Stochastic Maximum-Likelihood DOA Estimation in the Presence of Unknown Nonuniform Noise
This correspondence investigates the direction-of-arrival (DOA) estimation of multiple narrowband sources in the presence of nonuniform white noise with an arbitrary diagonal covariance matrix. While both the deterministic and stochastic Cramer-Rao bound (CRB) and the deterministic maximum-likelihoo...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 56; číslo 7; s. 3038 - 3044 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.07.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This correspondence investigates the direction-of-arrival (DOA) estimation of multiple narrowband sources in the presence of nonuniform white noise with an arbitrary diagonal covariance matrix. While both the deterministic and stochastic Cramer-Rao bound (CRB) and the deterministic maximum-likelihood (ML) DOA estimator under this model have been derived by Pesavento and Gershman, the stochastic ML DOA estimator under the same setting is still not available in the literature. In this correspondence, a new stochastic ML DOA estimator is derived. Its implementation is based on an iterative procedure which concentrates the log-likelihood function with respect to the signal and noise nuisance parameters in a stepwise fashion. A modified inverse iteration algorithm is also presented for the estimation of the noise parameters. Simulation results have shown that the proposed algorithm is able to provide significant performance improvement over the conventional uniform ML estimator in nonuniform noise environments and require only a few iterations to converge to the nonuniform stochastic CRB. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2008.917364 |