The impacts of rising vapour pressure deficit in natural and managed ecosystems
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival....
Saved in:
| Published in: | Plant, cell and environment Vol. 47; no. 9; pp. 3561 - 3589 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.09.2024
Wiley |
| Subjects: | |
| ISSN: | 0140-7791, 1365-3040, 1365-3040 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Summary statement
Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them. |
|---|---|
| AbstractList | An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them. An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. Summary statement Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them. An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. |
| Author | Wright, Alexandra J. Lowman, Lauren E. L. Martínez‐Vilalta, Jordi Sadok, Walid Guan, Kaiyu Dannenberg, Matthew P. Konings, Alexandra G. McDowell, Nate G. Gentine, Pierre Johnston, Miriam R. Trugman, Anna T. Grossiord, Charlotte Williams, A. Park Moore, David J. P. Ficklin, Darren L. Abatzoglou, John T. Novick, Kimberly A. |
| Author_xml | – sequence: 1 givenname: Kimberly A. orcidid: 0000-0002-8431-0879 surname: Novick fullname: Novick, Kimberly A. email: knovick@indiana.edu organization: Indiana University – sequence: 2 givenname: Darren L. surname: Ficklin fullname: Ficklin, Darren L. organization: Indiana University – sequence: 3 givenname: Charlotte orcidid: 0000-0002-9113-3671 surname: Grossiord fullname: Grossiord, Charlotte organization: Snow and Landscape WSL – sequence: 4 givenname: Alexandra G. surname: Konings fullname: Konings, Alexandra G. organization: Stanford University – sequence: 5 givenname: Jordi surname: Martínez‐Vilalta fullname: Martínez‐Vilalta, Jordi organization: Universitat Autònoma de Barcelona – sequence: 6 givenname: Walid orcidid: 0000-0001-9637-2412 surname: Sadok fullname: Sadok, Walid organization: University of Minnesota – sequence: 7 givenname: Anna T. surname: Trugman fullname: Trugman, Anna T. organization: University of California – sequence: 8 givenname: A. Park surname: Williams fullname: Williams, A. Park organization: University of California – sequence: 9 givenname: Alexandra J. surname: Wright fullname: Wright, Alexandra J. organization: California State University Los Angeles – sequence: 10 givenname: John T. surname: Abatzoglou fullname: Abatzoglou, John T. organization: University of California – sequence: 11 givenname: Matthew P. surname: Dannenberg fullname: Dannenberg, Matthew P. organization: University of Iowa – sequence: 12 givenname: Pierre surname: Gentine fullname: Gentine, Pierre organization: Columbia University – sequence: 13 givenname: Kaiyu surname: Guan fullname: Guan, Kaiyu organization: University of Illinois Urbana‐Champaign – sequence: 14 givenname: Miriam R. surname: Johnston fullname: Johnston, Miriam R. organization: University of Iowa – sequence: 15 givenname: Lauren E. L. orcidid: 0000-0003-2960-7095 surname: Lowman fullname: Lowman, Lauren E. L. organization: Wake Forest University – sequence: 16 givenname: David J. P. surname: Moore fullname: Moore, David J. P. organization: University of Arizona – sequence: 17 givenname: Nate G. orcidid: 0000-0002-2178-2254 surname: McDowell fullname: McDowell, Nate G. organization: Washington State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38348610$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2301779$$D View this record in Osti.gov |
| BookMark | eNqFkUFP3DAQha0KVBbaQ_9AZbWX9hCYiRMnOVYr2iIhwYGeLa89AaPETu2Eav99DbtcUCt8sWR973nevGN24IMnxj4gnGI-Z5OhU6zaSr5hKxSyLgRUcMBWgBUUTdPhETtO6R4gPzTdW3YkWlG1EmHFrm7uiLtx0mZOPPQ8uuT8LX_QU1ginyKltETilnpn3Myd517PS9QD197yUXt9S5aTCWmbZhrTO3bY6yHR-_19wn59P79Z_ywur35crL9dFqbKPxcSq85Qg5sKDJTC9loI7EWLcqPr1na6Rmy1LG0PDTXUYtuRbjqLwpa46aU4YZ92viHNTqU8G5k7E7wnM6tSAObYGfqyg6YYfi-UZjW6ZGgYtKewJCWwFg3UjXwdLbtSQrbEMqOfX6D3eVc-p1UCOgE11C1k6uOeWjYjWTVFN-q4Vc-rz8DZDjAxpBSpVzmEnl3wc9RuUAjqsVyVy1VP5WbF1xeKZ9N_sXv3P26g7f9Bdb0-3yn-Aj7vsG8 |
| CitedBy_id | crossref_primary_10_1029_2024GB008362 crossref_primary_10_1111_pce_70097 crossref_primary_10_1016_j_ecoinf_2025_103144 crossref_primary_10_1002_csc2_70005 crossref_primary_10_1002_ecs2_70224 crossref_primary_10_1029_2024JG008146 crossref_primary_10_1111_nph_70056 crossref_primary_10_1038_s41467_025_63672_z crossref_primary_10_1111_1365_2745_14313 crossref_primary_10_1016_j_jhydrol_2025_133031 crossref_primary_10_1093_treephys_tpae172 crossref_primary_10_1093_aob_mcaf182 crossref_primary_10_3390_f16081222 crossref_primary_10_1093_plphys_kiaf337 crossref_primary_10_1111_gcb_17474 crossref_primary_10_1111_gcb_70434 crossref_primary_10_1007_s11676_025_01910_2 crossref_primary_10_1016_j_scitotenv_2025_178808 crossref_primary_10_1111_gcb_17509 crossref_primary_10_1016_j_foreco_2025_122686 crossref_primary_10_1126_sciadv_adu5713 crossref_primary_10_1111_nph_20068 crossref_primary_10_1016_j_scitotenv_2024_178366 crossref_primary_10_1016_j_stress_2025_100981 crossref_primary_10_1088_1748_9326_ad7520 crossref_primary_10_1002_joc_8668 crossref_primary_10_1029_2024EF005469 crossref_primary_10_1029_2024JG008356 crossref_primary_10_1038_s41477_025_02024_7 crossref_primary_10_1029_2023WR036468 crossref_primary_10_1111_pce_15338 crossref_primary_10_1111_pce_15604 crossref_primary_10_1016_j_scitotenv_2025_179146 crossref_primary_10_3390_cli13070143 crossref_primary_10_1111_nph_20182 crossref_primary_10_1111_pce_15252 crossref_primary_10_1111_pce_15490 crossref_primary_10_3389_ffgc_2024_1489081 crossref_primary_10_1111_nph_70431 crossref_primary_10_1007_s10661_025_14450_3 crossref_primary_10_3389_fpls_2024_1396004 crossref_primary_10_1111_gcb_70055 crossref_primary_10_1007_s00442_025_05746_9 crossref_primary_10_1038_s41558_025_02375_1 crossref_primary_10_1016_j_agrformet_2025_110666 crossref_primary_10_1016_j_agrformet_2025_110466 crossref_primary_10_1016_j_chemgeo_2025_122823 crossref_primary_10_1111_1365_2435_14649 crossref_primary_10_1029_2025JG009127 crossref_primary_10_1038_s41559_024_02452_2 crossref_primary_10_1093_biosci_biaf098 crossref_primary_10_1038_s43247_025_02161_z crossref_primary_10_1111_gcb_70220 crossref_primary_10_1016_j_agwat_2024_109107 crossref_primary_10_1029_2024JG008605 crossref_primary_10_1371_journal_pone_0315329 crossref_primary_10_1016_j_rse_2025_114768 crossref_primary_10_1017_dry_2024_1 crossref_primary_10_1111_pce_15030 crossref_primary_10_1029_2025JG008906 crossref_primary_10_1093_aob_mcaf075 crossref_primary_10_1016_j_scitotenv_2025_180391 crossref_primary_10_1093_conphys_coaf038 crossref_primary_10_1016_j_gecco_2025_e03835 |
| Cites_doi | 10.1016/j.foreco.2019.117500 10.1029/2019MS001790 10.1029/2020AV000283 10.5194/cp-10-1983-2014 10.1111/gcb.13913 10.1016/j.earscirev.2010.02.004 10.5194/esd-9-915-2018 10.1111/gcb.16040 10.1111/pce.12852 10.1002/ece3.664 10.1038/nature15374 10.2737/INT-GTR-143 10.1016/j.jhydrol.2020.125398 10.1111/nph.18208 10.1111/1365-2745.12211 10.1111/gcb.14107 10.1139/x76-013 10.1073/pnas.1113878108 10.1073/pnas.1802316115 10.1111/nph.18770 10.5194/gmd-8-431-2015 10.1073/pnas.2002314117 10.1111/1365-2435.13945 10.1038/nature12915 10.1016/j.agrformet.2020.108066 10.1073/pnas.1604581113 10.1038/s41467-021-25254-7 10.1002/ecy.4109 10.1002/eap.1420 10.2134/agronj15.0016 10.1111/nph.15681 10.1175/2010JCLI3812.1 10.1088/1748-9326/ab9faf 10.1111/gcb.15548 10.1029/2019EF001210 10.2136/vzj2012.0163 10.1093/jxb/eraa002 10.1093/jxb/erz150 10.1007/978-3-319-69099-5_6 10.1111/pce.14244 10.1016/0022-5193(65)90077-9 10.1038/s41558-022-01505-3 10.1038/s41586-021-03325-5 10.1111/nph.15384 10.3389/fpls.2017.00585 10.1093/jxb/erq438 10.1088/1748-9326/ac5fa1 10.21203/rs.3.rs-595210/v1 10.1111/gcb.14415 10.1046/j.1469-8137.2001.00054.x 10.1093/aob/mcac094 10.1002/2016GL069121 10.1111/nph.17552 10.1111/gcb.15976 10.1029/2020JG005665 10.1016/S0022-1694(03)00264-6 10.1038/s41586-018-0848-x 10.1038/nclimate1693 10.1016/j.jhydrol.2010.07.012 10.1016/j.agrformet.2019.107642 10.1111/nph.16866 10.1038/nclimate2641 10.1126/science.1155121 10.1111/1365-2745.13665 10.1002/2017GL076803 10.1002/ece3.1008 10.1016/j.fcr.2019.02.005 10.1111/nph.19130 10.1175/JHM-D-22-0158.1 10.1111/pce.13486 10.5194/hess-25-2399-2021 10.1111/gcb.17106 10.1111/gcb.14405 10.17190/AMF/1246088 10.1111/1365-2745.13595 10.1111/pce.12758 10.1007/s00442-007-0740-0 10.1016/j.tree.2021.02.001 10.1111/gcb.12498 10.1038/s41586-018-0539-7 10.1038/s41598-018-24642-2 10.1007/978-94-017-0519-6_48 10.1111/gcb.16214 10.1111/1365-2664.13784 10.1016/j.foreco.2020.118523 10.1111/avsc.12556 10.1038/s41558-020-0709-0 10.1038/s41586-021-03761-3 10.1016/j.agrformet.2022.109029 10.1073/pnas.1917521117 10.1029/2020JG006027 10.1007/s11104-022-05529-8 10.1111/nph.17802 10.1126/science.1165000 10.1641/B580607 10.1111/nph.18929 10.1126/sciadv.aax1396 10.3390/fire2020030 10.1073/pnas.1607171113 10.17190/AMF/1246068 10.1029/2019WR026058 10.1038/s41598-018-25838-2 10.1126/science.abm4875 10.1038/s41586-018-0240-x 10.1038/s41559-021-01654-2 10.1038/s41467-020-18631-1 10.1038/s41467-022-28652-7 10.1111/j.1466-8238.2012.00769.x 10.1890/13-1855.1 10.1038/s41586-023-06056-x 10.1016/j.wace.2015.10.004 10.1073/pnas.2114069119 10.1111/nph.16485 10.1111/nph.19000 10.1002/ecs2.2773 10.1104/pp.111.175638 10.1093/treephys/tpq054 10.1029/2021JG006431 10.1038/s41558-020-0781-5 10.5194/gmd-15-5593-2022 10.1038/s41598-019-38971-3 10.1073/pnas.1602384113 10.1073/pnas.1904955116 10.1088/1748-9326/ab22d6 10.1002/qj.4174 10.1111/nph.13748 10.1111/nph.17404 10.1111/j.1365-2486.2012.02790.x 10.1175/2009JCLI2909.1 10.1038/s41467-023-36794-5 10.1111/j.1469-8137.2009.02954.x 10.1029/2020GL089858 10.1111/j.1365-3040.2009.01977.x 10.1002/2016JD025855 10.1016/j.plantsci.2017.04.007 10.1046/j.1365-2435.2000.t01-1-00451.x 10.2134/agronj2009.0195 10.1016/j.fcr.2004.12.001 10.1126/sciadv.aat4313 10.1111/gcb.14680 10.1038/nplants.2015.139 10.17190/AMF/1245971 10.1126/sciadv.adf3166 10.1038/s41561-018-0133-5 10.3389/fpls.2013.00266 10.1111/pce.12651 10.1093/jxb/29.3.567 10.1016/j.scitotenv.2023.162960 10.1111/1365-2435.12592 10.1038/s41561-022-00909-2 10.1073/pnas.0901438106 10.1038/nature02417 10.1126/science.281.5374.237 10.1146/annurev-arplant-050213-040054 10.3389/ffgc.2020.591162 10.1093/treephys/20.1.57 10.1029/2020EF001645 10.1111/pce.12588 10.1029/2021WR030687 10.1016/j.eja.2019.03.009 10.1111/nph.15451 10.1093/treephys/tpt012 10.1038/s43017-022-00272-1 10.1073/pnas.1100371108 10.1093/jxb/erac033 10.1002/2015GL064018 10.17190/AMF/1246112 10.1111/1752-1688.12956 10.1111/nph.16196 10.1111/nph.15684 10.1111/nph.18539 10.1029/2021GL097131 10.1046/j.1365-3040.1999.00513.x 10.1111/nph.14053 10.1016/0005-2728(84)90232-9 10.1111/gcb.13136 10.1071/PP9780787 10.5194/gmd-10-1903-2017 10.1111/nph.16872 10.1104/pp.110.170704 10.1038/ngeo950 10.17190/AMF/1246036 10.1016/j.baae.2008.10.008 10.1080/15592324.2017.1356534 10.1029/2021EF002487 10.1111/gcb.16847 10.1002/qj.3803 10.1016/j.foreco.2008.09.029 10.1016/S1360-1385(03)00136-5 10.1111/nph.16456 10.1007/BF00378398 10.1038/375666a0 10.1002/2016GL069416 10.1029/2020JG005892 10.1175/JCLI‐D‐22‐0477.1 10.1002/grl.50956 10.1111/pce.12449 10.1093/treephys/24.10.1119 10.1093/pnasnexus/pgad004 10.1002/eco.1815 10.1038/s41558-019-0583-9 10.1029/2022GL100975 10.1111/gcb.14634 10.3390/atmos13071143 10.1111/nph.15395 10.1111/j.1365-3040.2007.01641.x 10.1111/nph.17952 10.1086/297397 10.1029/2022EF002667 10.1111/nph.15027 10.1038/s41558-022-01290-z 10.1016/j.agrformet.2017.08.026 10.1046/j.1469-8137.2001.00028.x 10.1038/nature15539 10.1038/s41597-020-0453-3 10.1146/annurev.pp.33.060182.001533 10.1073/pnas.1722312115 10.1890/1051-0761(2006)016[1164:HMOPPG]2.0.CO;2 10.1111/ele.12670 10.1016/j.agrformet.2019.107692 10.1111/gcb.14413 10.1111/gcb.13636 10.1029/2010JG001486 10.1016/j.advwatres.2006.06.013 10.1111/ele.13516 10.1111/nph.19257 10.1111/j.1365-3040.1995.tb00370.x 10.3390/ijms14046674 10.1073/pnas.2205682119 10.1016/j.agrformet.2017.12.078 10.1111/nph.14059 10.1104/pp.114.252940 10.1007/s13351-017-6137-z 10.1002/fee.2278 10.1088/2752-5295/accdf9 10.1002/2014GL062803 10.1111/1365-2745.12397 10.1038/s41467-021-27579-9 10.1029/2010JD015541 10.1016/j.agrformet.2013.05.009 10.1038/s43016-022-00614-8 10.1016/j.pbi.2015.05.003 10.1071/WF16165 10.1093/aob/mcf027 10.1016/j.foreco.2020.118623 10.1111/pce.14425 10.5194/gmd-9-1937-2016 10.1038/nature14213 10.1016/j.agrformet.2017.08.031 10.1016/j.ecolind.2023.109944 10.1002/eap.2411 10.1111/nph.17464 10.1126/science.1251423 10.1111/j.1365-2486.2010.02375.x 10.1088/1748-9326/aa9c5a 10.1038/s41586-021-04325-1 10.1002/joc.1688 10.17190/AMF/1245984 10.1111/ppl.13752 10.1029/2019JG005499 10.17190/AMF/1246048 10.1038/s41467-022-34966-3 10.1073/pnas.1207068110 10.17190/AMF/1246104 10.17190/AMF/1246113 10.1038/s41586-022-04737-7 10.1111/1365-2435.14112 10.1111/nph.12278 10.1016/j.rse.2011.08.025 10.1038/s41467-022-29289-2 10.1111/gcb.14884 10.1175/JTECH-D-22-0024.1 10.1007/s004840000066 10.1088/1748-9326/ab2603 10.1016/S0048-9697(00)00528-3 10.1111/pce.12846 10.1002/ecm.1231 10.1038/nclimate3114 10.1175/BAMS-D-17-0149.1 10.1038/s43016-020-0028-7 10.1126/science.1100217 10.1007/s13595-021-01067-y 10.1088/1748-9326/abe436 10.1146/annurev-arplant-102820-012804 10.1073/pnas.2202767119 10.1016/j.foreco.2015.12.038 10.14358/PERS.74.11.1379 10.1093/treephys/tpaa153 10.1016/j.agrformet.2020.107930 10.1016/j.oneear.2023.02.007 10.1126/sciadv.aau5740 10.1111/j.1469-8137.2007.02035.x 10.1038/srep30571 10.1016/j.rse.2022.112950 10.1002/2016GL070819 10.1175/BAMS-D-15-00224.1 10.1126/science.adf5041 10.1111/j.1365-3040.1991.tb01439.x 10.1007/BF00386231 10.1038/nature05095 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd. 2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd. – notice: 2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| CorporateAuthor_xml | – sequence: 0 name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 OTOTI |
