_primary_10_1051_e3sconf_202451602005
crossref_primary_10_1021_acsami_4c22163
crossref_primary_10_3390_ma13163485
crossref_primary_10_1016_j_cej_2023_142715
crossref_primary_10_1016_j_apcatb_2019_118427
crossref_primary_10_1002_smll_202404142
crossref_primary_10_14356_kona_2023016
crossref_primary_10_1016_j_cej_2022_140134
crossref_primary_10_1039_D5CS00169B
crossref_primary_10_1002_aenm_201802136
crossref_primary_10_1039_D0SE00211A
crossref_primary_10_1016_j_jmst_2021_11_080
crossref_primary_10_1007_s11356_018_3439_3
crossref_primary_10_3390_catal13121460
crossref_primary_10_1002_chem_201903680
crossref_primary_10_1002_smll_202310813
crossref_primary_10_1016_j_progsolidstchem_2018_09_001
crossref_primary_10_1007_s12666_022_02840_x
crossref_primary_10_1021_acs_energyfuels_5c00125
crossref_primary_10_1039_C9MH01408J
crossref_primary_10_1016_j_susmat_2025_e01250
crossref_primary_10_3390_catal14050328
crossref_primary_10_1016_j_ejpb_2024_114297
crossref_primary_10_1016_j_ijhydene_2020_02_210
crossref_primary_10_3390_nano13233006
crossref_primary_10_1039_D1RA03064G
crossref_primary_10_3390_en15249594
crossref_primary_10_1002_adma_202306648
crossref_primary_10_1039_C9SC04615A
crossref_primary_10_1016_j_apsusc_2025_164638
crossref_primary_10_1016_j_jclepro_2024_143499
crossref_primary_10_1016_j_cej_2021_131273
crossref_primary_10_1016_j_apcata_2025_120420
crossref_primary_10_1016_j_apcatb_2024_124987
crossref_primary_10_1002_advs_202204929
crossref_primary_10_1002_anie_202206870
crossref_primary_10_1016_j_cogsc_2020_100437
crossref_primary_10_1016_j_jcat_2021_05_017
crossref_primary_10_1016_j_jaerosci_2022_106023
crossref_primary_10_1016_j_jcis_2024_02_180
crossref_primary_10_1016_j_ccr_2019_213051
crossref_primary_10_1039_C8RA09347D
crossref_primary_10_3390_app15147693
crossref_primary_10_1016_j_clce_2025_100172
crossref_primary_10_1016_j_jcis_2019_08_084
crossref_primary_10_1016_j_matchemphys_2025_130477
crossref_primary_10_1016_j_cej_2021_129884
crossref_primary_10_1016_j_cattod_2024_114575
crossref_primary_10_3390_catal13010060
crossref_primary_10_1002_smll_202309114
crossref_primary_10_1016_j_cej_2020_124485
crossref_primary_10_1002_ange_202206870
crossref_primary_10_1016_j_micromeso_2019_109915
crossref_primary_10_1246_bcsj_20190222
crossref_primary_10_2174_0115701786362014250102043411
crossref_primary_10_1039_D2CY00275B
crossref_primary_10_1016_j_matchemphys_2024_130002
crossref_primary_10_1016_j_cattod_2025_115494
crossref_primary_10_1016_j_cej_2025_165594
crossref_primary_10_1002_ente_202400321
crossref_primary_10_1039_D3NR06518A
crossref_primary_10_1016_j_scriptamat_2022_114761
crossref_primary_10_1016_j_micromeso_2019_05_059
crossref_primary_10_1016_j_jcou_2022_101917
crossref_primary_10_1002_tcr_202300087
crossref_primary_10_1002_chem_202005473
crossref_primary_10_1002_cctc_202101132
crossref_primary_10_1038_s41598_023_28823_6
crossref_primary_10_1002_aic_16968
crossref_primary_10_1016_j_clay_2019_01_006
crossref_primary_10_7717_peerj_6880
crossref_primary_10_1016_j_micromeso_2025_113610
crossref_primary_10_1039_D4CY00646A
crossref_primary_10_1016_j_ultsonch_2019_01_009
crossref_primary_10_1016_j_ica_2020_119833
crossref_primary_10_1016_j_jece_2025_116753
crossref_primary_10_1007_s10971_021_05680_1
