Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case

We study deterministic mean-location parameter estimation when only quantized versions of the original observations are available, due to bandwidth constraints. When the dynamic range of the parameter is small or comparable with the noise variance, we introduce a class of maximum-likelihood estimato...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 54; no. 3; pp. 1131 - 1143
Main Authors: Ribeiro, A., Giannakis, G.B.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.03.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study deterministic mean-location parameter estimation when only quantized versions of the original observations are available, due to bandwidth constraints. When the dynamic range of the parameter is small or comparable with the noise variance, we introduce a class of maximum-likelihood estimators that require transmitting just one bit per sensor to achieve an estimation variance close to that of the (clairvoyant) sample mean estimator. When the dynamic range is comparable or larger than the noise standard deviation, we show that an optimum quantization step exists to achieve the best possible variance for a given bandwidth constraint. We will also establish that in certain cases the sample mean estimator formed by quantized observations is preferable for complexity reasons. We finally touch upon algorithm implementation issues and guarantee that all the numerical maximizations required by the proposed estimators are concave.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2005.863009