| DOI | 10.1111/pce.14846 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Botany Environmental Sciences |
| EISSN | 1365-3040 |
| EndPage | 3589 |
| ExternalDocumentID | 2301779 38348610 10_1111_pce_14846 PCE14846 |
| Genre | article Journal Article Review |
| GrantInformation_xml | – fundername: US Department of Energy funderid: DE‐SC0021980; DE‐SC0022302 – fundername: USDA NIFA‐Minnesota Agricultural Experiment Station funderid: MIN‐13‐124 – fundername: NSF EPSCoR funderid: 2131853 – fundername: Gordon and Betty Moore Foundation funderid: GBMF11974 – fundername: AFRI Competitive funderid: 2022‐68013‐36439 – fundername: European Union Next Generation – fundername: National Science Foundation funderid: 2003205; 2216855 – fundername: Swiss National Science Foundation funderid: 310030_204697 – fundername: Sandoz Family Foundation – fundername: AGAUR funderid: 2021 SGR 00849 – fundername: US Department of Energy grantid: DE-SC0022302 – fundername: NSF Division of Integrative Organismal Biology grantid: 2243900 – fundername: NSF EPSCoR grantid: 2131853 – fundername: NSF Division of Integrative Organismal Biology grantid: 1006196 – fundername: MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR grantid: PID2021-127452NB-I00 – fundername: AFRI Competitive grantid: 2022-68013-36439 – fundername: National Science Foundation grantid: 2003205 – fundername: USDA NIFA-Minnesota Agricultural Experiment Station grantid: MIN-13-124 – fundername: NSF Division of Earth Sciences grantid: 2228047 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 OTOTI |
| ID | FETCH-LOGICAL-c4486-6149ce71b40c023dfa331f3816ba58d9a5118a62df07e7e8189ea79d13d21bf63 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001160054800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-7791 1365-3040 |
| IngestDate | Mon Dec 16 02:26:30 EST 2024 Sun Nov 09 10:27:12 EST 2025 Thu Sep 04 18:23:53 EDT 2025 Fri Jul 25 10:49:24 EDT 2025 Mon Jul 21 06:00:49 EDT 2025 Sat Nov 29 06:39:43 EST 2025 Tue Nov 18 21:56:27 EST 2025 Wed Jan 22 17:15:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | carbon cycling plant physiology drought management climate change |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4486-6149ce71b40c023dfa331f3816ba58d9a5118a62df07e7e8189ea79d13d21bf63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 AC05-76RL01830; SC0021980; SC0022302; DE‐SC0021980; DE‐SC0022302 USDOE USDOE Office of Science (SC) PNNL-SA-195442 |
| ORCID | 0000-0002-9113-3671 0000-0003-2960-7095 0000-0002-8431-0879 0000-0001-9637-2412 0000-0002-2178-2254 0000000291133671 0000000196372412 0000000329607095 0000000221782254 0000000284310879 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14846 |
| PMID | 38348610 |
| PQID | 3093050580 |
| PQPubID | 37957 |
| PageCount | 29 |
| ParticipantIDs | osti_scitechconnect_2301779 proquest_miscellaneous_3153705769 proquest_miscellaneous_2926079312 proquest_journals_3093050580 pubmed_primary_38348610 crossref_citationtrail_10_1111_pce_14846 crossref_primary_10_1111_pce_14846 wiley_primary_10_1111_pce_14846_PCE14846 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Plant, cell and environment |
| PublicationTitleAlternate | Plant Cell Environ |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – sequence: 0 name: Wiley – name: Wiley Subscription Services, Inc |
| References | 2011; 116 2010; 99 1998; 281 2018; 561 2022; 174 1991; 14 2019; 11 2019; 10 2004; 24 2019; 14 2022ee 2016; 30 2020; 15 2024; 30 2023; 104 2012; 18 2020; 287 2020; 11 2020; 10 2016; 39 2001; 149 1980; 149 2021; 78 2000; 14 2002; 89 2020; 291 2007; 174 2008; 28 2019; 25 2016; 43 2022ff 2019; 278 2019; 279 2022; 608 2018; 219 2013; 110 2010; 3 2014; 95 2022; 602 2012; 21 2003; 284 2006; 443 2016; 19 2022gg 2008; 58 2019; 39 1999; 22 2020; 146 2004; 428 2004; 305 2016; 6 2019; 42 2022; 3 2022; 6 2018; 115 2007; 153 2016; 212 2016; 210 2020; 26 2017; 260 2020; 23 2009; 184 2005; 94 2018; 99 2016; 9 2016; 22 2017; 40 2021; 126 2013; 200 2021; 480 2020; 58 2020; 56 2008; 74 2007; 30 2020; 125 2014; 65 2020; 7 2017; 31 2014; 4 2013; 14 2020; 1 2018; 250‐251 2021; 597 2000 2023; 29 2013; 12 2003; 8 2016; 113 1978; 29 2020; 47 2021; 592 2021; 231 2010; 391 2017; 122 2017; 247 2009; 323 1996; 9 2021; 9 2021; 109 2015; 1 2023; 14 2015; 5 2021; 3 2023; 11 2021; 2 2017; 26 2018c 2018b 2010 2018a 2017; 27 2006; 16 2013; 40 2015; 167 2021; 229 2017; 23 2020; 226 2020; 225 2016; 363 2002 1995; 18 2008; 320 2015; 8 2011; 108 2014; 506 2023 2013; 33 2022 2021 2019b 2020 2018; 558 2019a 2020; 71 2017; 10 2020; 590 2017; 12 1965 2020; 478 2019 2020; 117 2018 2000; 262 2017 2016 2023; 878 2013; 3 2012; 122 2013; 4 1982; 54 2011; 62 2010; 102 2019; 565 1995; 375 2018; 45 2022; 28 1977 2014; 20 2010; 23 2018; 9 2018; 8 2009; 10 1965; 8 1987 1954; 151 2022; 36 1983 1980 2023; 618 2010; 30 2022; 39 2022; 322 2021; 2021 2014; 10 2022; 233 2019; 7 2019; 9 2019; 5 2019; 2 2021; 147 1982; 33 2019; 223 2015; 528 2015; 526 2019; 107 2022; 119 2019; 221 1976; 6 2019; 222 2022; 479 2018; 24 2022; 235 1989; 55 2022; 12 2022; 13 2015; 519 2022; 15 2022; 10 2018; 11 2022; 17 2023; 50 2009; 106 2019; 451 2018; 13 2021; 25 2022; 376 2021; 24 2021; 27 2017; 8 2015; 38 2022; 130 2023; 6 2022; 73 2023; 381 2015; 103 1984; 766 2000; 44 2023; 9 2022aa 1978; 5 2023; 147 2023; 2 2015; 107 2011; 17 2011; 156 2011; 155 2021; 36 2021; 31 2015; 42 2022bb 2013; 182–183 2016; 86 2019; 116 2019; 234 2011; 24 2021; 41 2022; 127 2021a; 3‐5 2022; 274 2023; 240 2000; 24 2000; 20 2015; 10 2022; 45 2021d 2022cc 2021c 2021b 2021a 2022; 49 2009; 257 2022u 2022t 2022s 2021; 16 2015; 25 2022r 2022q 2022p 2009; 32 2022o 2021; 12 2022n 2022z 2022y 2022x 2022w 2021; 19 2022v 2023; 238 2022e 2022dd 2022d 2023; 237 2022; 58 2022c 2022b 2022a 2023; 239 2022m 2022l 1996; 157 2022k 2022j 2022i 2022h 2022g 2014; 344 2022f 2014; 102 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_309_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_407_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_385_1 e_1_2_8_9_1 e_1_2_8_362_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_419_1 e_1_2_8_299_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_374_1 e_1_2_8_397_1 e_1_2_8_351_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_408_1 e_1_2_8_288_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_386_1 e_1_2_8_363_1 e_1_2_8_340_1 Mu M. (e_1_2_8_249_1) 2021; 2021 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_277_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_375_1 e_1_2_8_352_1 e_1_2_8_398_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_409_1 e_1_2_8_266_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_341_1 e_1_2_8_364_1 e_1_2_8_387_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_330_1 e_1_2_8_353_1 Monin A.S. (e_1_2_8_245_1) 1954; 151 e_1_2_8_376_1 e_1_2_8_399_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_27_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_80_1 e_1_2_8_342_1 e_1_2_8_8_1 e_1_2_8_365_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_388_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_426_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_331_1 e_1_2_8_354_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_377_1 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_260_1 e_1_2_8_207_1 e_1_2_8_403_1 e_1_2_8_151_1 e_1_2_8_381_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_328_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_305_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_415_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_370_1 e_1_2_8_393_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_317_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_329_1 e_1_2_8_261_1 e_1_2_8_404_1 e_1_2_8_152_1 e_1_2_8_208_1 Keeling C.D. (e_1_2_8_166_1) 1989; 55 e_1_2_8_382_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_318_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 e_1_2_8_416_1 e_1_2_8_94_1 e_1_2_8_394_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_371_1 e_1_2_8_71_1 Davies‐Colley R.J. (e_1_2_8_78_1) 2000; 24 Dingman S.L. (e_1_2_8_88_1) 2002 e_1_2_8_262_1 e_1_2_8_307_1 e_1_2_8_285_1 e_1_2_8_360_1 e_1_2_8_383_1 e_1_2_8_405_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_319_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_417_1 e_1_2_8_372_1 e_1_2_8_395_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_308_1 e_1_2_8_406_1 e_1_2_8_154_1 e_1_2_8_384_1 e_1_2_8_131_1 e_1_2_8_361_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 e_1_2_8_418_1 e_1_2_8_165_1 e_1_2_8_373_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_396_1 e_1_2_8_350_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_188_1 e_1_2_8_203_1 e_1_2_8_226_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_290_1 e_1_2_8_324_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_301_1 e_1_2_8_41_1 e_1_2_8_347_1 e_1_2_8_291_1 e_1_2_8_238_1 e_1_2_8_421_1 e_1_2_8_215_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_313_1 e_1_2_8_30_1 e_1_2_8_336_1 e_1_2_8_359_1 e_1_2_8_280_1 Campbell G.S. (e_1_2_8_59_1) 2000 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_400_1 e_1_2_8_171_1 e_1_2_8_302_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_325_1 e_1_2_8_40_1 e_1_2_8_348_1 e_1_2_8_292_1 e_1_2_8_420_1 e_1_2_8_239_1 e_1_2_8_216_1 Levitt J. (e_1_2_8_186_1) 1980 e_1_2_8_412_1 e_1_2_8_98_1 e_1_2_8_390_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_314_1 e_1_2_8_337_1 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_205_1 e_1_2_8_401_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_303_1 e_1_2_8_349_1 e_1_2_8_326_1 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_413_1 e_1_2_8_391_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_315_1 e_1_2_8_338_1 e_1_2_8_282_1 Yang J. (e_1_2_8_411_1) 2019; 39 e_1_2_8_229_1 e_1_2_8_206_1 e_1_2_8_402_1 e_1_2_8_150_1 e_1_2_8_380_1 e_1_2_8_42_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_304_1 e_1_2_8_327_1 e_1_2_8_196_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_218_1 e_1_2_8_414_1 e_1_2_8_161_1 e_1_2_8_392_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_339_1 e_1_2_8_316_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_320_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_343_1 e_1_2_8_366_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_389_1 Pallardy S.G. (e_1_2_8_306_1) 2010 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_425_1 e_1_2_8_257_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_332_1 e_1_2_8_355_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_378_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_321_1 e_1_2_8_367_1 e_1_2_8_44_1 e_1_2_8_344_1 e_1_2_8_137_1 e_1_2_8_114_1 Barker M.G. (e_1_2_8_23_1) 1996; 9 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_424_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_310_1 e_1_2_8_356_1 e_1_2_8_33_1 e_1_2_8_333_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_125_1 e_1_2_8_379_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_322_1 e_1_2_8_345_1 e_1_2_8_368_1 e_1_2_8_138_1 e_1_2_8_115_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_423_1 e_1_2_8_236_1 e_1_2_8_311_1 e_1_2_8_334_1 e_1_2_8_357_1 e_1_2_8_149_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_4_1 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_323_1 e_1_2_8_116_1 e_1_2_8_346_1 e_1_2_8_139_1 e_1_2_8_369_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_422_1 e_1_2_8_410_1 e_1_2_8_127_1 e_1_2_8_335_1 e_1_2_8_12_1 e_1_2_8_312_1 e_1_2_8_104_1 e_1_2_8_358_1 |