crossref_primary_10_1016_j_checat_2022_05_013
crossref_primary_10_1002_anie_202010192
crossref_primary_10_1039_D1NR03535E
crossref_primary_10_1016_j_cej_2025_159299
crossref_primary_10_1002_cssc_202001951
crossref_primary_10_1016_j_apcata_2023_119065
crossref_primary_10_1016_j_jaerosci_2020_105608
crossref_primary_10_1016_j_ensm_2024_103901
crossref_primary_10_1016_j_apcata_2019_05_017
crossref_primary_10_1002_cjce_24883
crossref_primary_10_1016_j_micromeso_2021_110896
crossref_primary_10_1002_smll_202204744
crossref_primary_10_1002_cctc_201901078
crossref_primary_10_1016_j_cej_2020_126958
crossref_primary_10_1002_ange_202010192
crossref_primary_10_1016_j_apt_2022_103581
crossref_primary_10_1039_D3MH01020A
crossref_primary_10_1016_j_mtchem_2025_103026
ContentType Journal Article
DBID NPM
7X8
DOI 10.1039/c7cs00697g
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
ExternalDocumentID 29658544
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
NPM
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
YIN
Z5M
~02
7X8
AAFBY
ABUFD
AGMRB
AKMSF
ALUYA
R56
ID FETCH-LOGICAL-c448t-4e3a126b6d365c443125d9bef9fd37a8204e80796cbf5014251719d3d6d7c3312
IEDL.DBID 7X8
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434489200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-4744
IngestDate Sun Nov 09 14:40:20 EST 2025
Wed Feb 19 02:43:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-4e3a126b6d365c443125d9bef9fd37a8204e80796cbf5014251719d3d6d7c3312
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 29658544
PQID 2025799214
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2025799214
pubmed_primary_29658544
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 20180101
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2018
SSID ssj0011762
Score 2.5891798
SecondaryResourceType review_article
Snippet Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4112
Title Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts
URI https://www.ncbi.nlm.nih.gov/pubmed/29658544
https://www.proquest.com/docview/2025799214
Volume 47
WOSCitedRecordID wos000434489200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UCnrx_agvVvAabLKb3awXKcXixdKDQj2V7EsL0lRTFf-9s5vEngTBSwh5wOzuZObbmcl8ABd-j5EJrSNmuY2YoCpSNGeRVsbxxKnYchPIJsRgkI1GclgH3Mq6rLKxicFQm0L7GLnfpKdCyiRm17PXyLNG-exqTaGxDC2KUMZrtRgtsgixCISiaAw6KAZjTXtSKi-10J4KXIqn36FlcDH9zf8KtwUbNbgk3UobtmHJTndgrddwuu3CY9eiVyxeyKz6PwD91hXJySduzEnhyOSHIhVPCUJDEgrc_K2mVoA8-_qZAtXOFu8lCdGfr3Je7sFD_-a-dxvV5AqRxtWZ49rQPE644obyFC9RRDpGKuukM1TkCAyYzTpCcq2czz361maxNNRwIzTFp_dhZVpM7SGQjs0TxxTnWqIJcDITSiWa5VYahwA0bcN5M2tjHK_PSORByPFi3tpwUE39eFZ12Rgnvi1NytjRH94-hnUEMlkVGjmBlsNP157Cqv6YT8q3s6AVeBwM774BQkbDNw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aerosol+processing%3A+a+wind+of+innovation+in+the+field+of+advanced+heterogeneous+catalysts&rft.jtitle=Chemical+Society+reviews&rft.au=Debecker%2C+Damien+P&rft.au=Le+Bras%2C+Sol%C3%A8ne&rft.au=Boissi%C3%A8re%2C+C%C3%A9dric&rft.au=Chaumonnot%2C+Alexandra&rft.date=2018-01-01&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=47&rft.issue=11&rft.spage=4112&rft_id=info:doi/10.1039%2Fc7cs00697g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-4744&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-4744&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-4744&client=summon