| References_xml | – year: 2022v – volume: 41 start-page: 944 year: 2021 end-page: 959 article-title: Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand publication-title: Tree Physiology – volume: 526 start-page: 574 year: 2015 end-page: 577 article-title: Biodiversity increases the resistance of ecosystem productivity to climate extremes publication-title: Nature – volume: 149 start-page: 473 year: 2001 end-page: 485 article-title: Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water publication-title: New Phytologist – volume: 73 start-page: 2576 year: 2022 end-page: 2588 article-title: Photosynthetic acclimation and sensitivity to short‐and long‐term environmental changes in a drought‐prone forest publication-title: Journal of Experimental Botany – volume: 103 start-page: 648 year: 2015 end-page: 656 article-title: Daily environmental conditions determine the competition‐facilitation balance for plant water status publication-title: Journal of Ecology – year: 2022cc – volume: 174 year: 2022 article-title: The genetic basis of transpiration sensitivity to vapor pressure deficit in wheat publication-title: Physiologia Plantarum – volume: 278 year: 2019 article-title: Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes publication-title: Agricultural and Forest Meteorology – volume: 62 start-page: 1715 year: 2011 end-page: 1729 article-title: Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs publication-title: Journal of Experimental Botany – year: 2018a – volume: 240 start-page: 1405 year: 2023 end-page: 1420 article-title: Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply publication-title: New Phytologist – volume: 6 start-page: 332 year: 2022 end-page: 339 article-title: Plant‐water sensitivity regulates wildfire vulnerability publication-title: Nature Ecology & Evolution – volume: 125 year: 2020 article-title: High vapor pressure deficit decreases the productivity and water use efficiency of rain‐induced pulses in semiarid ecosystems publication-title: Journal of Geophysical Research: Biogeosciences – volume: 107 start-page: 1 year: 2019 end-page: 9 article-title: Wheat drought‐tolerance to enhance food security in Tunisia, birthplace of the Arab Spring publication-title: European Journal of Agronomy – year: 2022f – volume: 5 start-page: 669 year: 2015 end-page: 672 article-title: Darcy's law predicts widespread forest mortality under climate warming publication-title: Nature Climate Change – volume: 30 start-page: 258 year: 2007 end-page: 270 article-title: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions publication-title: Plant, Cell & Environment – volume: 95 start-page: 2213 year: 2014 end-page: 2223 article-title: Living close to your neighbors: the importance of both competition and facilitation in plant communities publication-title: Ecology – volume: 23 start-page: 1189 year: 2020 end-page: 1200 article-title: High water use in desert plants exposed to extreme heat publication-title: Ecology Letters – volume: 8 start-page: 264 year: 1965 end-page: 275 article-title: An analysis of irreversible plant cell elongation publication-title: Journal of Theoretical Biology – article-title: AmeriFlux BASE US‐xTE NEON Lower Teakettle (TEAK), Ver. 5‐5, AmeriFlux – volume: 27 start-page: 1704 year: 2021 end-page: 1720 article-title: Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity publication-title: Global Change Biology – volume: 376 start-page: 758 year: 2022 end-page: 761 article-title: Cross‐biome synthesis of source versus sink limits to tree growth publication-title: Science – volume: 226 start-page: 1550 year: 2020 end-page: 1566 article-title: Plant responses to rising vapor pressure deficit publication-title: New Phytologist – volume: 4 start-page: 1088 year: 2014 end-page: 1101 article-title: Exposure of trees to drought‐ induced die‐ off is defined by a common climatic threshold across different vegetation types publication-title: Ecology and Evolution – volume: 157 start-page: 739 year: 1996 end-page: 745 article-title: Explosive anther dehiscence in L. involves cell wall modifications and relative humidity publication-title: International Journal of Plant Sciences – volume: 24 start-page: 729 year: 2018 end-page: 737 article-title: Prioritizing forest fuels treatments based on the probability of high‐severity fire restores adaptive capacity in Sierran forests publication-title: Global Change Biology – volume: 428 start-page: 851 year: 2004 end-page: 854 article-title: The limits to tree height publication-title: Nature – volume: 40 start-page: 962 year: 2017 end-page: 976 article-title: Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept publication-title: Plant, Cell & Environment – year: 2021d – volume: 558 start-page: 531 year: 2018 end-page: 539 article-title: Triggers of tree mortality under drought publication-title: Nature – volume: 1 start-page: 127 year: 2020 end-page: 133 article-title: Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields publication-title: Nature Food – volume: 247 start-page: 454 year: 2017 end-page: 466 article-title: Stomatal and non‐stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations publication-title: Agricultural and Forest Meteorology – volume: 119 year: 2022 article-title: No evidence of canopy‐scale leaf thermoregulation to cool leaves below air temperature across a range of forest ecosystems publication-title: Proceedings of the National Academy of Sciences – volume: 24 year: 2021 article-title: The effect of urban temperature gradients on grassland microclimate amelioration in Los Angeles, USA publication-title: Applied Vegetation Science – volume: 39 start-page: 1961 year: 2019 end-page: 1974 article-title: Incorporating non‐stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit publication-title: Tree Physiology – year: 2022dd – volume: 519 start-page: 78 year: 2015 end-page: 82 article-title: Drought impact on forest carbon dynamics and fluxes in Amazonia publication-title: Nature – year: 2019b – volume: 11 start-page: 405 year: 2018 end-page: 409 article-title: Tall Amazonian forests are less sensitive to precipitation variability publication-title: Nature Geoscience – volume: 260 start-page: 109 year: 2017 end-page: 118 article-title: Limited‐transpiration response to high vapor pressure deficit in crop species publication-title: Plant Science – year: 2019 – year: 2022q – volume: 58 start-page: 501 year: 2008 end-page: 517 article-title: Cross‐scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions publication-title: BioScience – volume: 20 start-page: 1992 year: 2014 end-page: 2003 article-title: Physiological advantages of C‐4 grasses in the field: a comparative experiment demonstrating the importance of drought publication-title: Global Change Biology – volume: 8 start-page: 343 year: 2003 end-page: 351 article-title: Thermal acclimation and the dynamic response of plant respiration to temperature publication-title: Trends in Plant Science – year: 2022a – volume: 184 start-page: 353 year: 2009 end-page: 364 article-title: Hydraulic adjustment of Scots pine across Europe publication-title: New Phytologist – volume: 38 start-page: 629 year: 2015 end-page: 637 article-title: Temperature responses of mesophyll conductance differ greatly between species publication-title: Plant, Cell & Environment – volume: 174 start-page: 614 year: 2007 end-page: 625 article-title: Leaf‐and stand‐level responses of a forested mesocosm to independent manipulations of temperature and vapor pressure deficit publication-title: New Phytologist – volume: 10 start-page: 691 year: 2020 article-title: Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration publication-title: Nature Climate Change – volume: 592 start-page: 65 year: 2021 end-page: 69 article-title: Soil moisture–atmosphere feedback dominates land carbon uptake variability publication-title: Nature – volume: 229 start-page: 213 year: 2021 end-page: 229 article-title: Turgor–a limiting factor for radial growth in mature conifers along an elevational gradient publication-title: New Phytologist – volume: 23 start-page: 1696 year: 2010 end-page: 1718 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: Journal of Climate – volume: 6 start-page: 251 year: 2023 end-page: 266 article-title: Ecohydrological decoupling under changing disturbances and climate publication-title: One Earth – volume: 155 start-page: 1051 year: 2011 end-page: 1059 article-title: Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality publication-title: Plant Physiology – volume: 17 start-page: 2134 year: 2011 end-page: 2144 article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance publication-title: Global Change Biology – year: 2022bb – volume: 104 year: 2023 article-title: Soil versus atmospheric drought: a test case of plant functional trait responses publication-title: Ecology – volume: 153 start-page: 245 year: 2007 end-page: 259 article-title: Plasticity in hydraulic architecture of Scots pine across Eurasia publication-title: Oecologia – volume: 219 start-page: 851 year: 2018 end-page: 869 article-title: Drivers and mechanisms of tree mortality in moist tropical forests publication-title: New Phytologist – volume: 113 start-page: 9557 year: 2016 end-page: 9562 article-title: Increased water deficit decreases Douglas fir growth throughout western US forests publication-title: Proceedings of the National Academy of Sciences – volume: 305 start-page: 1138 year: 2004 end-page: 1140 article-title: Regions of strong coupling between soil moisture and precipitation publication-title: Science – year: 2022l – start-page: 1 year: 2023 end-page: 31 article-title: Flash drought intensification due to enhanced land‐atmospheric coupling in India publication-title: Journal of Climate – volume: 58 year: 2022 article-title: Streamflow response to wildfire differs with season and elevation in adjacent headwaters of the Lower Colorado River Basin publication-title: Water Resources Research – volume: 10 start-page: 57 year: 2015 end-page: 64 article-title: The US drought of 2012 publication-title: Weather and Climate Extremes – volume: 15 year: 2020 article-title: Flash drought development and cascading impacts associated with the 2010 Russian heatwave publication-title: Environmental Research Letters – volume: 12 start-page: 232 year: 2022 end-page: 234 article-title: Rapid intensification of the emerging southwestern North American megadrought in 2020–2021 publication-title: Nature Climate Change – volume: 28 start-page: 2031 year: 2008 end-page: 2064 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: International Journal of Climatology – year: 2022w – year: 2022aa – volume: 74 start-page: 1379 year: 2008 end-page: 1388 article-title: Conterminous US and Alaska forest type mapping using forest inventory and analysis data publication-title: Photogrammetric Engineering & Remote Sensing – volume: 45 start-page: 329 year: 2022 end-page: 346 article-title: The xylem of anisohydric L. is more vulnerable to embolism than isohydric codominants publication-title: Plant, Cell & Environment – article-title: AmeriFlux BASE US‐xUK NEON The University of Kansas Field Station (UKFS), Ver. 5‐5, AmeriFlux – volume: 3 start-page: 292 year: 2013 end-page: 297 article-title: Temperature as a potent driver of regional forest drought stress and tree mortality publication-title: Nature Climate Change – start-page: 646 year: 2002 – volume: 30 start-page: 1001 year: 2010 end-page: 1015 article-title: Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole‐plant hydraulic performance under future atmospheric CO2 concentration publication-title: Tree Physiology – volume: 221 start-page: 652 year: 2019 end-page: 668 article-title: Modelling carbon sources and sinks in terrestrial vegetation publication-title: New Phytologist – volume: 78 start-page: 55 year: 2021 article-title: SurEau: a mechanistic model of plant water relations under extreme drought publication-title: Annals of Forest Science – volume: 14 start-page: 729 year: 1991 end-page: 739 article-title: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? publication-title: Plant, Cell & Environment – volume: 113 start-page: 10019 year: 2016 end-page: 10024 article-title: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity publication-title: Proceedings of the National Academy of Sciences – volume: 24 start-page: 2025 year: 2011 end-page: 2044 article-title: Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States publication-title: Journal of Climate – volume: 19 start-page: 126 year: 2021 end-page: 133 article-title: Characterizing forest vulnerability and risk to climate‐change hazards publication-title: Frontiers in Ecology and the Environment – volume: 25 start-page: 39 year: 2019 end-page: 56 article-title: Compositional response of Amazon forests to climate change publication-title: Global Change Biology – volume: 239 start-page: 1173 year: 2023 end-page: 1189 article-title: How woody plants adjust above‐and below‐ground traits in response to sustained drought publication-title: New Phytologist – volume: 125 year: 2020 article-title: High heterogeneity in canopy temperature among co‐occurring tree species in a temperate forest publication-title: Journal of Geophysical Research: Biogeosciences – volume: 147 year: 2023 article-title: Decoupling of tree height and root depth across the globe and the implications for tree mortality during drought events publication-title: Ecological Indicators – year: 2022g – volume: 156 start-page: 962 year: 2011 end-page: 973 article-title: The role of bundle sheath extensions and life form in stomatal responses to leaf water status publication-title: Plant Physiology – volume: 56 year: 2020 article-title: ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the international space station publication-title: Water Resources Research – volume: 8 start-page: 7667 year: 2018 article-title: Unsaturation of vapour pressure inside leaves of two conifer species publication-title: Scientific Reports – volume: 478 year: 2020 article-title: Topographic position amplifies consequences of short‐interval stand‐replacing fires on postfire tree establishment in subalpine conifer forests publication-title: Forest Ecology and Management – volume: 99 start-page: 125 year: 2010 end-page: 161 article-title: Investigating soil moisture–climate interactions in a changing climate: a review publication-title: Earth‐Science Reviews – volume: 71 start-page: 2239 year: 2020 end-page: 2252 article-title: Drying times: plant traits to improve crop water use efficiency and yield publication-title: Journal of Experimental Botany – volume: 40 start-page: 816 year: 2017 end-page: 830 article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost publication-title: Plant, Cell & Environment – year: 2022z – volume: 561 start-page: 538 year: 2018 end-page: 541 article-title: Hydraulic diversity of forests regulates ecosystem resilience during drought publication-title: Nature – volume: 222 start-page: 1207 year: 2019 end-page: 1222 article-title: Modelling water fluxes in plants: from tissues to biosphere publication-title: New Phytologist – volume: 33 start-page: 345 year: 2013 end-page: 356 article-title: Above‐and belowground controls on water use by trees of different wood types in an eastern US deciduous forest publication-title: Tree Physiology – volume: 274 year: 2022 article-title: What lies beneath: vertical temperature heterogeneity in a Mediterranean woodland savanna publication-title: Remote Sensing of Environment – volume: 31 start-page: 31 year: 2021 article-title: Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire publication-title: Ecological Applications – volume: 451 year: 2019 article-title: Drivers of lodgepole pine recruitment across a gradient of bark beetle outbreak and wildfire in British Columbia publication-title: Forest Ecology and Management – year: 2021 – volume: 13 start-page: 989 year: 2022 article-title: Atmospheric dryness reduces photosynthesis along a large range of soil water deficits publication-title: Nature Communications – volume: 71 start-page: 642 year: 2020 end-page: 652 article-title: The importance of slow canopy wilting in drought tolerance in soybean publication-title: Journal of Experimental Botany – volume: 1 year: 2015 article-title: Larger trees suffer most during drought in forests worldwide publication-title: Nature Plants – volume: 25 start-page: 107 year: 2015 end-page: 114 article-title: Paradigm shift in plant growth control publication-title: Current Opinion in Plant Biology – volume: 24 start-page: 111 year: 2000 end-page: 121 article-title: Microclimate gradients across a forest edge publication-title: New Zealand Journal of Ecology – volume: 14 start-page: 1162 year: 2023 article-title: Soil moisture‐evaporation coupling shifts into new gears under increasing CO2 publication-title: Nature Communications – volume: 5 year: 2019 article-title: Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events publication-title: Science Advances – volume: 26 start-page: 269 year: 2017 end-page: 275 article-title: Climatic influences on interannual variability in regional burn severity across Western US forests publication-title: International Journal of Wildland Fire – volume: 262 start-page: 263 year: 2000 end-page: 286 article-title: Assessing the consequences of global change for forest disturbance from herbivores and pathogens publication-title: Science of the Total Environment – volume: 127 year: 2022 article-title: Comprehensive quantification of the responses of ecosystem production and respiration to drought time scale, intensity and timing in humid environments: a FLUXNET synthesis publication-title: Journal of Geophysical Research: Biogeosciences – volume: 12 start-page: 1024 year: 2022 end-page: 1030 article-title: Evapotranspiration frequently increases during droughts publication-title: Nature Climate Change – start-page: 547 year: 2017 – year: 2022j – volume: 7 start-page: 892 year: 2019 end-page: 910 article-title: Observed impacts of anthropogenic climate change on wildfire in California publication-title: Earth's Future – year: 2022u – volume: 26 start-page: 300 year: 2020 end-page: 318 article-title: Interannual Variation of Terrestrial Carbon Cycle: Issues and Perspectives publication-title: Global Change Biology – year: 2018b – volume: 13 start-page: 13 year: 2022 article-title: Effects of climate change on forest regeneration in Central Spain publication-title: Atmosphere – volume: 39 start-page: 1837 year: 2022 end-page: 1855 article-title: Daily high‐resolution temperature and precipitation fields for the contiguous United States from 1951 to present publication-title: Journal of Atmospheric and Oceanic Technology – volume: 5 year: 2019 article-title: Twentieth century redistribution in climatic drivers of global tree growth publication-title: Science Advances – volume: 13 start-page: 1761 year: 2022 article-title: Global field observations of tree die‐off reveal hotter‐drought fingerprint for Earth's forests publication-title: Nature Communications – volume: 109 start-page: 1986 year: 2021 end-page: 1999 article-title: The experimental manipulation of atmospheric drought: teasing out the role of microclimate in biodiversity experiments publication-title: Journal of Ecology – volume: 54 start-page: 236 year: 1982 end-page: 242 article-title: The effect of vapor pressure on stomatal control of gas exchange in Douglas fir ( ) saplings publication-title: Oecologia – volume: 113 start-page: 11770 year: 2016 end-page: 11775 article-title: Impact of anthropogenic climate change on wildfire across Western US forests publication-title: Proceedings of the National Academy of Sciences – volume: 55 start-page: 165 year: 1989 end-page: 236 article-title: A three‐dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data publication-title: Aspects of Climate Variability in the Pacific and the Western Americas – volume: 126 year: 2021 article-title: Slope‐aspect induced climate differences influence how water is exchanged between the land and atmosphere publication-title: Journal of Geophysical Research: Biogeosciences – volume: 40 start-page: 5212 year: 2013 end-page: 5217 article-title: Impact of soil moisture‐climate feedbacks on CMIP5 projections: first results from the GLACE‐CMIP5 experiment publication-title: Geophysical Research Letters – volume: 3 start-page: 722 year: 2010 end-page: 727 article-title: Contrasting response of European forest and grassland energy exchange to heatwaves publication-title: Nature Geoscience – volume: 363 start-page: 149 year: 2016 end-page: 158 article-title: Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem publication-title: Forest Ecology and Management – year: 2022e – volume: 602 start-page: 442 year: 2022 end-page: 448 article-title: Warming weakens the night‐time barrier to global fire publication-title: Nature – volume: 21 start-page: 1074 year: 2012 end-page: 1082 article-title: Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems publication-title: Global Ecology and Biogeography – volume: 291 year: 2020 article-title: Effects of disturbance patterns and deadwood on the microclimate in European beech forests publication-title: Agricultural and Forest Meteorology – volume: 11 start-page: 3305 year: 2019 end-page: 3320 article-title: When does vapor pressure deficit drive or reduce evapotranspiration? publication-title: Journal of Advances in Modeling Earth Systems – volume: 125 year: 2020 article-title: Delineating environmental stresses to primary production of US forests from tree rings: effects of climate seasonality, soil, and topography publication-title: Journal of Geophysical Research: Biogeosciences – volume: 44 start-page: 67 year: 2000 end-page: 75 article-title: The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview publication-title: International Journal of Biometeorology – year: 2018c – volume: 231 start-page: 2174 year: 2021 end-page: 2185 article-title: Why trees grow at night publication-title: New Phytologist – volume: 9 start-page: 1937 year: 2016 end-page: 1958 article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization publication-title: Geoscientific Model Development – volume: 29 start-page: 567 year: 1978 end-page: 577 article-title: The responses of net photosynthesis to vapour pressure deficit and CO2 concentration in (sensu lato), a C4 species from a cool temperate climate publication-title: Journal of Experimental Botany – volume: 7 start-page: 109 year: 2020 article-title: Version 4 of the CRU TS monthly high‐resolution gridded multivariate climate dataset publication-title: Scientific Data – volume: 42 start-page: 1104 year: 2019 end-page: 1111 article-title: Beyond isohydricity: the role of environmental variability in determining plant drought responses publication-title: Plant, Cell & Environment – volume: 9 start-page: 2800 year: 2019 article-title: Defining optimal soybean sowing dates across the US publication-title: Scientific Reports – volume: 122 start-page: 2061 year: 2017 end-page: 2079 article-title: Historic and projected changes in vapor pressure deficit suggest a continental‐scale drying of the United States atmosphere publication-title: Journal of Geophysical Research: Atmospheres – volume: 11 year: 2023 article-title: Earlier ecological drought detection by involving the interaction of phenology and Eco‐Physiological function publication-title: Earth's Future – volume: 9 start-page: 52 year: 1996 end-page: 66 article-title: Vertical profiles in a Brunei rain forest: II. Leaf characteristics of Dryobalanops lanceolata publication-title: Journal of Tropical Forest Science – volume: 284 start-page: 114 year: 2003 end-page: 130 article-title: The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach publication-title: Journal of Hydrology – year: 2022p – volume: 200 start-page: 388 year: 2013 end-page: 401 article-title: Drought‐induced defoliation and long periods of near‐zero gas exchange play a key role in accentuating metabolic decline of Scots pine publication-title: New Phytologist – volume: 25 start-page: 3395 year: 2019 end-page: 3405 article-title: Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity publication-title: Global Change Biology – volume: 322 year: 2022 article-title: Vapour pressure deficit is the main driver of tree canopy conductance across biomes publication-title: Agricultural and Forest Meteorology – volume: 14 start-page: 074023 issue: 7 year: 2019 article-title: Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit publication-title: Environmental Research Letters – volume: 42 start-page: 2823 year: 2015 end-page: 2829 article-title: Heat wave flash droughts in decline publication-title: Geophysical Research Letters – volume: 43 start-page: 9686 year: 2016 end-page: 9695 article-title: High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil publication-title: Geophysical Research Letters – volume: 233 start-page: 2429 year: 2022 end-page: 2441 article-title: Limitation by vapour pressure deficit shapes different intra‐annual growth patterns of diffuse‐and ring‐porous temperate broadleaves publication-title: New Phytologist – volume: 20 start-page: 57 year: 2000 end-page: 63 article-title: Influence of temperature and leaf‐to‐air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce ( ) publication-title: Tree Physiology – volume: 99 start-page: 911 year: 2018 end-page: 919 article-title: Flash droughts: A review and assessment of the challenges imposed by rapid‐onset droughts in the United States publication-title: Bulletin of the American Meteorological Society – volume: 9 year: 2023 article-title: Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity publication-title: Science Advances – article-title: AmeriFlux BASE US‐xTR NEON Treehaven (TREE), Ver. 5‐5, AmeriFlux – volume: 8 start-page: 585 year: 2017 article-title: Population‐level differentiation in growth rates and leaf traits in seedlings of the neotropical live oak Quercus oleoides grown under natural and manipulated precipitation regimes publication-title: Frontiers in Plant Science – year: 1980 – volume: 528 start-page: 119 year: 2015 end-page: 122 article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation publication-title: Nature – volume: 239 start-page: 2083 year: 2023 end-page: 2098 article-title: The role of height‐driven constraints and compensations on tree vulnerability to drought publication-title: New Phytologist – volume: 344 start-page: 516 year: 2014 end-page: 519 article-title: Greater sensitivity to drought accompanies maize yield increase in the US Midwest publication-title: Science – volume: 281 start-page: 237 year: 1998 end-page: 240 article-title: Primary production of the biosphere: integrating terrestrial and oceanic components publication-title: Science – year: 2020 – volume: 116 start-page: 18848 year: 2019 end-page: 18853 article-title: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity publication-title: Proceedings of the National Academy of Sciences – year: 2022k – volume: 29 start-page: 5415 year: 2023 end-page: 5428 article-title: Observed forest trait velocities have not kept pace with hydraulic stress from climate change publication-title: Global Change Biology – volume: 18 start-page: 3476 year: 2012 article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance publication-title: Global Change Biology – article-title: AmeriFlux BASE US‐xUN NEON University of Notre Dame Environmental Research Center (UNDE), Ver. 5‐5, AmeriFlux – volume: 3 start-page: 2711 year: 2013 end-page: 2729 article-title: Global change‐type drought‐induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health publication-title: Ecology and Evolution – volume: 149 start-page: 247 year: 2001 end-page: 264 article-title: Stomatal conductance of forest species after long‐term exposure to elevated CO2 concentration: a synthesis publication-title: New Phytologist – volume: 223 start-page: 632 year: 2019 end-page: 646 article-title: Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient publication-title: New Phytologist – volume: 30 start-page: 10 year: 2016 end-page: 19 article-title: Does the stress‐gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems publication-title: Functional Ecology – volume: 4 start-page: 266 year: 2013 article-title: The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die‐off publication-title: Frontiers in Plant Science – volume: 381 start-page: 672 year: 2023 end-page: 677 article-title: Global water use efficiency saturation due to increased vapor pressure deficit publication-title: Science – volume: 235 start-page: 1344 year: 2022 end-page: 1350 article-title: In situ, direct observation of seasonal embolism dynamics in Aleppo pine trees growing on the dry edge of their distribution publication-title: New Phytologist – volume: 10 start-page: 437 year: 2009 end-page: 446 article-title: Grass‐to‐tree facilitation in an arid grazed environment (Aïr Mountains, Sahara) publication-title: Basic and Applied Ecology – volume: 16 start-page: 1164 year: 2006 end-page: 1182 article-title: Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes publication-title: Ecological Applications – volume: 24 start-page: 5164 year: 2018 end-page: 5175 article-title: Global patterns of interannual climate–fire relationships publication-title: Global Change Biology – volume: 2021 start-page: 1 year: 2021 end-page: 29 article-title: Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi‐year droughts publication-title: Earth System Dynamics Discussions – volume: 102 start-page: 475 year: 2010 end-page: 482 article-title: Assessment across the United States of the benefits of altered soybean drought traits publication-title: Agronomy Journal – volume: 110 start-page: 52 year: 2013 end-page: 57 article-title: Response of vegetation to drought time‐scales across global land biomes publication-title: Proceedings of the National Academy of Sciences – volume: 257 start-page: 435 year: 2009 end-page: 442 article-title: Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest publication-title: Forest Ecology and Management – volume: 149 start-page: 78 year: 1980 end-page: 90 article-title: A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species publication-title: Planta – volume: 24 start-page: 5243 year: 2018 end-page: 5258 article-title: Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes publication-title: Global Change Biology – volume: 225 start-page: 713 year: 2020 end-page: 726 article-title: Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub publication-title: New Phytologist – volume: 25 start-page: 2399 year: 2021 end-page: 2417 article-title: Global ecosystem‐scale plant hydraulic traits retrieved using model–data fusion publication-title: Hydrology and Earth System Sciences – volume: 28 start-page: 1133 year: 2022 end-page: 1146 article-title: Extreme heat increases stomatal conductance and drought‐induced mortality risk in vulnerable plant species publication-title: Global Change Biology – volume: 30 year: 2024 article-title: Atmospheric drying and soil drying: differential effects on grass community composition publication-title: Global Change Biology – volume: 212 start-page: 577 year: 2016 end-page: 589 article-title: Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits publication-title: New Phytologist – volume: 119 year: 2022 article-title: Flash drought early warning based on the trajectory of solar‐induced chlorophyll fluorescence publication-title: Proceedings of the National Academy of Sciences – volume: 10 year: 2022 article-title: Hydrological intensification will increase the complexity of water resource management publication-title: Earth's Future – volume: 2 year: 2021 article-title: Land‐atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018 publication-title: AGU Advances – volume: 480 year: 2021 article-title: Temporal changes in Mediterranean forest ecosystem services are driven by stand development, rather than by climate‐related disturbances publication-title: Forest Ecology and Management – year: 2022n – volume: 115 start-page: 4863 year: 2018 end-page: 4868 article-title: Trends in continental temperature and humidity directly linked to ocean warming publication-title: Proceedings of the National Academy of Sciences – volume: 6 start-page: 1023 year: 2016 end-page: 1027 article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes publication-title: Nature Climate Change – volume: 89 start-page: 183 year: 2002 end-page: 189 article-title: Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited publication-title: Annals of Botany – volume: 443 start-page: 205 year: 2006 end-page: 209 article-title: Land–atmosphere coupling and climate change in Europe publication-title: Nature – volume: 597 start-page: 225 year: 2021 end-page: 229 article-title: Widespread woody plant use of water stored in bedrock publication-title: Nature – volume: 122 start-page: 50 year: 2012 end-page: 65 article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources publication-title: Remote Sensing of Environment – volume: 878 year: 2023 article-title: Projected long‐term climate trends reveal the critical role of vapor pressure deficit for soybean yields in the US Midwest publication-title: Science of the Total Environment – volume: 116 year: 2011 article-title: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008 publication-title: Journal of Geophysical Research – volume: 39 start-page: 2342 year: 2016 end-page: 2345 article-title: Toward an index of desiccation time to tree mortality under drought publication-title: Plant, Cell & Environment – year: 2022y – year: 2022 – volume: 3‐5 year: 2021a article-title: AmeriFlux FLUXNET‐1F US‐Ro5 Rosemount I18_South – volume: 108 start-page: 19820 year: 2011 end-page: 19823 article-title: Alternative perspective on the control of transpiration by radiation publication-title: Proceedings of the National Academy of Sciences – volume: 115 start-page: E8349 year: 2018 end-page: E8357 article-title: Decreasing fire season precipitation increased recent western US forest wildfire activity publication-title: Proceedings of the National Academy of Sciences – volume: 3 year: 2021 article-title: Understanding how fuel treatments interact with climate and biophysical setting to affect fire, water, and forest health: a process‐based modeling approach publication-title: Frontiers in Forests and Global Change – volume: 18 start-page: 339 year: 1995 end-page: 355 article-title: A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants publication-title: Plant, Cell & Environment – volume: 39 start-page: 482 year: 2016 end-page: 484 article-title: Stomatal responses to humidity: has the ‘black box' finally been opened? publication-title: Plant, Cell & Environment – year: 2021a – volume: 6 year: 2016 article-title: Increasing flash droughts over China during the recent global warming hiatus publication-title: Scientific Reports – year: 2023 article-title: How land surface characteristics influence the development of flash drought through the drivers of soil moisture and vapor pressure deficit – volume: 3 start-page: 294 year: 2022 end-page: 308 article-title: Mechanisms of woody‐plant mortality under rising drought publication-title: CO2 and Vapour Pressure Deficit. Nature Reviews Earth & Environment – volume: 116 year: 2011 article-title: A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests publication-title: Journal of Geophysical Research – year: 2022i – year: 2022t – volume: 36 start-page: 520 year: 2021 end-page: 532 article-title: Why is tree drought mortality so hard to predict? publication-title: Trends in Ecology & Evolution – volume: 73 start-page: 673 year: 2022 end-page: 702 article-title: Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide publication-title: Annual Review of Plant Biology – volume: 238 start-page: 952 year: 2023 end-page: 970 article-title: Integrating plant physiology into simulation of fire behavior and effects publication-title: New Phytologist – volume: 10 start-page: 1983 year: 2014 end-page: 2006 article-title: HadISDH land surface multi‐variable humidity and temperature record for climate monitoring publication-title: Climate of the Past – volume: 12 start-page: 1 year: 2013 end-page: 16 article-title: Advances in soil evaporation physics—a review publication-title: Vadose Zone Journal – volume: 12 year: 2021 article-title: Sustainable irrigation based on co‐regulation of soil water supply and atmospheric evaporative demand publication-title: Nature Communications – year: 1987 – volume: 608 start-page: 528 year: 2022 end-page: 533 article-title: Tropical tree mortality has increased with rising atmospheric water stress publication-title: Nature – volume: 9 year: 2021 article-title: Past variance and future projections of the environmental conditions driving western US summertime wildfire burn area publication-title: Earth's Future – volume: 3 start-page: 871 year: 2022 end-page: 880 article-title: Vapour pressure deficit determines critical thresholds for global coffee production under climate change publication-title: Nature Food – volume: 212 start-page: 377 year: 2016 end-page: 388 article-title: The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize publication-title: New Phytologist – volume: 239 start-page: 54 year: 2023 end-page: 65 article-title: Rising vapor‐pressure deficit increases nitrogen fixation in a legume crop publication-title: New Phytologist – volume: 25 start-page: 2242 year: 2019 end-page: 2257 article-title: Observed and modelled historical trends in the water‐use efficiency of plants and ecosystems publication-title: Global Change Biology – volume: 506 start-page: 212 year: 2014 end-page: 215 article-title: A two‐fold increase of carbon cycle sensitivity to tropical temperature variations publication-title: Nature – volume: 12 year: 2017 article-title: Stomatal conductance increases with rising temperature publication-title: Plant Signaling & Behavior – year: 2016 – year: 2022d – volume: 221 start-page: 195 year: 2019 end-page: 208 article-title: Linking variation in intrinsic water‐use efficiency to isohydricity: a comparison at multiple spatiotemporal scales publication-title: New Phytologist – volume: 27 start-page: 26 year: 2017 end-page: 36 article-title: Climate change and the eco‐hydrology of fire: will area burned increase in a warming western USA? publication-title: Ecological Applications – article-title: AmeriFlux BASE US‐xYE NEON Yellowstone Northern Range (Frog Rock) (YELL), Ver. 5‐5, AmeriFlux – volume: 10 start-page: 191 year: 2020 end-page: 199 article-title: Flash droughts present a new challenge for subseasonal‐to‐seasonal prediction publication-title: Nature Climate Change – volume: 65 start-page: 667 year: 2014 end-page: 687 article-title: Nonstructural carbon in woody plants publication-title: Annual Review of Plant Biology – year: 2010 – volume: 226 start-page: 1325 year: 2020 end-page: 1340 article-title: Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient publication-title: New Phytologist – volume: 94 start-page: 114 year: 2005 end-page: 125 article-title: Relationship between desiccation and viability of maize pollen publication-title: Field Crops Research – volume: 375 start-page: 666 year: 1995 end-page: 670 article-title: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 publication-title: Nature – volume: 32 start-page: 968 year: 2009 end-page: 979 article-title: Leaf stomatal responses to vapour pressure deficit under current and CO2‐enriched atmosphere explained by the economics of gas exchange publication-title: Plant, Cell & Environment – volume: 182–183 start-page: 204 year: 2013 end-page: 214 article-title: How should we model plant responses to drought? An analysis of stomatal and non‐stomatal responses to water stress publication-title: Agricultural and Forest Meteorology – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast–slow'plant economics spectrum: a traits manifesto publication-title: Journal of Ecology – volume: 320 start-page: 1444 year: 2008 end-page: 1449 article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests publication-title: Science – volume: 45 start-page: 3275 year: 2022 end-page: 3289 article-title: Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought publication-title: Plant, Cell & Environment – volume: 58 start-page: 971 year: 2022 end-page: 994 article-title: OpenET: filling a critical data gap in water management for the Western United States publication-title: JAWRA Journal of the American Water Resources Association – volume: 39 start-page: 38 year: 2016 end-page: 49 article-title: Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation publication-title: Plant, Cell & Environment – volume: 10 start-page: 1903 year: 2017 end-page: 1925 article-title: GLEAM v3: satellite‐based land evaporation and root‐zone soil moisture publication-title: Geoscientific Model Development – volume: 43 start-page: 11661 year: 2016 end-page: 11670 article-title: Evaporation estimates using weather station data and boundary layer theory publication-title: Geophysical Research Letters – volume: 167 start-page: 833 year: 2015 end-page: 843 article-title: The evolution of mechanisms driving the stomatal response to vapor pressure deficit publication-title: Plant Physiology – volume: 229 start-page: 2413 year: 2021 end-page: 2445 article-title: Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2 publication-title: New Phytologist – volume: 45 start-page: 2852 year: 2018 end-page: 2859 article-title: Increasingly important role of atmospheric aridity on Tibetan alpine grasslands publication-title: Geophysical Research Letters – volume: 233 start-page: 1560 year: 2022 end-page: 1596 article-title: A meta‐analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole‐plant level publication-title: New Phytologist – volume: 13 year: 2018 article-title: In ecoregions across western USA streamflow increases during post‐wildfire recovery publication-title: Environmental Research Letters – volume: 17 year: 2022 article-title: Climate drivers of global wildfire burned area publication-title: Environmental Research Letters – year: 2022o – volume: 36 start-page: 2399 year: 2022 end-page: 2411 article-title: Quantifying within‐species trait variation in space and time reveals limits to trait‐mediated drought response publication-title: Functional Ecology – volume: 24 start-page: 2284 year: 2018 end-page: 2304 article-title: Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data publication-title: Global Change Biology – year: 2021c – volume: 117 start-page: 8532 year: 2020 end-page: 8538 article-title: Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition publication-title: Proceedings of the National Academy of Sciences – volume: 10 year: 2019 article-title: Are we approaching a water ceiling to maize yields in the United States? publication-title: Ecosphere – volume: 231 start-page: 617 year: 2021 end-page: 630 article-title: Climate and functional traits jointly mediate tree water‐use strategies publication-title: New Phytologist – volume: 13 start-page: 7161 year: 2022 article-title: Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand publication-title: Nature Communications – volume: 11 start-page: 4892 year: 2020 article-title: Soil moisture dominates dryness stress on ecosystem production globally publication-title: Nature Communications – volume: 19 start-page: 1343 year: 2016 end-page: 1352 article-title: Mapping ‘hydroscapes’ along the iso‐to anisohydric continuum of stomatal regulation of plant water status publication-title: Ecology Letters – volume: 50 year: 2023 article-title: Dry live fuels increase the likelihood of lightning‐caused fires publication-title: Geophysical Research Letters – volume: 5 start-page: 787 year: 1978 end-page: 800 article-title: Feedforward responses of stomata to humidity publication-title: Functional Plant Biology – year: 2022ff – volume: 99 start-page: 167 year: 2018 end-page: 187 article-title: Reservoir evaporation in the Western United States: current science, challenges, and future needs publication-title: Bulletin of the American Meteorological Society – volume: 9 start-page: 880 year: 2019 end-page: 885 article-title: Reduced resilience as an early warning signal of forest mortality publication-title: Nature Climate Change – volume: 151 year: 1954 article-title: Basic laws of turbulent mixing in the surface layer of the atmosphere publication-title: Contributions of the Geophysical Institute of the Academy of Sciences of the USSR – article-title: AmeriFlux BASE US‐xWR NEON Wind River Experimental Forest (WREF), Ver. 5‐5, AmeriFlux – volume: 15 start-page: 158 year: 2022 end-page: 164 article-title: Confronting the water potential information gap publication-title: Nature Geoscience – volume: 49 year: 2022 article-title: Rapid growth of large forest fires drives the exponential response of annual forest‐fire area to aridity in the western United States publication-title: Geophysical Research Letters – volume: 250‐251 start-page: 24 year: 2018 end-page: 34 article-title: Diel ecosystem conductance response to vapor pressure deficit is suboptimal and independent of soil moisture publication-title: Agricultural and Forest Meteorology – year: 2019a – volume: 42 start-page: 153 year: 2015 end-page: 161 article-title: Artificial amplification of warming trends across the mountains of the western United States publication-title: Geophysical Research Letters – volume: 14 year: 2019 article-title: Coupling between the terrestrial carbon and water cycles—a review publication-title: Environmental Research Letters – year: 2018 – volume: 221 start-page: 693 year: 2019 end-page: 705 article-title: On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls publication-title: New Phytologist – volume: 10 year: 2017 article-title: Contrasting strategies of hydraulic control in two codominant temperate tree species publication-title: Ecohydrology – year: 2022r – year: 2022ee – year: 2022b – year: 1965 – volume: 130 start-page: 301 year: 2022 end-page: 316 article-title: Extreme undersaturation in the intercellular airspace of leaves: a failure of Gaastra or Ohm? publication-title: Annals of Botany – volume: 766 start-page: 198 year: 1984 end-page: 208 article-title: Structural reorganisation of chloroplast thylakoid membranes in response to heat‐stress publication-title: Biochimica et Biophysica Acta (BBA)‐Bioenergetics – volume: 14 start-page: 6674 year: 2013 end-page: 6689 article-title: Transgenerational, dynamic methylation of stomata genes in response to low relative humidity publication-title: International Journal of Molecular Sciences – volume: 58 start-page: 431 year: 2020 end-page: 442 article-title: Riparian buffers act as a microclimatic refugia in oil palm landscapes publication-title: Journal of Applied Ecology – article-title: AmeriFlux BASE US‐xWD NEON Woodworth (WOOD), Ver. 5‐5, AmeriFlux – volume: 106 start-page: 7063 year: 2009 end-page: 7066 article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought publication-title: Proceedings of the National Academy of Sciences – volume: 2 year: 2023 article-title: Low‐elevation conifers in California's Sierra Nevada are out of equilibrium with climate publication-title: PNAS Nexus – volume: 33 start-page: 317 year: 1982 end-page: 345 article-title: Stomatal conductance and photosynthesis publication-title: Annual Review of Plant Physiology – volume: 22 start-page: 1515 year: 1999 end-page: 1526 article-title: Survey and synthesis of intra‐and interspecific variation in stomatal sensitivity to vapour pressure deficit publication-title: Plant, Cell & Environment – volume: 279 year: 2019 article-title: Maize yield under a changing climate: the hidden role of vapor pressure deficit publication-title: Agricultural and Forest Meteorology – year: 2022m – volume: 147 start-page: 4186 year: 2021 end-page: 4227 article-title: The ERA5 global reanalysis: preliminary extension to 1950 publication-title: Quarterly Journal of the Royal Meteorological Society – year: 1983 – volume: 2 year: 2023 article-title: A practical exploration of land cover impacts on surface and air temperature when they are most consequential publication-title: Environmental Research: Climate – volume: 43 start-page: 5079 year: 2016 end-page: 5088 article-title: Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds publication-title: Geophysical Research Letters – volume: 28 start-page: 4794 year: 2022 end-page: 4806 article-title: Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 US Southwest hot drought publication-title: Global Change Biology – year: 2022x – volume: 287 year: 2020 article-title: Redefining droughts for the US Corn Belt: the dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of maize and soybean publication-title: Agricultural and Forest Meteorology – volume: 86 start-page: 495 year: 2016 end-page: 516 article-title: Dynamics of non‐structural carbohydrates in terrestrial plants: a global synthesis publication-title: Ecological Monographs – volume: 28 start-page: 2541 year: 2022 end-page: 2554 article-title: Representing plant diversity in land models: an evolutionary approach to make “Functional Types” more functional publication-title: Global Change Biology – volume: 8 start-page: 431 year: 2015 end-page: 452 article-title: A test of an optimal stomatal conductance scheme within the CABLE land surface model publication-title: Geoscientific Model Development – volume: 231 start-page: 1798 year: 2021 end-page: 1813 article-title: Hydraulically‐vulnerable trees survive on deep‐water access during droughts in a tropical forest publication-title: New Phytologist – volume: 565 start-page: 476 year: 2019 end-page: 479 article-title: Large influence of soil moisture on long‐term terrestrial carbon uptake publication-title: Nature – volume: 146 start-page: 1999 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 22 start-page: 716 year: 2016 end-page: 726 article-title: Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence publication-title: Global Change Biology – volume: 15 start-page: 5593 year: 2022 end-page: 5626 article-title: SurEau‐Ecos v2. 0: a trait‐based plant hydraulics model for simulations of plant water status and drought‐induced mortality at the ecosystem level publication-title: Geoscientific Model Development – volume: 13 start-page: 28 year: 2022 article-title: The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests publication-title: Nature Communications – volume: 109 start-page: 1962 year: 2021 end-page: 1968 article-title: Biodiversity and ecosystem functioning: have our experiments and indices been underestimating the role of facilitation? publication-title: Journal of Ecology – volume: 5 year: 2019 article-title: Increased atmospheric vapor pressure deficit reduces global vegetation growth publication-title: Science Advances – volume: 247 start-page: 414 year: 2017 end-page: 423 article-title: Meteorological conditions associated with the onset of flash drought in the eastern United States publication-title: Agricultural and Forest Meteorology – volume: 391 start-page: 202 year: 2010 end-page: 216 article-title: A review of drought concepts publication-title: Journal of Hydrology – volume: 234 start-page: 55 year: 2019 end-page: 65 article-title: Toward building a transparent statistical model for improving crop yield prediction: modeling rainfed corn in the US publication-title: Field Crops Research – volume: 107 start-page: 1978 year: 2015 end-page: 1986 article-title: Limited‐transpiration trait may increase maize drought tolerance in the US Corn Belt publication-title: Agronomy Journal – volume: 108 start-page: 4035 year: 2011 end-page: 4040 article-title: Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation publication-title: Proceedings of the National Academy of Sciences – volume: 618 start-page: 755 year: 2023 end-page: 760 article-title: Increasingly negative tropical water–interannual CO2 growth rate coupling publication-title: Nature – volume: 237 start-page: 22 year: 2023 end-page: 47 article-title: Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications publication-title: New Phytologist – start-page: 286 year: 2000 – volume: 30 start-page: 2113 year: 2007 end-page: 2122 article-title: What limits evaporation from Mediterranean oak woodlands—the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? publication-title: Advances in Water Resources – volume: 323 start-page: 521 year: 2009 end-page: 524 article-title: Widespread increase of tree mortality rates in the western United States publication-title: Science – year: 1977 – volume: 36 start-page: 24 year: 2022 end-page: 37 article-title: Opportunities, challenges and pitfalls in characterizing plant water‐use strategies publication-title: Functional Ecology – volume: 8 start-page: 6749 year: 2018 article-title: Disequilibrium of fire‐prone forests sets the stage for a rapid decline in conifer dominance during the 21st century publication-title: Scientific Reports – volume: 119 year: 2022 article-title: Growing impact of wildfire on western US water supply publication-title: Proceedings of the National Academy of Sciences – year: 2022h – volume: 117 start-page: 29720 year: 2020 end-page: 29729 article-title: Forest and woodland replacement patterns following drought‐related mortality publication-title: Proceedings of the National Academy of Sciences – volume: 24 start-page: 1119 year: 2004 end-page: 1127 article-title: Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species publication-title: Tree Physiology – volume: 47 year: 2020 article-title: Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017 publication-title: Geophysical Research Letters – volume: 31 start-page: 800 year: 2017 end-page: 808 article-title: Spatial and temporal changes in vapor pressure deficit and their impacts on crop yields in China during 1980–2008 publication-title: Journal of Meteorological Research – year: 2022s – volume: 590 year: 2020 article-title: Connections between the hydrological cycle and crop yield in the rainfed US Corn Belt publication-title: Journal of Hydrology – volume: 23 start-page: 3742 year: 2017 end-page: 3757 article-title: Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback publication-title: Global Change Biology – year: 2021b – volume: 210 start-page: 108 year: 2016 end-page: 121 article-title: Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach publication-title: New Phytologist – volume: 16 year: 2021 article-title: Challenges and opportunities in precision irrigation decision‐support systems for center pivots publication-title: Environmental Research Letters – volume: 14 start-page: 538 year: 2000 end-page: 545 article-title: Ecological implications of xylem cavitation for several Pinaceae in the Pacific Northern USA publication-title: Functional Ecology – volume: 2 start-page: 30 year: 2019 article-title: We're not doing enough prescribed fire in the Western United States to mitigate wildfire risk publication-title: Fire – volume: 9 start-page: 915 year: 2018 end-page: 937 article-title: Recent changes of relative humidity: regional connections with land and ocean processes publication-title: Earth System Dynamics – volume: 479 start-page: 371 year: 2022 end-page: 387 article-title: Increasing relative abundance of C4 plants mitigates a dryness‐stress effect on gross primary productivity along an aridity gradient in grassland ecosystems publication-title: Plant and Soil – year: 2022c – volume: 6 start-page: 104 year: 1976 end-page: 112 article-title: Environmental control of leaf water conductance in conifers publication-title: Canadian Journal of Forest Research – year: 2022gg – ident: e_1_2_8_374_1 doi: 10.1016/j.foreco.2019.117500 – ident: e_1_2_8_387_1 – ident: e_1_2_8_217_1 doi: 10.1029/2019MS001790 – ident: e_1_2_8_89_1 doi: 10.1029/2020AV000283 – ident: e_1_2_8_401_1 doi: 10.5194/cp-10-1983-2014 – ident: e_1_2_8_177_1 doi: 10.1111/gcb.13913 – ident: e_1_2_8_353_1 doi: 10.1016/j.earscirev.2010.02.004 – ident: e_1_2_8_392_1 doi: 10.5194/esd-9-915-2018 – ident: e_1_2_8_257_1 – ident: e_1_2_8_8_1 doi: 10.1111/gcb.16040 – ident: e_1_2_8_361_1 doi: 10.1111/pce.12852 – ident: e_1_2_8_96_1 doi: 10.1002/ece3.664 – volume: 55 start-page: 165 year: 1989 ident: e_1_2_8_166_1 article-title: A three‐dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data publication-title: Aspects of Climate Variability in the Pacific and the Western Americas – ident: e_1_2_8_155_1 doi: 10.1038/nature15374 – ident: e_1_2_8_69_1 – ident: e_1_2_8_269_1 – ident: e_1_2_8_338_1 doi: 10.2737/INT-GTR-143 – ident: e_1_2_8_425_1 doi: 10.1016/j.jhydrol.2020.125398 – ident: e_1_2_8_394_1 doi: 10.1111/nph.18208 – ident: e_1_2_8_325_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_8_336_1 doi: 10.1111/gcb.14107 – ident: e_1_2_8_343_1 doi: 10.1139/x76-013 – ident: e_1_2_8_247_1 doi: 10.1073/pnas.1113878108 – ident: e_1_2_8_274_1 – ident: e_1_2_8_149_1 doi: 10.1073/pnas.1802316115 – volume: 24 start-page: 111 year: 2000 ident: e_1_2_8_78_1 article-title: Microclimate gradients across a forest edge publication-title: New Zealand Journal of Ecology – ident: e_1_2_8_85_1 doi: 10.1111/nph.18770 – ident: e_1_2_8_165_1 doi: 10.5194/gmd-8-431-2015 – ident: e_1_2_8_48_1 – ident: e_1_2_8_26_1 doi: 10.1073/pnas.2002314117 – ident: e_1_2_8_253_1 – ident: e_1_2_8_262_1 – ident: e_1_2_8_162_1 doi: 10.1111/1365-2435.13945 – ident: e_1_2_8_398_1 doi: 10.1038/nature12915 – ident: e_1_2_8_82_1 – ident: e_1_2_8_378_1 doi: 10.1016/j.agrformet.2020.108066 – ident: e_1_2_8_168_1 – ident: e_1_2_8_373_1 doi: 10.1073/pnas.1604581113 – ident: e_1_2_8_417_1 doi: 10.1038/s41467-021-25254-7 – ident: e_1_2_8_399_1 doi: 10.1002/ecy.4109 – ident: e_1_2_8_228_1 doi: 10.1002/eap.1420 – ident: e_1_2_8_237_1 doi: 10.2134/agronj15.0016 – ident: e_1_2_8_363_1 – ident: e_1_2_8_291_1 – ident: e_1_2_8_236_1 doi: 10.1111/nph.15681 – ident: e_1_2_8_11_1 doi: 10.1175/2010JCLI3812.1 – ident: e_1_2_8_68_1 doi: 10.1088/1748-9326/ab9faf – ident: e_1_2_8_205_1 doi: 10.1111/gcb.15548 – ident: e_1_2_8_19_1 – ident: e_1_2_8_402_1 doi: 10.1029/2019EF001210 – ident: e_1_2_8_302_1 doi: 10.2136/vzj2012.0163 – ident: e_1_2_8_72_1 doi: 10.1093/jxb/eraa002 – ident: e_1_2_8_412_1 doi: 10.1093/jxb/erz150 – ident: e_1_2_8_278_1 – ident: e_1_2_8_100_1 doi: 10.1007/978-3-319-69099-5_6 – ident: e_1_2_8_30_1 doi: 10.1111/pce.14244 – ident: e_1_2_8_202_1 doi: 10.1016/0022-5193(65)90077-9 – ident: e_1_2_8_420_1 doi: 10.1038/s41558-022-01505-3 – ident: e_1_2_8_153_1 doi: 10.1038/s41586-021-03325-5 – ident: e_1_2_8_413_1 doi: 10.1111/nph.15384 – ident: e_1_2_8_321_1 doi: 10.3389/fpls.2017.00585 – ident: e_1_2_8_250_1 doi: 10.1093/jxb/erq438 – ident: e_1_2_8_138_1 doi: 10.1088/1748-9326/ac5fa1 – ident: e_1_2_8_156_1 doi: 10.21203/rs.3.rs-595210/v1 – ident: e_1_2_8_160_1 doi: 10.1111/gcb.14415 – ident: e_1_2_8_335_1 doi: 10.1046/j.1469-8137.2001.00054.x – ident: e_1_2_8_334_1 doi: 10.1093/aob/mcac094 – ident: e_1_2_8_113_1 doi: 10.1002/2016GL069121 – ident: e_1_2_8_295_1 – ident: e_1_2_8_426_1 doi: 10.1111/nph.17552 – ident: e_1_2_8_379_1 – ident: e_1_2_8_211_1 doi: 10.1111/gcb.15976 – ident: e_1_2_8_266_1 – ident: e_1_2_8_332_1 doi: 10.1029/2020JG005665 – ident: e_1_2_8_60_1 doi: 10.1016/S0022-1694(03)00264-6 – ident: e_1_2_8_137_1 doi: 10.1038/s41586-018-0848-x – ident: e_1_2_8_308_1 doi: 10.1038/nclimate1693 – ident: e_1_2_8_277_1 – ident: e_1_2_8_241_1 doi: 10.1016/j.jhydrol.2010.07.012 – ident: e_1_2_8_135_1 – ident: e_1_2_8_189_1 doi: 10.1016/j.agrformet.2019.107642 – ident: e_1_2_8_395_1 doi: 10.1111/nph.16866 – ident: e_1_2_8_224_1 doi: 10.1038/nclimate2641 – ident: e_1_2_8_45_1 doi: 10.1126/science.1155121 – ident: e_1_2_8_410_1 doi: 10.1111/1365-2745.13665 – volume-title: Physiology of woody plants year: 2010 ident: e_1_2_8_306_1 – ident: e_1_2_8_87_1 doi: 10.1002/2017GL076803 – ident: e_1_2_8_270_1 – ident: e_1_2_8_242_1 doi: 10.1002/ece3.1008 – ident: e_1_2_8_65_1 – ident: e_1_2_8_188_1 doi: 10.1016/j.fcr.2019.02.005 – ident: e_1_2_8_110_1 doi: 10.1111/nph.19130 – ident: e_1_2_8_261_1 – ident: e_1_2_8_206_1 doi: 10.1175/JHM-D-22-0158.1 – ident: e_1_2_8_108_1 doi: 10.1111/pce.13486 – ident: e_1_2_8_198_1 doi: 10.5194/hess-25-2399-2021 – ident: e_1_2_8_154_1 doi: 10.1111/gcb.17106 – ident: e_1_2_8_4_1 doi: 10.1111/gcb.14405 – ident: e_1_2_8_44_1 doi: 10.17190/AMF/1246088 – ident: e_1_2_8_6_1 doi: 10.1111/1365-2745.13595 – ident: e_1_2_8_43_1 doi: 10.1111/pce.12758 – ident: e_1_2_8_317_1 doi: 10.1007/s00442-007-0740-0 – ident: e_1_2_8_381_1 doi: 10.1016/j.tree.2021.02.001 – ident: e_1_2_8_376_1 doi: 10.1111/gcb.12498 – ident: e_1_2_8_9_1 doi: 10.1038/s41586-018-0539-7 – ident: e_1_2_8_356_1 doi: 10.1038/s41598-018-24642-2 – ident: e_1_2_8_22_1 doi: 10.1007/978-94-017-0519-6_48 – ident: e_1_2_8_77_1 doi: 10.1111/gcb.16214 – ident: e_1_2_8_405_1 doi: 10.1111/1365-2664.13784 – ident: e_1_2_8_148_1 doi: 10.1016/j.foreco.2020.118523 – ident: e_1_2_8_98_1 doi: 10.1111/avsc.12556 – ident: e_1_2_8_311_1 doi: 10.1038/s41558-020-0709-0 – ident: e_1_2_8_220_1 doi: 10.1038/s41586-021-03761-3 – ident: e_1_2_8_182_1 – ident: e_1_2_8_286_1 – ident: e_1_2_8_121_1 doi: 10.1016/j.agrformet.2022.109029 – ident: e_1_2_8_382_1 doi: 10.1073/pnas.1917521117 – ident: e_1_2_8_36_1 doi: 10.1029/2020JG006027 – ident: e_1_2_8_396_1 doi: 10.1007/s11104-022-05529-8 – ident: e_1_2_8_287_1 – ident: e_1_2_8_315_1 doi: 10.1111/nph.17802 – ident: e_1_2_8_210_1 doi: 10.1126/science.1165000 – ident: e_1_2_8_256_1 – ident: e_1_2_8_319_1 doi: 10.1641/B580607 – ident: e_1_2_8_246_1 doi: 10.1111/nph.18929 – ident: e_1_2_8_415_1 doi: 10.1126/sciadv.aax1396 – ident: e_1_2_8_173_1 doi: 10.3390/fire2020030 – ident: e_1_2_8_357_1 – ident: e_1_2_8_372_1 – ident: e_1_2_8_3_1 doi: 10.1073/pnas.1607171113 – ident: e_1_2_8_53_1 doi: 10.17190/AMF/1246068 – ident: e_1_2_8_115_1 doi: 10.1029/2019WR026058 – ident: e_1_2_8_61_1 doi: 10.1038/s41598-018-25838-2 – volume: 9 start-page: 52 year: 1996 ident: e_1_2_8_23_1 article-title: Vertical profiles in a Brunei rain forest: II. Leaf characteristics of Dryobalanops lanceolata publication-title: Journal of Tropical Forest Science – ident: e_1_2_8_56_1 doi: 10.1126/science.abm4875 – ident: e_1_2_8_67_1 doi: 10.1038/s41586-018-0240-x – ident: e_1_2_8_324_1 – ident: e_1_2_8_191_1 – ident: e_1_2_8_323_1 doi: 10.1038/s41559-021-01654-2 – ident: e_1_2_8_197_1 doi: 10.1038/s41467-020-18631-1 – ident: e_1_2_8_127_1 doi: 10.1038/s41467-022-28652-7 – ident: e_1_2_8_310_1 doi: 10.1111/j.1466-8238.2012.00769.x – ident: e_1_2_8_408_1 doi: 10.1890/13-1855.1 – ident: e_1_2_8_83_1 – ident: e_1_2_8_18_1 – ident: e_1_2_8_196_1 doi: 10.1038/s41586-023-06056-x – ident: e_1_2_8_330_1 doi: 10.1016/j.wace.2015.10.004 – ident: e_1_2_8_404_1 doi: 10.1073/pnas.2114069119 – ident: e_1_2_8_139_1 doi: 10.1111/nph.16485 – ident: e_1_2_8_290_1 – ident: e_1_2_8_340_1 doi: 10.1111/nph.19000 – ident: e_1_2_8_80_1 doi: 10.1002/ecs2.2773 – ident: e_1_2_8_51_1 doi: 10.1104/pp.111.175638 – ident: e_1_2_8_90_1 doi: 10.1093/treephys/tpq054 – ident: e_1_2_8_157_1 doi: 10.1029/2021JG006431 – ident: e_1_2_8_200_1 doi: 10.1038/s41558-020-0781-5 – volume: 2021 start-page: 1 year: 2021 ident: e_1_2_8_249_1 article-title: Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi‐year droughts publication-title: Earth System Dynamics Discussions – ident: e_1_2_8_342_1 doi: 10.5194/gmd-15-5593-2022 – ident: e_1_2_8_248_1 doi: 10.1038/s41598-019-38971-3 – ident: e_1_2_8_370_1 – ident: e_1_2_8_73_1 – ident: e_1_2_8_326_1 doi: 10.1073/pnas.1602384113 – ident: e_1_2_8_359_1 – ident: e_1_2_8_423_1 doi: 10.1073/pnas.1904955116 – ident: e_1_2_8_130_1 doi: 10.1088/1748-9326/ab22d6 – ident: e_1_2_8_28_1 doi: 10.1002/qj.4174 – ident: e_1_2_8_132_1 doi: 10.1111/nph.13748 – ident: e_1_2_8_122_1 doi: 10.1111/nph.17404 – ident: e_1_2_8_231_1 doi: 10.1111/j.1365-2486.2012.02790.x – ident: e_1_2_8_390_1 doi: 10.1175/2009JCLI2909.1 – ident: e_1_2_8_294_1 – ident: e_1_2_8_152_1 doi: 10.1038/s41467-023-36794-5 – ident: e_1_2_8_213_1 doi: 10.1111/j.1469-8137.2009.02954.x – ident: e_1_2_8_309_1 doi: 10.1029/2020GL089858 – ident: e_1_2_8_133_1 – ident: e_1_2_8_164_1 doi: 10.1111/j.1365-3040.2009.01977.x – ident: e_1_2_8_111_1 doi: 10.1002/2016JD025855 – ident: e_1_2_8_358_1 doi: 10.1016/j.plantsci.2017.04.007 – ident: e_1_2_8_314_1 doi: 10.1046/j.1365-2435.2000.t01-1-00451.x – ident: e_1_2_8_264_1 – ident: e_1_2_8_360_1 doi: 10.2134/agronj2009.0195 – ident: e_1_2_8_123_1 doi: 10.1016/j.fcr.2004.12.001 – ident: e_1_2_8_118_1 – ident: e_1_2_8_16_1 doi: 10.1126/sciadv.aat4313 – ident: e_1_2_8_349_1 – ident: e_1_2_8_279_1 – ident: e_1_2_8_383_1 doi: 10.1111/gcb.14680 – ident: e_1_2_8_29_1 doi: 10.1038/nplants.2015.139 – ident: e_1_2_8_207_1 doi: 10.17190/AMF/1245971 – ident: e_1_2_8_194_1 – ident: e_1_2_8_421_1 doi: 10.1126/sciadv.adf3166 – ident: e_1_2_8_131_1 doi: 10.1038/s41561-018-0133-5 – start-page: 286 volume-title: An Introduction to Environmental Biophysics year: 2000 ident: e_1_2_8_59_1 – ident: e_1_2_8_46_1 doi: 10.3389/fpls.2013.00266 – ident: e_1_2_8_50_1 doi: 10.1111/pce.12651 – ident: e_1_2_8_204_1 doi: 10.1093/jxb/29.3.567 – ident: e_1_2_8_369_1 doi: 10.1016/j.scitotenv.2023.162960 – ident: e_1_2_8_54_1 doi: 10.1111/1365-2435.12592 – ident: e_1_2_8_282_1 – ident: e_1_2_8_297_1 doi: 10.1038/s41561-022-00909-2 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.0901438106 – ident: e_1_2_8_172_1 doi: 10.1038/nature02417 – ident: e_1_2_8_114_1 doi: 10.1126/science.281.5374.237 – ident: e_1_2_8_86_1 doi: 10.1146/annurev-arplant-050213-040054 – ident: e_1_2_8_52_1 doi: 10.3389/ffgc.2020.591162 – ident: e_1_2_8_79_1 doi: 10.1093/treephys/20.1.57 – ident: e_1_2_8_47_1 doi: 10.1029/2020EF001645 – ident: e_1_2_8_128_1 doi: 10.1111/pce.12588 – ident: e_1_2_8_35_1 doi: 10.1029/2021WR030687 – ident: e_1_2_8_367_1 – ident: e_1_2_8_344_1 doi: 10.1016/j.eja.2019.03.009 – ident: e_1_2_8_107_1 doi: 10.1111/nph.15451 – ident: e_1_2_8_299_1 – ident: e_1_2_8_254_1 – ident: e_1_2_8_33_1 – ident: e_1_2_8_233_1 doi: 10.1093/treephys/tpt012 – ident: e_1_2_8_226_1 doi: 10.1038/s43017-022-00272-1 – ident: e_1_2_8_180_1 doi: 10.1073/pnas.1100371108 – ident: e_1_2_8_292_1 – ident: e_1_2_8_346_1 doi: 10.1093/jxb/erac033 – ident: e_1_2_8_216_1 – ident: e_1_2_8_243_1 doi: 10.1002/2015GL064018 – ident: e_1_2_8_352_1 doi: 10.17190/AMF/1246112 – ident: e_1_2_8_235_1 doi: 10.1111/1752-1688.12956 – ident: e_1_2_8_141_1 doi: 10.1111/nph.16196 – ident: e_1_2_8_337_1 doi: 10.1111/nph.15684 – ident: e_1_2_8_393_1 doi: 10.1111/nph.18539 – ident: e_1_2_8_159_1 doi: 10.1029/2021GL097131 – ident: e_1_2_8_303_1 doi: 10.1046/j.1365-3040.1999.00513.x – ident: e_1_2_8_289_1 – ident: e_1_2_8_385_1 doi: 10.1111/nph.14053 – ident: e_1_2_8_136_1 doi: 10.1016/0005-2728(84)90232-9 – ident: e_1_2_8_140_1 doi: 10.1111/gcb.13136 – ident: e_1_2_8_84_1 – ident: e_1_2_8_104_1 doi: 10.1071/PP9780787 – ident: e_1_2_8_212_1 doi: 10.5194/gmd-10-1903-2017 – ident: e_1_2_8_312_1 doi: 10.1111/nph.16872 – ident: e_1_2_8_222_1 doi: 10.1104/pp.110.170704 – volume: 39 start-page: 1961 year: 2019 ident: e_1_2_8_411_1 article-title: Incorporating non‐stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit publication-title: Tree Physiology – ident: e_1_2_8_377_1 doi: 10.1038/ngeo950 – ident: e_1_2_8_238_1 doi: 10.17190/AMF/1246036 – ident: e_1_2_8_12_1 doi: 10.1016/j.baae.2008.10.008 – ident: e_1_2_8_388_1 doi: 10.1080/15592324.2017.1356534 – ident: e_1_2_8_112_1 doi: 10.1029/2021EF002487 – ident: e_1_2_8_327_1 – ident: e_1_2_8_288_1 – ident: e_1_2_8_389_1 – ident: e_1_2_8_318_1 doi: 10.1111/gcb.16847 – ident: e_1_2_8_146_1 doi: 10.1002/qj.3803 – ident: e_1_2_8_320_1 doi: 10.1016/j.foreco.2008.09.029 – ident: e_1_2_8_255_1 – ident: e_1_2_8_260_1 – ident: e_1_2_8_400_1 – ident: e_1_2_8_14_1 doi: 10.1016/S1360-1385(03)00136-5 – ident: e_1_2_8_57_1 doi: 10.1111/nph.16456 – ident: e_1_2_8_232_1 doi: 10.1007/BF00378398 – ident: e_1_2_8_259_1 – ident: e_1_2_8_167_1 doi: 10.1038/375666a0 – ident: e_1_2_8_368_1 doi: 10.1002/2016GL069416 – ident: e_1_2_8_414_1 doi: 10.1029/2020JG005892 – ident: e_1_2_8_209_1 doi: 10.1175/JCLI‐D‐22‐0477.1 – ident: e_1_2_8_407_1 – ident: e_1_2_8_355_1 doi: 10.1002/grl.50956 – ident: e_1_2_8_284_1 – ident: e_1_2_8_58_1 doi: 10.1111/pce.12449 – ident: e_1_2_8_49_1 doi: 10.1093/treephys/24.10.1119 – ident: e_1_2_8_147_1 doi: 10.1093/pnasnexus/pgad004 – ident: e_1_2_8_272_1 – ident: e_1_2_8_38_1 – ident: e_1_2_8_218_1 doi: 10.1002/eco.1815 – ident: e_1_2_8_171_1 – ident: e_1_2_8_199_1 doi: 10.1038/s41558-019-0583-9 – ident: e_1_2_8_322_1 doi: 10.1029/2022GL100975 – ident: e_1_2_8_31_1 – ident: e_1_2_8_134_1 – ident: e_1_2_8_179_1 – ident: e_1_2_8_181_1 doi: 10.1111/gcb.14634 – ident: e_1_2_8_281_1 – ident: e_1_2_8_251_1 – ident: e_1_2_8_364_1 – ident: e_1_2_8_93_1 – ident: e_1_2_8_99_1 doi: 10.3390/atmos13071143 – ident: e_1_2_8_365_1 – ident: e_1_2_8_95_1 doi: 10.1111/nph.15395 – ident: e_1_2_8_7_1 doi: 10.1111/j.1365-3040.2007.01641.x – ident: e_1_2_8_116_1 – ident: e_1_2_8_252_1 – ident: e_1_2_8_384_1 doi: 10.1111/nph.17952 – ident: e_1_2_8_183_1 – ident: e_1_2_8_34_1 doi: 10.1086/297397 – ident: e_1_2_8_63_1 doi: 10.1029/2022EF002667 – ident: e_1_2_8_64_1 – ident: e_1_2_8_178_1 – ident: e_1_2_8_221_1 doi: 10.1111/nph.15027 – ident: e_1_2_8_403_1 doi: 10.1038/s41558-022-01290-z – ident: e_1_2_8_92_1 doi: 10.1016/j.agrformet.2017.08.026 – ident: e_1_2_8_229_1 doi: 10.1046/j.1469-8137.2001.00028.x – ident: e_1_2_8_339_1 doi: 10.1038/nature15539 – ident: e_1_2_8_143_1 doi: 10.1038/s41597-020-0453-3 – ident: e_1_2_8_106_1 doi: 10.1146/annurev.pp.33.060182.001533 – ident: e_1_2_8_55_1 doi: 10.1073/pnas.1722312115 – ident: e_1_2_8_17_1 – ident: e_1_2_8_267_1 – ident: e_1_2_8_223_1 doi: 10.1890/1051-0761(2006)016[1164:HMOPPG]2.0.CO;2 – ident: e_1_2_8_234_1 doi: 10.1111/ele.12670 – ident: e_1_2_8_151_1 doi: 10.1016/j.agrformet.2019.107692 – ident: e_1_2_8_307_1 – ident: e_1_2_8_101_1 doi: 10.1111/gcb.14413 – ident: e_1_2_8_161_1 doi: 10.1111/gcb.13636 – ident: e_1_2_8_239_1 doi: 10.1029/2010JG001486 – ident: e_1_2_8_276_1 – ident: e_1_2_8_21_1 doi: 10.1016/j.advwatres.2006.06.013 – ident: e_1_2_8_192_1 – ident: e_1_2_8_13_1 doi: 10.1111/ele.13516 – ident: e_1_2_8_41_1 doi: 10.1111/nph.19257 – ident: e_1_2_8_185_1 doi: 10.1111/j.1365-3040.1995.tb00370.x – ident: e_1_2_8_380_1 doi: 10.3390/ijms14046674 – ident: e_1_2_8_366_1 doi: 10.1073/pnas.2205682119 – ident: e_1_2_8_190_1 doi: 10.1016/j.agrformet.2017.12.078 – ident: e_1_2_8_280_1 – ident: e_1_2_8_362_1 doi: 10.1111/nph.14059 – ident: e_1_2_8_125_1 – ident: e_1_2_8_219_1 doi: 10.1104/pp.114.252940 – ident: e_1_2_8_419_1 doi: 10.1007/s13351-017-6137-z – ident: e_1_2_8_184_1 doi: 10.1002/fee.2278 – ident: e_1_2_8_273_1 – ident: e_1_2_8_37_1 – ident: e_1_2_8_296_1 doi: 10.1088/2752-5295/accdf9 – ident: e_1_2_8_305_1 doi: 10.1002/2014GL062803 – ident: e_1_2_8_409_1 doi: 10.1111/1365-2745.12397 – ident: e_1_2_8_345_1 doi: 10.1038/s41467-021-27579-9 – ident: e_1_2_8_74_1 doi: 10.1029/2010JD015541 – ident: e_1_2_8_422_1 doi: 10.1016/j.agrformet.2013.05.009 – ident: e_1_2_8_163_1 doi: 10.1038/s43016-022-00614-8 – ident: e_1_2_8_40_1 – ident: e_1_2_8_174_1 doi: 10.1016/j.pbi.2015.05.003 – ident: e_1_2_8_2_1 doi: 10.1071/WF16165 – ident: e_1_2_8_120_1 doi: 10.1093/aob/mcf027 – ident: e_1_2_8_333_1 doi: 10.1016/j.foreco.2020.118623 – ident: e_1_2_8_347_1 doi: 10.1111/pce.14425 – ident: e_1_2_8_103_1 doi: 10.5194/gmd-9-1937-2016 – ident: e_1_2_8_97_1 – ident: e_1_2_8_258_1 – ident: e_1_2_8_91_1 doi: 10.1038/nature14213 – ident: e_1_2_8_124_1 doi: 10.1016/j.agrformet.2017.08.031 – ident: e_1_2_8_285_1 – ident: e_1_2_8_386_1 – ident: e_1_2_8_271_1 – ident: e_1_2_8_42_1 – ident: e_1_2_8_109_1 doi: 10.1016/j.ecolind.2023.109944 – ident: e_1_2_8_240_1 doi: 10.1002/eap.2411 – ident: e_1_2_8_66_1 doi: 10.1111/nph.17464 – ident: e_1_2_8_300_1 – ident: e_1_2_8_193_1 – ident: e_1_2_8_201_1 doi: 10.1126/science.1251423 – volume-title: Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses year: 1980 ident: e_1_2_8_186_1 – ident: e_1_2_8_230_1 doi: 10.1111/j.1365-2486.2010.02375.x – ident: e_1_2_8_406_1 doi: 10.1088/1748-9326/aa9c5a – ident: e_1_2_8_20_1 doi: 10.1038/s41586-021-04325-1 – ident: e_1_2_8_75_1 doi: 10.1002/joc.1688 – ident: e_1_2_8_208_1 doi: 10.17190/AMF/1245984 – ident: e_1_2_8_375_1 doi: 10.1111/ppl.13752 – ident: e_1_2_8_331_1 – ident: e_1_2_8_76_1 doi: 10.1029/2019JG005499 – ident: e_1_2_8_268_1 – ident: e_1_2_8_301_1 doi: 10.17190/AMF/1246048 – ident: e_1_2_8_70_1 doi: 10.1038/s41467-022-34966-3 – ident: e_1_2_8_391_1 doi: 10.1073/pnas.1207068110 – ident: e_1_2_8_227_1 – ident: e_1_2_8_275_1 – ident: e_1_2_8_350_1 doi: 10.17190/AMF/1246104 – ident: e_1_2_8_351_1 doi: 10.17190/AMF/1246113 – ident: e_1_2_8_27_1 doi: 10.1038/s41586-022-04737-7 – ident: e_1_2_8_169_1 doi: 10.1111/1365-2435.14112 – ident: e_1_2_8_316_1 doi: 10.1111/nph.12278 – ident: e_1_2_8_328_1 – ident: e_1_2_8_10_1 doi: 10.1016/j.rse.2011.08.025 – ident: e_1_2_8_348_1 – ident: e_1_2_8_142_1 doi: 10.1038/s41467-022-29289-2 – volume: 151 year: 1954 ident: e_1_2_8_245_1 article-title: Basic laws of turbulent mixing in the surface layer of the atmosphere publication-title: Contributions of the Geophysical Institute of the Academy of Sciences of the USSR – ident: e_1_2_8_117_1 – ident: e_1_2_8_62_1 – start-page: 646 volume-title: Physical hydrology year: 2002 ident: e_1_2_8_88_1 – ident: e_1_2_8_313_1 doi: 10.1111/gcb.14884 – ident: e_1_2_8_94_1 doi: 10.1175/JTECH-D-22-0024.1 – ident: e_1_2_8_150_1 – ident: e_1_2_8_176_1 doi: 10.1007/s004840000066 – ident: e_1_2_8_418_1 doi: 10.1088/1748-9326/ab2603 – ident: e_1_2_8_15_1 doi: 10.1016/S0048-9697(00)00528-3 – ident: e_1_2_8_32_1 – ident: e_1_2_8_214_1 doi: 10.1111/pce.12846 – ident: e_1_2_8_265_1 – ident: e_1_2_8_195_1 – ident: e_1_2_8_215_1 doi: 10.1002/ecm.1231 – ident: e_1_2_8_298_1 doi: 10.1038/nclimate3114 – ident: e_1_2_8_304_1 doi: 10.1175/BAMS-D-17-0149.1 – ident: e_1_2_8_119_1 – ident: e_1_2_8_329_1 doi: 10.1038/s43016-020-0028-7 – ident: e_1_2_8_175_1 doi: 10.1126/science.1100217 – ident: e_1_2_8_71_1 doi: 10.1007/s13595-021-01067-y – ident: e_1_2_8_416_1 doi: 10.1088/1748-9326/abe436 – ident: e_1_2_8_144_1 doi: 10.1146/annurev-arplant-102820-012804 – ident: e_1_2_8_244_1 doi: 10.1073/pnas.2202767119 – ident: e_1_2_8_293_1 – ident: e_1_2_8_145_1 doi: 10.1016/j.foreco.2015.12.038 – ident: e_1_2_8_263_1 – ident: e_1_2_8_102_1 – ident: e_1_2_8_341_1 doi: 10.14358/PERS.74.11.1379 – ident: e_1_2_8_81_1 doi: 10.1093/treephys/tpaa153 – ident: e_1_2_8_170_1 doi: 10.1016/j.agrformet.2020.107930 – ident: e_1_2_8_39_1 – ident: e_1_2_8_225_1 doi: 10.1016/j.oneear.2023.02.007 – ident: e_1_2_8_424_1 doi: 10.1126/sciadv.aau5740 – ident: e_1_2_8_25_1 doi: 10.1111/j.1469-8137.2007.02035.x – ident: e_1_2_8_397_1 doi: 10.1038/srep30571 – ident: e_1_2_8_158_1 doi: 10.1016/j.rse.2022.112950 – ident: e_1_2_8_129_1 doi: 10.1002/2016GL070819 – ident: e_1_2_8_24_1 – ident: e_1_2_8_126_1 doi: 10.1175/BAMS-D-15-00224.1 – ident: e_1_2_8_187_1 doi: 10.1126/science.adf5041 – ident: e_1_2_8_203_1 doi: 10.1111/j.1365-3040.1991.tb01439.x – ident: e_1_2_8_283_1 – ident: e_1_2_8_105_1 doi: 10.1007/BF00386231 – ident: e_1_2_8_354_1 doi: 10.1038/nature05095 – ident: e_1_2_8_371_1 |
| SSID | ssj0001479 |
| Score | 2.6688988 |
| SecondaryResourceType | review_article |
| Snippet | An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems.... |
| SourceID | osti proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3561 |
| SubjectTerms | Agricultural land Biodiversity carbon carbon cycling climate Climate Change Crop yield Drought Droughts Ecosystem Ecosystem management Ecosystem services ecosystems Entanglement environment Environmental changes Environmental impact Environmental management Environmental risk ENVIRONMENTAL SCIENCES evolution Forest management Grasslands management Moisture content Photosynthesis plant physiology Pressure effects Provisioning Risk reduction Soil water Terrestrial ecosystems Vapor Pressure vapor pressure deficit Water - metabolism Water - physiology Water resources Wildfires |
| Title | The impacts of rising vapour pressure deficit in natural and managed ecosystems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14846 https://www.ncbi.nlm.nih.gov/pubmed/38348610 https://www.proquest.com/docview/3093050580 https://www.proquest.com/docview/2926079312 https://www.proquest.com/docview/3153705769 https://www.osti.gov/biblio/2301779 |
| Volume | 47 |
| WOSCitedRecordID | wos001160054800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-3040 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001479 issn: 0140-7791 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB70VPBFW9vqqZW0-ODLwiXZ2yT4ZK1HH4o9SoV7C9kkC0LZPW7vBP97J8neUkGh4MuysNns5MeXmdlMvgE4r0xhcudZ5kfjcZZbYzPF8VJaj9pFWa8KE5NNiNtbOZup6QZcrs_CJH6I_odbQEZcrwPATdn-A_K59QhzVJ-bsEUplyFvA8un_TJM80S0F-IXhVC0oxUKYTz9q8-U0aBBUL1kaD63W6Pimey_SeR3sNfZm-QqTZD3sOHrA9hJGSgfD2D7W4PW4eMH-IXzhaQjky1pKoLYR6VGHswcayAxWna18MT5wDixJPc1iZSgWLWpHUkxsI6gL5uooduPcDe5-XP9I-uSLWQWPbQCXcgcR0bQMh9Z1OOuMpzTKmwrlmYsnTLBFTEFc9VIeOFRzytvhHKUO0bLquCfYFA3tT8CQo3NmUCBmJRobXHpZO5UyUumPJd-NISLda9r2zGRh4QYf_XaI8GO0rGjhvC1LzpP9BsvFToJQ6fRZgjEtzZECNmlRueK4sAP4XQ9orrDZ6vD_m_I4SdRmC_9Y0RW2C4xtW9WrWYKfT1cvih7vQxHhSHQ5C3wM4dptvRyou-PHUtDc-OkeL0Benp9E2-O_7_oCewytK9SuNspDJaLlf8M2_Zhed8uziIU8Cpm8gy2vv-e3P18ApONC-Y |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3STUp7ado0bbf5qFJ66MWw-ljLgl6SkJCQdLuHBHITsiRDoNjLejeQf9-R5DUNJBDIZTGsbMvSPL0Za_wG4EdlciOcZ5kfjceZsMZmiuNPaT2yi7Je5SYWm5CTSXFzo6Zr8Gv1LUzSh-hfuAVkxPU6ADy8kP4P5TPrEefIn69gXSDLBCtnYtqvw1Qkpb2QwCilop2uUMjj6U99wEaDBlH1mKf50HGNzHO6-bI-v4d3ncdJDpOJfIA1X2_B61SD8n4LNo4a9A_vP8IftBiSPppsSVMRRD_SGrkzM7wCifmyy7knzgfNiQW5rUkUBcVLm9qRlAXrCEazSRy63Ybr05Or47OsK7eQWYzRcgwiBc6NpKUYWWRyVxnOaRU2FkszLpwyIRgxOXPVSHrpkemVN1I5yh2jZZXzTzCom9p_AUKNFUxih1hRoL_FC1cIp0peMuV54UdD-Lkadm07LfJQEuOvXsUkOFA6DtQQvvdNZ0mA47FGO2HuNHoNQfrWhhwhu9AYXlGc-SHsrqZUdwhtddgBDlX8CuzMQf83YitsmJjaN8tWM4XRHi5glD3dhiNlSHR6c7zN52QufT8x-seBpeFxo1U8_QB6enwSD74-v-k3eHN29ftSX55PLnbgLUNvKyW_7cJgMV_6Pdiwd4vbdr4fcfEP2OANSQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6tBt7Wbuu3bJ-TBt72IshkhzLgr1sbcPGShrGCn0TsnSGQrFDnBT63-9kOaaFFgZ7MQbL8unjp7uzTr8D-FzazKYeRYKj8ThJnXWJlnQpHJJ20Q51ZttkE2o6za-u9GwDvq7PwkR-iP6HW0BGu14HgOPcl_dQPndIOCf9-Qw205BEZgCbp78nl-f9SszTyLUXQhiV0rxjFgqRPP3LD_TRoCZcPWZrPjRdW90z2f4_qXfgVWdzsm9xkryGDax24XnMQnm3C1vfa7IQ797ABc0ZFo9NNqwuGeGfFBu7tXOqgbURs6sFMo-BdWLJrivW0oJS1bbyLMbBekb-bKSHbvbgcnL25-RH0iVcSBx5aRm5kSmNjuJFOnKky31ppeRl2Fos7Dj32gZ3xGbClyOFCknXa7RKey694EWZyX0YVHWF74Bx61KhSCCR52RxydznqdeFLIRGmeNoCF_W3W5cx0YekmLcmLVXQh1l2o4awqe-6DxScDxW6CCMnSG7IZDfuhAl5JaGHCxOIz-Ew_WQmg6jjQl7wCGPX07CfOwfE7rClomtsF41Rmjy92gJ4-LpMpKUhiKzN6PPvI3TpZeT_H_qWB6a286KpxtgZidn7c37fy_6AV7MTifm_Of01wG8FGRuxei3QxgsFys8gi13u7xuFscdMP4CPogOXw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impacts+of+rising+vapour+pressure+deficit+in+natural+and+managed+ecosystems&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Novick%2C+Kimberly+A.&rft.au=Ficklin%2C+Darren+L.&rft.au=Grossiord%2C+Charlotte&rft.au=Konings%2C+Alexandra+G.&rft.date=2024-09-01&rft.pub=Wiley&rft.issn=0140-7791&rft.volume=47&rft.issue=9&rft_id=info:doi/10.1111%2Fpce.14846&rft.externalDocID=2301779 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |