The impacts of rising vapour pressure deficit in natural and managed ecosystems

An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival....

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment Vol. 47; no. 9; pp. 3561 - 3589
Main Authors: Novick, Kimberly A., Ficklin, Darren L., Grossiord, Charlotte, Konings, Alexandra G., Martínez‐Vilalta, Jordi, Sadok, Walid, Trugman, Anna T., Williams, A. Park, Wright, Alexandra J., Abatzoglou, John T., Dannenberg, Matthew P., Gentine, Pierre, Guan, Kaiyu, Johnston, Miriam R., Lowman, Lauren E. L., Moore, David J. P., McDowell, Nate G.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.09.2024
Wiley
Subjects:
ISSN:0140-7791, 1365-3040, 1365-3040
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. Summary statement Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them.
AbstractList An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them.
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. Summary statement Rising atmospheric vapour pressure deficit (or VPD) is one of the most widespread and significant consequences of climate warming for terrestrial ecosystems. This article reviews the mechanistic bases of these usually deleterious impacts and synthesises that information into a set of management recommendations to mitigate them.
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Author Wright, Alexandra J.
Lowman, Lauren E. L.
Martínez‐Vilalta, Jordi
Sadok, Walid
Guan, Kaiyu
Dannenberg, Matthew P.
Konings, Alexandra G.
McDowell, Nate G.
Gentine, Pierre
Johnston, Miriam R.
Trugman, Anna T.
Grossiord, Charlotte
Williams, A. Park
Moore, David J. P.
Ficklin, Darren L.
Abatzoglou, John T.
Novick, Kimberly A.
Author_xml – sequence: 1
  givenname: Kimberly A.
  orcidid: 0000-0002-8431-0879
  surname: Novick
  fullname: Novick, Kimberly A.
  email: knovick@indiana.edu
  organization: Indiana University
– sequence: 2
  givenname: Darren L.
  surname: Ficklin
  fullname: Ficklin, Darren L.
  organization: Indiana University
– sequence: 3
  givenname: Charlotte
  orcidid: 0000-0002-9113-3671
  surname: Grossiord
  fullname: Grossiord, Charlotte
  organization: Snow and Landscape WSL
– sequence: 4
  givenname: Alexandra G.
  surname: Konings
  fullname: Konings, Alexandra G.
  organization: Stanford University
– sequence: 5
  givenname: Jordi
  surname: Martínez‐Vilalta
  fullname: Martínez‐Vilalta, Jordi
  organization: Universitat Autònoma de Barcelona
– sequence: 6
  givenname: Walid
  orcidid: 0000-0001-9637-2412
  surname: Sadok
  fullname: Sadok, Walid
  organization: University of Minnesota
– sequence: 7
  givenname: Anna T.
  surname: Trugman
  fullname: Trugman, Anna T.
  organization: University of California
– sequence: 8
  givenname: A. Park
  surname: Williams
  fullname: Williams, A. Park
  organization: University of California
– sequence: 9
  givenname: Alexandra J.
  surname: Wright
  fullname: Wright, Alexandra J.
  organization: California State University Los Angeles
– sequence: 10
  givenname: John T.
  surname: Abatzoglou
  fullname: Abatzoglou, John T.
  organization: University of California
– sequence: 11
  givenname: Matthew P.
  surname: Dannenberg
  fullname: Dannenberg, Matthew P.
  organization: University of Iowa
– sequence: 12
  givenname: Pierre
  surname: Gentine
  fullname: Gentine, Pierre
  organization: Columbia University
– sequence: 13
  givenname: Kaiyu
  surname: Guan
  fullname: Guan, Kaiyu
  organization: University of Illinois Urbana‐Champaign
– sequence: 14
  givenname: Miriam R.
  surname: Johnston
  fullname: Johnston, Miriam R.
  organization: University of Iowa
– sequence: 15
  givenname: Lauren E. L.
  orcidid: 0000-0003-2960-7095
  surname: Lowman
  fullname: Lowman, Lauren E. L.
  organization: Wake Forest University
– sequence: 16
  givenname: David J. P.
  surname: Moore
  fullname: Moore, David J. P.
  organization: University of Arizona
– sequence: 17
  givenname: Nate G.
  orcidid: 0000-0002-2178-2254
  surname: McDowell
  fullname: McDowell, Nate G.
  organization: Washington State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38348610$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2301779$$D View this record in Osti.gov
BookMark eNqFkUFP3DAQha0KVBbaQ_9AZbWX9hCYiRMnOVYr2iIhwYGeLa89AaPETu2Eav99DbtcUCt8sWR973nevGN24IMnxj4gnGI-Z5OhU6zaSr5hKxSyLgRUcMBWgBUUTdPhETtO6R4gPzTdW3YkWlG1EmHFrm7uiLtx0mZOPPQ8uuT8LX_QU1ginyKltETilnpn3Myd517PS9QD197yUXt9S5aTCWmbZhrTO3bY6yHR-_19wn59P79Z_ywur35crL9dFqbKPxcSq85Qg5sKDJTC9loI7EWLcqPr1na6Rmy1LG0PDTXUYtuRbjqLwpa46aU4YZ92viHNTqU8G5k7E7wnM6tSAObYGfqyg6YYfi-UZjW6ZGgYtKewJCWwFg3UjXwdLbtSQrbEMqOfX6D3eVc-p1UCOgE11C1k6uOeWjYjWTVFN-q4Vc-rz8DZDjAxpBSpVzmEnl3wc9RuUAjqsVyVy1VP5WbF1xeKZ9N_sXv3P26g7f9Bdb0-3yn-Aj7vsG8
CitedBy_id crossref_primary_10_1029_2024GB008362
crossref_primary_10_1111_pce_70097
crossref_primary_10_1016_j_ecoinf_2025_103144
crossref_primary_10_1002_csc2_70005
crossref_primary_10_1002_ecs2_70224
crossref_primary_10_1029_2024JG008146
crossref_primary_10_1111_nph_70056
crossref_primary_10_1038_s41467_025_63672_z
crossref_primary_10_1111_1365_2745_14313
crossref_primary_10_1016_j_jhydrol_2025_133031
crossref_primary_10_1093_treephys_tpae172
crossref_primary_10_1093_aob_mcaf182
crossref_primary_10_3390_f16081222
crossref_primary_10_1093_plphys_kiaf337
crossref_primary_10_1111_gcb_17474
crossref_primary_10_1111_gcb_70434
crossref_primary_10_1007_s11676_025_01910_2
crossref_primary_10_1016_j_scitotenv_2025_178808
crossref_primary_10_1111_gcb_17509
crossref_primary_10_1016_j_foreco_2025_122686
crossref_primary_10_1126_sciadv_adu5713
crossref_primary_10_1111_nph_20068
crossref_primary_10_1016_j_scitotenv_2024_178366
crossref_primary_10_1016_j_stress_2025_100981
crossref_primary_10_1088_1748_9326_ad7520
crossref_primary_10_1002_joc_8668
crossref_primary_10_1029_2024EF005469
crossref_primary_10_1029_2024JG008356
crossref_primary_10_1038_s41477_025_02024_7
crossref_primary_10_1029_2023WR036468
crossref_primary_10_1111_pce_15338
crossref_primary_10_1111_pce_15604
crossref_primary_10_1016_j_scitotenv_2025_179146
crossref_primary_10_3390_cli13070143
crossref_primary_10_1111_nph_20182
crossref_primary_10_1111_pce_15252
crossref_primary_10_1111_pce_15490
crossref_primary_10_3389_ffgc_2024_1489081
crossref_primary_10_1111_nph_70431
crossref_primary_10_1007_s10661_025_14450_3
crossref_primary_10_3389_fpls_2024_1396004
crossref_primary_10_1111_gcb_70055
crossref_primary_10_1007_s00442_025_05746_9
crossref_primary_10_1038_s41558_025_02375_1
crossref_primary_10_1016_j_agrformet_2025_110666
crossref_primary_10_1016_j_agrformet_2025_110466
crossref_primary_10_1016_j_chemgeo_2025_122823
crossref_primary_10_1111_1365_2435_14649
crossref_primary_10_1029_2025JG009127
crossref_primary_10_1038_s41559_024_02452_2
crossref_primary_10_1093_biosci_biaf098
crossref_primary_10_1038_s43247_025_02161_z
crossref_primary_10_1111_gcb_70220
crossref_primary_10_1016_j_agwat_2024_109107
crossref_primary_10_1029_2024JG008605
crossref_primary_10_1371_journal_pone_0315329
crossref_primary_10_1016_j_rse_2025_114768
crossref_primary_10_1017_dry_2024_1
crossref_primary_10_1111_pce_15030
crossref_primary_10_1029_2025JG008906
crossref_primary_10_1093_aob_mcaf075
crossref_primary_10_1016_j_scitotenv_2025_180391
crossref_primary_10_1093_conphys_coaf038
crossref_primary_10_1016_j_gecco_2025_e03835
Cites_doi 10.1016/j.foreco.2019.117500
10.1029/2019MS001790
10.1029/2020AV000283
10.5194/cp-10-1983-2014
10.1111/gcb.13913
10.1016/j.earscirev.2010.02.004
10.5194/esd-9-915-2018
10.1111/gcb.16040
10.1111/pce.12852
10.1002/ece3.664
10.1038/nature15374
10.2737/INT-GTR-143
10.1016/j.jhydrol.2020.125398
10.1111/nph.18208
10.1111/1365-2745.12211
10.1111/gcb.14107
10.1139/x76-013
10.1073/pnas.1113878108
10.1073/pnas.1802316115
10.1111/nph.18770
10.5194/gmd-8-431-2015
10.1073/pnas.2002314117
10.1111/1365-2435.13945
10.1038/nature12915
10.1016/j.agrformet.2020.108066
10.1073/pnas.1604581113
10.1038/s41467-021-25254-7
10.1002/ecy.4109
10.1002/eap.1420
10.2134/agronj15.0016
10.1111/nph.15681
10.1175/2010JCLI3812.1
10.1088/1748-9326/ab9faf
10.1111/gcb.15548
10.1029/2019EF001210
10.2136/vzj2012.0163
10.1093/jxb/eraa002
10.1093/jxb/erz150
10.1007/978-3-319-69099-5_6
10.1111/pce.14244
10.1016/0022-5193(65)90077-9
10.1038/s41558-022-01505-3
10.1038/s41586-021-03325-5
10.1111/nph.15384
10.3389/fpls.2017.00585
10.1093/jxb/erq438
10.1088/1748-9326/ac5fa1
10.21203/rs.3.rs-595210/v1
10.1111/gcb.14415
10.1046/j.1469-8137.2001.00054.x
10.1093/aob/mcac094
10.1002/2016GL069121
10.1111/nph.17552
10.1111/gcb.15976
10.1029/2020JG005665
10.1016/S0022-1694(03)00264-6
10.1038/s41586-018-0848-x
10.1038/nclimate1693
10.1016/j.jhydrol.2010.07.012
10.1016/j.agrformet.2019.107642
10.1111/nph.16866
10.1038/nclimate2641
10.1126/science.1155121
10.1111/1365-2745.13665
10.1002/2017GL076803
10.1002/ece3.1008
10.1016/j.fcr.2019.02.005
10.1111/nph.19130
10.1175/JHM-D-22-0158.1
10.1111/pce.13486
10.5194/hess-25-2399-2021
10.1111/gcb.17106
10.1111/gcb.14405
10.17190/AMF/1246088
10.1111/1365-2745.13595
10.1111/pce.12758
10.1007/s00442-007-0740-0
10.1016/j.tree.2021.02.001
10.1111/gcb.12498
10.1038/s41586-018-0539-7
10.1038/s41598-018-24642-2
10.1007/978-94-017-0519-6_48
10.1111/gcb.16214
10.1111/1365-2664.13784
10.1016/j.foreco.2020.118523
10.1111/avsc.12556
10.1038/s41558-020-0709-0
10.1038/s41586-021-03761-3
10.1016/j.agrformet.2022.109029
10.1073/pnas.1917521117
10.1029/2020JG006027
10.1007/s11104-022-05529-8
10.1111/nph.17802
10.1126/science.1165000
10.1641/B580607
10.1111/nph.18929
10.1126/sciadv.aax1396
10.3390/fire2020030
10.1073/pnas.1607171113
10.17190/AMF/1246068
10.1029/2019WR026058
10.1038/s41598-018-25838-2
10.1126/science.abm4875
10.1038/s41586-018-0240-x
10.1038/s41559-021-01654-2
10.1038/s41467-020-18631-1
10.1038/s41467-022-28652-7
10.1111/j.1466-8238.2012.00769.x
10.1890/13-1855.1
10.1038/s41586-023-06056-x
10.1016/j.wace.2015.10.004
10.1073/pnas.2114069119
10.1111/nph.16485
10.1111/nph.19000
10.1002/ecs2.2773
10.1104/pp.111.175638
10.1093/treephys/tpq054
10.1029/2021JG006431
10.1038/s41558-020-0781-5
10.5194/gmd-15-5593-2022
10.1038/s41598-019-38971-3
10.1073/pnas.1602384113
10.1073/pnas.1904955116
10.1088/1748-9326/ab22d6
10.1002/qj.4174
10.1111/nph.13748
10.1111/nph.17404
10.1111/j.1365-2486.2012.02790.x
10.1175/2009JCLI2909.1
10.1038/s41467-023-36794-5
10.1111/j.1469-8137.2009.02954.x
10.1029/2020GL089858
10.1111/j.1365-3040.2009.01977.x
10.1002/2016JD025855
10.1016/j.plantsci.2017.04.007
10.1046/j.1365-2435.2000.t01-1-00451.x
10.2134/agronj2009.0195
10.1016/j.fcr.2004.12.001
10.1126/sciadv.aat4313
10.1111/gcb.14680
10.1038/nplants.2015.139
10.17190/AMF/1245971
10.1126/sciadv.adf3166
10.1038/s41561-018-0133-5
10.3389/fpls.2013.00266
10.1111/pce.12651
10.1093/jxb/29.3.567
10.1016/j.scitotenv.2023.162960
10.1111/1365-2435.12592
10.1038/s41561-022-00909-2
10.1073/pnas.0901438106
10.1038/nature02417
10.1126/science.281.5374.237
10.1146/annurev-arplant-050213-040054
10.3389/ffgc.2020.591162
10.1093/treephys/20.1.57
10.1029/2020EF001645
10.1111/pce.12588
10.1029/2021WR030687
10.1016/j.eja.2019.03.009
10.1111/nph.15451
10.1093/treephys/tpt012
10.1038/s43017-022-00272-1
10.1073/pnas.1100371108
10.1093/jxb/erac033
10.1002/2015GL064018
10.17190/AMF/1246112
10.1111/1752-1688.12956
10.1111/nph.16196
10.1111/nph.15684
10.1111/nph.18539
10.1029/2021GL097131
10.1046/j.1365-3040.1999.00513.x
10.1111/nph.14053
10.1016/0005-2728(84)90232-9
10.1111/gcb.13136
10.1071/PP9780787
10.5194/gmd-10-1903-2017
10.1111/nph.16872
10.1104/pp.110.170704
10.1038/ngeo950
10.17190/AMF/1246036
10.1016/j.baae.2008.10.008
10.1080/15592324.2017.1356534
10.1029/2021EF002487
10.1111/gcb.16847
10.1002/qj.3803
10.1016/j.foreco.2008.09.029
10.1016/S1360-1385(03)00136-5
10.1111/nph.16456
10.1007/BF00378398
10.1038/375666a0
10.1002/2016GL069416
10.1029/2020JG005892
10.1175/JCLI‐D‐22‐0477.1
10.1002/grl.50956
10.1111/pce.12449
10.1093/treephys/24.10.1119
10.1093/pnasnexus/pgad004
10.1002/eco.1815
10.1038/s41558-019-0583-9
10.1029/2022GL100975
10.1111/gcb.14634
10.3390/atmos13071143
10.1111/nph.15395
10.1111/j.1365-3040.2007.01641.x
10.1111/nph.17952
10.1086/297397
10.1029/2022EF002667
10.1111/nph.15027
10.1038/s41558-022-01290-z
10.1016/j.agrformet.2017.08.026
10.1046/j.1469-8137.2001.00028.x
10.1038/nature15539
10.1038/s41597-020-0453-3
10.1146/annurev.pp.33.060182.001533
10.1073/pnas.1722312115
10.1890/1051-0761(2006)016[1164:HMOPPG]2.0.CO;2
10.1111/ele.12670
10.1016/j.agrformet.2019.107692
10.1111/gcb.14413
10.1111/gcb.13636
10.1029/2010JG001486
10.1016/j.advwatres.2006.06.013
10.1111/ele.13516
10.1111/nph.19257
10.1111/j.1365-3040.1995.tb00370.x
10.3390/ijms14046674
10.1073/pnas.2205682119
10.1016/j.agrformet.2017.12.078
10.1111/nph.14059
10.1104/pp.114.252940
10.1007/s13351-017-6137-z
10.1002/fee.2278
10.1088/2752-5295/accdf9
10.1002/2014GL062803
10.1111/1365-2745.12397
10.1038/s41467-021-27579-9
10.1029/2010JD015541
10.1016/j.agrformet.2013.05.009
10.1038/s43016-022-00614-8
10.1016/j.pbi.2015.05.003
10.1071/WF16165
10.1093/aob/mcf027
10.1016/j.foreco.2020.118623
10.1111/pce.14425
10.5194/gmd-9-1937-2016
10.1038/nature14213
10.1016/j.agrformet.2017.08.031
10.1016/j.ecolind.2023.109944
10.1002/eap.2411
10.1111/nph.17464
10.1126/science.1251423
10.1111/j.1365-2486.2010.02375.x
10.1088/1748-9326/aa9c5a
10.1038/s41586-021-04325-1
10.1002/joc.1688
10.17190/AMF/1245984
10.1111/ppl.13752
10.1029/2019JG005499
10.17190/AMF/1246048
10.1038/s41467-022-34966-3
10.1073/pnas.1207068110
10.17190/AMF/1246104
10.17190/AMF/1246113
10.1038/s41586-022-04737-7
10.1111/1365-2435.14112
10.1111/nph.12278
10.1016/j.rse.2011.08.025
10.1038/s41467-022-29289-2
10.1111/gcb.14884
10.1175/JTECH-D-22-0024.1
10.1007/s004840000066
10.1088/1748-9326/ab2603
10.1016/S0048-9697(00)00528-3
10.1111/pce.12846
10.1002/ecm.1231
10.1038/nclimate3114
10.1175/BAMS-D-17-0149.1
10.1038/s43016-020-0028-7
10.1126/science.1100217
10.1007/s13595-021-01067-y
10.1088/1748-9326/abe436
10.1146/annurev-arplant-102820-012804
10.1073/pnas.2202767119
10.1016/j.foreco.2015.12.038
10.14358/PERS.74.11.1379
10.1093/treephys/tpaa153
10.1016/j.agrformet.2020.107930
10.1016/j.oneear.2023.02.007
10.1126/sciadv.aau5740
10.1111/j.1469-8137.2007.02035.x
10.1038/srep30571
10.1016/j.rse.2022.112950
10.1002/2016GL070819
10.1175/BAMS-D-15-00224.1
10.1126/science.adf5041
10.1111/j.1365-3040.1991.tb01439.x
10.1007/BF00386231
10.1038/nature05095
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – sequence: 0
  name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
OTOTI
DOI 10.1111/pce.14846
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic

MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
Environmental Sciences
EISSN 1365-3040
EndPage 3589
ExternalDocumentID 2301779
38348610
10_1111_pce_14846
PCE14846
Genre article
Journal Article
Review
GrantInformation_xml – fundername: US Department of Energy
  funderid: DE‐SC0021980; DE‐SC0022302
– fundername: USDA NIFA‐Minnesota Agricultural Experiment Station
  funderid: MIN‐13‐124
– fundername: NSF EPSCoR
  funderid: 2131853
– fundername: Gordon and Betty Moore Foundation
  funderid: GBMF11974
– fundername: AFRI Competitive
  funderid: 2022‐68013‐36439
– fundername: European Union Next Generation
– fundername: National Science Foundation
  funderid: 2003205; 2216855
– fundername: Swiss National Science Foundation
  funderid: 310030_204697
– fundername: Sandoz Family Foundation
– fundername: AGAUR
  funderid: 2021 SGR 00849
– fundername: US Department of Energy
  grantid: DE-SC0022302
– fundername: NSF Division of Integrative Organismal Biology
  grantid: 2243900
– fundername: NSF EPSCoR
  grantid: 2131853
– fundername: NSF Division of Integrative Organismal Biology
  grantid: 1006196
– fundername: MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR
  grantid: PID2021-127452NB-I00
– fundername: AFRI Competitive
  grantid: 2022-68013-36439
– fundername: National Science Foundation
  grantid: 2003205
– fundername: USDA NIFA-Minnesota Agricultural Experiment Station
  grantid: MIN-13-124
– fundername: NSF Division of Earth Sciences
  grantid: 2228047
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7ST
C1K
SOI
7X8
7S9
L.6
OTOTI
ID FETCH-LOGICAL-c4486-6149ce71b40c023dfa331f3816ba58d9a5118a62df07e7e8189ea79d13d21bf63
IEDL.DBID 24P
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001160054800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-7791
1365-3040
IngestDate Mon Dec 16 02:26:30 EST 2024
Sun Nov 09 10:27:12 EST 2025
Thu Sep 04 18:23:53 EDT 2025
Fri Jul 25 10:49:24 EDT 2025
Mon Jul 21 06:00:49 EDT 2025
Sat Nov 29 06:39:43 EST 2025
Tue Nov 18 21:56:27 EST 2025
Wed Jan 22 17:15:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords carbon cycling
plant physiology
drought
management
climate change
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4486-6149ce71b40c023dfa331f3816ba58d9a5118a62df07e7e8189ea79d13d21bf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
AC05-76RL01830; SC0021980; SC0022302; DE‐SC0021980; DE‐SC0022302
USDOE
USDOE Office of Science (SC)
PNNL-SA-195442
ORCID 0000-0002-9113-3671
0000-0003-2960-7095
0000-0002-8431-0879
0000-0001-9637-2412
0000-0002-2178-2254
0000000291133671
0000000196372412
0000000329607095
0000000221782254
0000000284310879
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14846
PMID 38348610
PQID 3093050580
PQPubID 37957
PageCount 29
ParticipantIDs osti_scitechconnect_2301779
proquest_miscellaneous_3153705769
proquest_miscellaneous_2926079312
proquest_journals_3093050580
pubmed_primary_38348610
crossref_citationtrail_10_1111_pce_14846
crossref_primary_10_1111_pce_14846
wiley_primary_10_1111_pce_14846_PCE14846
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – sequence: 0
  name: Wiley
– name: Wiley Subscription Services, Inc
References 2011; 116
2010; 99
1998; 281
2018; 561
2022; 174
1991; 14
2019; 11
2019; 10
2004; 24
2019; 14
2022ee
2016; 30
2020; 15
2024; 30
2023; 104
2012; 18
2020; 287
2020; 11
2020; 10
2016; 39
2001; 149
1980; 149
2021; 78
2000; 14
2002; 89
2020; 291
2007; 174
2008; 28
2019; 25
2016; 43
2022ff
2019; 278
2019; 279
2022; 608
2018; 219
2013; 110
2010; 3
2014; 95
2022; 602
2012; 21
2003; 284
2006; 443
2016; 19
2022gg
2008; 58
2019; 39
1999; 22
2020; 146
2004; 428
2004; 305
2016; 6
2019; 42
2022; 3
2022; 6
2018; 115
2007; 153
2016; 212
2016; 210
2020; 26
2017; 260
2020; 23
2009; 184
2005; 94
2018; 99
2016; 9
2016; 22
2017; 40
2021; 126
2013; 200
2021; 480
2020; 58
2020; 56
2008; 74
2007; 30
2020; 125
2014; 65
2020; 7
2017; 31
2014; 4
2013; 14
2020; 1
2018; 250‐251
2021; 597
2000
2023; 29
2013; 12
2003; 8
2016; 113
1978; 29
2020; 47
2021; 592
2021; 231
2010; 391
2017; 122
2017; 247
2009; 323
1996; 9
2021; 9
2021; 109
2015; 1
2023; 14
2015; 5
2021; 3
2023; 11
2021; 2
2017; 26
2018c
2018b
2010
2018a
2017; 27
2006; 16
2013; 40
2015; 167
2021; 229
2017; 23
2020; 226
2020; 225
2016; 363
2002
1995; 18
2008; 320
2015; 8
2011; 108
2014; 506
2023
2013; 33
2022
2021
2019b
2020
2018; 558
2019a
2020; 71
2017; 10
2020; 590
2017; 12
1965
2020; 478
2019
2020; 117
2018
2000; 262
2017
2016
2023; 878
2013; 3
2012; 122
2013; 4
1982; 54
2011; 62
2010; 102
2019; 565
1995; 375
2018; 45
2022; 28
1977
2014; 20
2010; 23
2018; 9
2018; 8
2009; 10
1965; 8
1987
1954; 151
2022; 36
1983
1980
2023; 618
2010; 30
2022; 39
2022; 322
2021; 2021
2014; 10
2022; 233
2019; 7
2019; 9
2019; 5
2019; 2
2021; 147
1982; 33
2019; 223
2015; 528
2015; 526
2019; 107
2022; 119
2019; 221
1976; 6
2019; 222
2022; 479
2018; 24
2022; 235
1989; 55
2022; 12
2022; 13
2015; 519
2022; 15
2022; 10
2018; 11
2022; 17
2023; 50
2009; 106
2019; 451
2018; 13
2021; 25
2022; 376
2021; 24
2021; 27
2017; 8
2015; 38
2022; 130
2023; 6
2022; 73
2023; 381
2015; 103
1984; 766
2000; 44
2023; 9
2022aa
1978; 5
2023; 147
2023; 2
2015; 107
2011; 17
2011; 156
2011; 155
2021; 36
2021; 31
2015; 42
2022bb
2013; 182–183
2016; 86
2019; 116
2019; 234
2011; 24
2021; 41
2022; 127
2021a; 3‐5
2022; 274
2023; 240
2000; 24
2000; 20
2015; 10
2022; 45
2021d
2022cc
2021c
2021b
2021a
2022; 49
2009; 257
2022u
2022t
2022s
2021; 16
2015; 25
2022r
2022q
2022p
2009; 32
2022o
2021; 12
2022n
2022z
2022y
2022x
2022w
2021; 19
2022v
2023; 238
2022e
2022dd
2022d
2023; 237
2022; 58
2022c
2022b
2022a
2023; 239
2022m
2022l
1996; 157
2022k
2022j
2022i
2022h
2022g
2014; 344
2022f
2014; 102
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_309_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_407_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_385_1
e_1_2_8_9_1
e_1_2_8_362_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_419_1
e_1_2_8_299_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_374_1
e_1_2_8_397_1
e_1_2_8_351_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_408_1
e_1_2_8_288_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_386_1
e_1_2_8_363_1
e_1_2_8_340_1
Mu M. (e_1_2_8_249_1) 2021; 2021
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_277_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_375_1
e_1_2_8_352_1
e_1_2_8_398_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_409_1
e_1_2_8_266_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_341_1
e_1_2_8_364_1
e_1_2_8_387_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_330_1
e_1_2_8_353_1
Monin A.S. (e_1_2_8_245_1) 1954; 151
e_1_2_8_376_1
e_1_2_8_399_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_80_1
e_1_2_8_342_1
e_1_2_8_8_1
e_1_2_8_365_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_388_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_426_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_331_1
e_1_2_8_354_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_377_1
e_1_2_8_146_1
e_1_2_8_283_1
e_1_2_8_260_1
e_1_2_8_207_1
e_1_2_8_403_1
e_1_2_8_151_1
e_1_2_8_381_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_328_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_305_1
e_1_2_8_19_1
e_1_2_8_295_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_415_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_370_1
e_1_2_8_393_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_317_1
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_329_1
e_1_2_8_261_1
e_1_2_8_404_1
e_1_2_8_152_1
e_1_2_8_208_1
Keeling C.D. (e_1_2_8_166_1) 1989; 55
e_1_2_8_382_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_318_1
e_1_2_8_273_1
e_1_2_8_296_1
e_1_2_8_250_1
e_1_2_8_416_1
e_1_2_8_94_1
e_1_2_8_394_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_371_1
e_1_2_8_71_1
Davies‐Colley R.J. (e_1_2_8_78_1) 2000; 24
Dingman S.L. (e_1_2_8_88_1) 2002
e_1_2_8_262_1
e_1_2_8_307_1
e_1_2_8_285_1
e_1_2_8_360_1
e_1_2_8_383_1
e_1_2_8_405_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_319_1
e_1_2_8_251_1
e_1_2_8_297_1
e_1_2_8_274_1
e_1_2_8_417_1
e_1_2_8_372_1
e_1_2_8_395_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_286_1
e_1_2_8_308_1
e_1_2_8_406_1
e_1_2_8_154_1
e_1_2_8_384_1
e_1_2_8_131_1
e_1_2_8_361_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_298_1
e_1_2_8_418_1
e_1_2_8_165_1
e_1_2_8_373_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_396_1
e_1_2_8_350_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_188_1
e_1_2_8_203_1
e_1_2_8_226_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_290_1
e_1_2_8_324_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_301_1
e_1_2_8_41_1
e_1_2_8_347_1
e_1_2_8_291_1
e_1_2_8_238_1
e_1_2_8_421_1
e_1_2_8_215_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_313_1
e_1_2_8_30_1
e_1_2_8_336_1
e_1_2_8_359_1
e_1_2_8_280_1
Campbell G.S. (e_1_2_8_59_1) 2000
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_400_1
e_1_2_8_171_1
e_1_2_8_302_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_325_1
e_1_2_8_40_1
e_1_2_8_348_1
e_1_2_8_292_1
e_1_2_8_420_1
e_1_2_8_239_1
e_1_2_8_216_1
Levitt J. (e_1_2_8_186_1) 1980
e_1_2_8_412_1
e_1_2_8_98_1
e_1_2_8_390_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_314_1
e_1_2_8_337_1
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_205_1
e_1_2_8_401_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_303_1
e_1_2_8_349_1
e_1_2_8_326_1
e_1_2_8_293_1
e_1_2_8_270_1
e_1_2_8_217_1
e_1_2_8_413_1
e_1_2_8_391_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_315_1
e_1_2_8_338_1
e_1_2_8_282_1
Yang J. (e_1_2_8_411_1) 2019; 39
e_1_2_8_229_1
e_1_2_8_206_1
e_1_2_8_402_1
e_1_2_8_150_1
e_1_2_8_380_1
e_1_2_8_42_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_304_1
e_1_2_8_327_1
e_1_2_8_196_1
e_1_2_8_271_1
e_1_2_8_294_1
e_1_2_8_218_1
e_1_2_8_414_1
e_1_2_8_161_1
e_1_2_8_392_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_339_1
e_1_2_8_316_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_320_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_343_1
e_1_2_8_366_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_389_1
Pallardy S.G. (e_1_2_8_306_1) 2010
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_425_1
e_1_2_8_257_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_332_1
e_1_2_8_355_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_378_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_321_1
e_1_2_8_367_1
e_1_2_8_44_1
e_1_2_8_344_1
e_1_2_8_137_1
e_1_2_8_114_1
Barker M.G. (e_1_2_8_23_1) 1996; 9
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_424_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_310_1
e_1_2_8_356_1
e_1_2_8_33_1
e_1_2_8_333_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_125_1
e_1_2_8_379_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_322_1
e_1_2_8_345_1
e_1_2_8_368_1
e_1_2_8_138_1
e_1_2_8_115_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_423_1
e_1_2_8_236_1
e_1_2_8_311_1
e_1_2_8_334_1
e_1_2_8_357_1
e_1_2_8_149_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_4_1
e_1_2_8_192_1
e_1_2_8_300_1
e_1_2_8_323_1
e_1_2_8_116_1
e_1_2_8_346_1
e_1_2_8_139_1
e_1_2_8_369_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_422_1
e_1_2_8_410_1
e_1_2_8_127_1
e_1_2_8_335_1
e_1_2_8_12_1
e_1_2_8_312_1
e_1_2_8_104_1
e_1_2_8_358_1
References_xml – year: 2022v
– volume: 41
  start-page: 944
  year: 2021
  end-page: 959
  article-title: Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand
  publication-title: Tree Physiology
– volume: 526
  start-page: 574
  year: 2015
  end-page: 577
  article-title: Biodiversity increases the resistance of ecosystem productivity to climate extremes
  publication-title: Nature
– volume: 149
  start-page: 473
  year: 2001
  end-page: 485
  article-title: Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water
  publication-title: New Phytologist
– volume: 73
  start-page: 2576
  year: 2022
  end-page: 2588
  article-title: Photosynthetic acclimation and sensitivity to short‐and long‐term environmental changes in a drought‐prone forest
  publication-title: Journal of Experimental Botany
– volume: 103
  start-page: 648
  year: 2015
  end-page: 656
  article-title: Daily environmental conditions determine the competition‐facilitation balance for plant water status
  publication-title: Journal of Ecology
– year: 2022cc
– volume: 174
  year: 2022
  article-title: The genetic basis of transpiration sensitivity to vapor pressure deficit in wheat
  publication-title: Physiologia Plantarum
– volume: 278
  year: 2019
  article-title: Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes
  publication-title: Agricultural and Forest Meteorology
– volume: 62
  start-page: 1715
  year: 2011
  end-page: 1729
  article-title: Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs
  publication-title: Journal of Experimental Botany
– year: 2018a
– volume: 240
  start-page: 1405
  year: 2023
  end-page: 1420
  article-title: Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply
  publication-title: New Phytologist
– volume: 6
  start-page: 332
  year: 2022
  end-page: 339
  article-title: Plant‐water sensitivity regulates wildfire vulnerability
  publication-title: Nature Ecology & Evolution
– volume: 125
  year: 2020
  article-title: High vapor pressure deficit decreases the productivity and water use efficiency of rain‐induced pulses in semiarid ecosystems
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 107
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Wheat drought‐tolerance to enhance food security in Tunisia, birthplace of the Arab Spring
  publication-title: European Journal of Agronomy
– year: 2022f
– volume: 5
  start-page: 669
  year: 2015
  end-page: 672
  article-title: Darcy's law predicts widespread forest mortality under climate warming
  publication-title: Nature Climate Change
– volume: 30
  start-page: 258
  year: 2007
  end-page: 270
  article-title: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions
  publication-title: Plant, Cell & Environment
– volume: 95
  start-page: 2213
  year: 2014
  end-page: 2223
  article-title: Living close to your neighbors: the importance of both competition and facilitation in plant communities
  publication-title: Ecology
– volume: 23
  start-page: 1189
  year: 2020
  end-page: 1200
  article-title: High water use in desert plants exposed to extreme heat
  publication-title: Ecology Letters
– volume: 8
  start-page: 264
  year: 1965
  end-page: 275
  article-title: An analysis of irreversible plant cell elongation
  publication-title: Journal of Theoretical Biology
– article-title: AmeriFlux BASE US‐xTE NEON Lower Teakettle (TEAK), Ver. 5‐5, AmeriFlux
– volume: 27
  start-page: 1704
  year: 2021
  end-page: 1720
  article-title: Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity
  publication-title: Global Change Biology
– volume: 376
  start-page: 758
  year: 2022
  end-page: 761
  article-title: Cross‐biome synthesis of source versus sink limits to tree growth
  publication-title: Science
– volume: 226
  start-page: 1550
  year: 2020
  end-page: 1566
  article-title: Plant responses to rising vapor pressure deficit
  publication-title: New Phytologist
– volume: 4
  start-page: 1088
  year: 2014
  end-page: 1101
  article-title: Exposure of trees to drought‐ induced die‐ off is defined by a common climatic threshold across different vegetation types
  publication-title: Ecology and Evolution
– volume: 157
  start-page: 739
  year: 1996
  end-page: 745
  article-title: Explosive anther dehiscence in L. involves cell wall modifications and relative humidity
  publication-title: International Journal of Plant Sciences
– volume: 24
  start-page: 729
  year: 2018
  end-page: 737
  article-title: Prioritizing forest fuels treatments based on the probability of high‐severity fire restores adaptive capacity in Sierran forests
  publication-title: Global Change Biology
– volume: 428
  start-page: 851
  year: 2004
  end-page: 854
  article-title: The limits to tree height
  publication-title: Nature
– volume: 40
  start-page: 962
  year: 2017
  end-page: 976
  article-title: Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept
  publication-title: Plant, Cell & Environment
– year: 2021d
– volume: 558
  start-page: 531
  year: 2018
  end-page: 539
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
– volume: 1
  start-page: 127
  year: 2020
  end-page: 133
  article-title: Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields
  publication-title: Nature Food
– volume: 247
  start-page: 454
  year: 2017
  end-page: 466
  article-title: Stomatal and non‐stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations
  publication-title: Agricultural and Forest Meteorology
– volume: 119
  year: 2022
  article-title: No evidence of canopy‐scale leaf thermoregulation to cool leaves below air temperature across a range of forest ecosystems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 24
  year: 2021
  article-title: The effect of urban temperature gradients on grassland microclimate amelioration in Los Angeles, USA
  publication-title: Applied Vegetation Science
– volume: 39
  start-page: 1961
  year: 2019
  end-page: 1974
  article-title: Incorporating non‐stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit
  publication-title: Tree Physiology
– year: 2022dd
– volume: 519
  start-page: 78
  year: 2015
  end-page: 82
  article-title: Drought impact on forest carbon dynamics and fluxes in Amazonia
  publication-title: Nature
– year: 2019b
– volume: 11
  start-page: 405
  year: 2018
  end-page: 409
  article-title: Tall Amazonian forests are less sensitive to precipitation variability
  publication-title: Nature Geoscience
– volume: 260
  start-page: 109
  year: 2017
  end-page: 118
  article-title: Limited‐transpiration response to high vapor pressure deficit in crop species
  publication-title: Plant Science
– year: 2019
– year: 2022q
– volume: 58
  start-page: 501
  year: 2008
  end-page: 517
  article-title: Cross‐scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions
  publication-title: BioScience
– volume: 20
  start-page: 1992
  year: 2014
  end-page: 2003
  article-title: Physiological advantages of C‐4 grasses in the field: a comparative experiment demonstrating the importance of drought
  publication-title: Global Change Biology
– volume: 8
  start-page: 343
  year: 2003
  end-page: 351
  article-title: Thermal acclimation and the dynamic response of plant respiration to temperature
  publication-title: Trends in Plant Science
– year: 2022a
– volume: 184
  start-page: 353
  year: 2009
  end-page: 364
  article-title: Hydraulic adjustment of Scots pine across Europe
  publication-title: New Phytologist
– volume: 38
  start-page: 629
  year: 2015
  end-page: 637
  article-title: Temperature responses of mesophyll conductance differ greatly between species
  publication-title: Plant, Cell & Environment
– volume: 174
  start-page: 614
  year: 2007
  end-page: 625
  article-title: Leaf‐and stand‐level responses of a forested mesocosm to independent manipulations of temperature and vapor pressure deficit
  publication-title: New Phytologist
– volume: 10
  start-page: 691
  year: 2020
  article-title: Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration
  publication-title: Nature Climate Change
– volume: 592
  start-page: 65
  year: 2021
  end-page: 69
  article-title: Soil moisture–atmosphere feedback dominates land carbon uptake variability
  publication-title: Nature
– volume: 229
  start-page: 213
  year: 2021
  end-page: 229
  article-title: Turgor–a limiting factor for radial growth in mature conifers along an elevational gradient
  publication-title: New Phytologist
– volume: 23
  start-page: 1696
  year: 2010
  end-page: 1718
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: Journal of Climate
– volume: 6
  start-page: 251
  year: 2023
  end-page: 266
  article-title: Ecohydrological decoupling under changing disturbances and climate
  publication-title: One Earth
– volume: 155
  start-page: 1051
  year: 2011
  end-page: 1059
  article-title: Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality
  publication-title: Plant Physiology
– volume: 17
  start-page: 2134
  year: 2011
  end-page: 2144
  article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance
  publication-title: Global Change Biology
– year: 2022bb
– volume: 104
  year: 2023
  article-title: Soil versus atmospheric drought: a test case of plant functional trait responses
  publication-title: Ecology
– volume: 153
  start-page: 245
  year: 2007
  end-page: 259
  article-title: Plasticity in hydraulic architecture of Scots pine across Eurasia
  publication-title: Oecologia
– volume: 219
  start-page: 851
  year: 2018
  end-page: 869
  article-title: Drivers and mechanisms of tree mortality in moist tropical forests
  publication-title: New Phytologist
– volume: 113
  start-page: 9557
  year: 2016
  end-page: 9562
  article-title: Increased water deficit decreases Douglas fir growth throughout western US forests
  publication-title: Proceedings of the National Academy of Sciences
– volume: 305
  start-page: 1138
  year: 2004
  end-page: 1140
  article-title: Regions of strong coupling between soil moisture and precipitation
  publication-title: Science
– year: 2022l
– start-page: 1
  year: 2023
  end-page: 31
  article-title: Flash drought intensification due to enhanced land‐atmospheric coupling in India
  publication-title: Journal of Climate
– volume: 58
  year: 2022
  article-title: Streamflow response to wildfire differs with season and elevation in adjacent headwaters of the Lower Colorado River Basin
  publication-title: Water Resources Research
– volume: 10
  start-page: 57
  year: 2015
  end-page: 64
  article-title: The US drought of 2012
  publication-title: Weather and Climate Extremes
– volume: 15
  year: 2020
  article-title: Flash drought development and cascading impacts associated with the 2010 Russian heatwave
  publication-title: Environmental Research Letters
– volume: 12
  start-page: 232
  year: 2022
  end-page: 234
  article-title: Rapid intensification of the emerging southwestern North American megadrought in 2020–2021
  publication-title: Nature Climate Change
– volume: 28
  start-page: 2031
  year: 2008
  end-page: 2064
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: International Journal of Climatology
– year: 2022w
– year: 2022aa
– volume: 74
  start-page: 1379
  year: 2008
  end-page: 1388
  article-title: Conterminous US and Alaska forest type mapping using forest inventory and analysis data
  publication-title: Photogrammetric Engineering & Remote Sensing
– volume: 45
  start-page: 329
  year: 2022
  end-page: 346
  article-title: The xylem of anisohydric L. is more vulnerable to embolism than isohydric codominants
  publication-title: Plant, Cell & Environment
– article-title: AmeriFlux BASE US‐xUK NEON The University of Kansas Field Station (UKFS), Ver. 5‐5, AmeriFlux
– volume: 3
  start-page: 292
  year: 2013
  end-page: 297
  article-title: Temperature as a potent driver of regional forest drought stress and tree mortality
  publication-title: Nature Climate Change
– start-page: 646
  year: 2002
– volume: 30
  start-page: 1001
  year: 2010
  end-page: 1015
  article-title: Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole‐plant hydraulic performance under future atmospheric CO2 concentration
  publication-title: Tree Physiology
– volume: 221
  start-page: 652
  year: 2019
  end-page: 668
  article-title: Modelling carbon sources and sinks in terrestrial vegetation
  publication-title: New Phytologist
– volume: 78
  start-page: 55
  year: 2021
  article-title: SurEau: a mechanistic model of plant water relations under extreme drought
  publication-title: Annals of Forest Science
– volume: 14
  start-page: 729
  year: 1991
  end-page: 739
  article-title: Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated?
  publication-title: Plant, Cell & Environment
– volume: 113
  start-page: 10019
  year: 2016
  end-page: 10024
  article-title: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 24
  start-page: 2025
  year: 2011
  end-page: 2044
  article-title: Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States
  publication-title: Journal of Climate
– volume: 19
  start-page: 126
  year: 2021
  end-page: 133
  article-title: Characterizing forest vulnerability and risk to climate‐change hazards
  publication-title: Frontiers in Ecology and the Environment
– volume: 25
  start-page: 39
  year: 2019
  end-page: 56
  article-title: Compositional response of Amazon forests to climate change
  publication-title: Global Change Biology
– volume: 239
  start-page: 1173
  year: 2023
  end-page: 1189
  article-title: How woody plants adjust above‐and below‐ground traits in response to sustained drought
  publication-title: New Phytologist
– volume: 125
  year: 2020
  article-title: High heterogeneity in canopy temperature among co‐occurring tree species in a temperate forest
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 147
  year: 2023
  article-title: Decoupling of tree height and root depth across the globe and the implications for tree mortality during drought events
  publication-title: Ecological Indicators
– year: 2022g
– volume: 156
  start-page: 962
  year: 2011
  end-page: 973
  article-title: The role of bundle sheath extensions and life form in stomatal responses to leaf water status
  publication-title: Plant Physiology
– volume: 56
  year: 2020
  article-title: ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the international space station
  publication-title: Water Resources Research
– volume: 8
  start-page: 7667
  year: 2018
  article-title: Unsaturation of vapour pressure inside leaves of two conifer species
  publication-title: Scientific Reports
– volume: 478
  year: 2020
  article-title: Topographic position amplifies consequences of short‐interval stand‐replacing fires on postfire tree establishment in subalpine conifer forests
  publication-title: Forest Ecology and Management
– volume: 99
  start-page: 125
  year: 2010
  end-page: 161
  article-title: Investigating soil moisture–climate interactions in a changing climate: a review
  publication-title: Earth‐Science Reviews
– volume: 71
  start-page: 2239
  year: 2020
  end-page: 2252
  article-title: Drying times: plant traits to improve crop water use efficiency and yield
  publication-title: Journal of Experimental Botany
– volume: 40
  start-page: 816
  year: 2017
  end-page: 830
  article-title: Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost
  publication-title: Plant, Cell & Environment
– year: 2022z
– volume: 561
  start-page: 538
  year: 2018
  end-page: 541
  article-title: Hydraulic diversity of forests regulates ecosystem resilience during drought
  publication-title: Nature
– volume: 222
  start-page: 1207
  year: 2019
  end-page: 1222
  article-title: Modelling water fluxes in plants: from tissues to biosphere
  publication-title: New Phytologist
– volume: 33
  start-page: 345
  year: 2013
  end-page: 356
  article-title: Above‐and belowground controls on water use by trees of different wood types in an eastern US deciduous forest
  publication-title: Tree Physiology
– volume: 274
  year: 2022
  article-title: What lies beneath: vertical temperature heterogeneity in a Mediterranean woodland savanna
  publication-title: Remote Sensing of Environment
– volume: 31
  start-page: 31
  year: 2021
  article-title: Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire
  publication-title: Ecological Applications
– volume: 451
  year: 2019
  article-title: Drivers of lodgepole pine recruitment across a gradient of bark beetle outbreak and wildfire in British Columbia
  publication-title: Forest Ecology and Management
– year: 2021
– volume: 13
  start-page: 989
  year: 2022
  article-title: Atmospheric dryness reduces photosynthesis along a large range of soil water deficits
  publication-title: Nature Communications
– volume: 71
  start-page: 642
  year: 2020
  end-page: 652
  article-title: The importance of slow canopy wilting in drought tolerance in soybean
  publication-title: Journal of Experimental Botany
– volume: 1
  year: 2015
  article-title: Larger trees suffer most during drought in forests worldwide
  publication-title: Nature Plants
– volume: 25
  start-page: 107
  year: 2015
  end-page: 114
  article-title: Paradigm shift in plant growth control
  publication-title: Current Opinion in Plant Biology
– volume: 24
  start-page: 111
  year: 2000
  end-page: 121
  article-title: Microclimate gradients across a forest edge
  publication-title: New Zealand Journal of Ecology
– volume: 14
  start-page: 1162
  year: 2023
  article-title: Soil moisture‐evaporation coupling shifts into new gears under increasing CO2
  publication-title: Nature Communications
– volume: 5
  year: 2019
  article-title: Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events
  publication-title: Science Advances
– volume: 26
  start-page: 269
  year: 2017
  end-page: 275
  article-title: Climatic influences on interannual variability in regional burn severity across Western US forests
  publication-title: International Journal of Wildland Fire
– volume: 262
  start-page: 263
  year: 2000
  end-page: 286
  article-title: Assessing the consequences of global change for forest disturbance from herbivores and pathogens
  publication-title: Science of the Total Environment
– volume: 127
  year: 2022
  article-title: Comprehensive quantification of the responses of ecosystem production and respiration to drought time scale, intensity and timing in humid environments: a FLUXNET synthesis
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 12
  start-page: 1024
  year: 2022
  end-page: 1030
  article-title: Evapotranspiration frequently increases during droughts
  publication-title: Nature Climate Change
– start-page: 547
  year: 2017
– year: 2022j
– volume: 7
  start-page: 892
  year: 2019
  end-page: 910
  article-title: Observed impacts of anthropogenic climate change on wildfire in California
  publication-title: Earth's Future
– year: 2022u
– volume: 26
  start-page: 300
  year: 2020
  end-page: 318
  article-title: Interannual Variation of Terrestrial Carbon Cycle: Issues and Perspectives
  publication-title: Global Change Biology
– year: 2018b
– volume: 13
  start-page: 13
  year: 2022
  article-title: Effects of climate change on forest regeneration in Central Spain
  publication-title: Atmosphere
– volume: 39
  start-page: 1837
  year: 2022
  end-page: 1855
  article-title: Daily high‐resolution temperature and precipitation fields for the contiguous United States from 1951 to present
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 5
  year: 2019
  article-title: Twentieth century redistribution in climatic drivers of global tree growth
  publication-title: Science Advances
– volume: 13
  start-page: 1761
  year: 2022
  article-title: Global field observations of tree die‐off reveal hotter‐drought fingerprint for Earth's forests
  publication-title: Nature Communications
– volume: 109
  start-page: 1986
  year: 2021
  end-page: 1999
  article-title: The experimental manipulation of atmospheric drought: teasing out the role of microclimate in biodiversity experiments
  publication-title: Journal of Ecology
– volume: 54
  start-page: 236
  year: 1982
  end-page: 242
  article-title: The effect of vapor pressure on stomatal control of gas exchange in Douglas fir ( ) saplings
  publication-title: Oecologia
– volume: 113
  start-page: 11770
  year: 2016
  end-page: 11775
  article-title: Impact of anthropogenic climate change on wildfire across Western US forests
  publication-title: Proceedings of the National Academy of Sciences
– volume: 55
  start-page: 165
  year: 1989
  end-page: 236
  article-title: A three‐dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data
  publication-title: Aspects of Climate Variability in the Pacific and the Western Americas
– volume: 126
  year: 2021
  article-title: Slope‐aspect induced climate differences influence how water is exchanged between the land and atmosphere
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 40
  start-page: 5212
  year: 2013
  end-page: 5217
  article-title: Impact of soil moisture‐climate feedbacks on CMIP5 projections: first results from the GLACE‐CMIP5 experiment
  publication-title: Geophysical Research Letters
– volume: 3
  start-page: 722
  year: 2010
  end-page: 727
  article-title: Contrasting response of European forest and grassland energy exchange to heatwaves
  publication-title: Nature Geoscience
– volume: 363
  start-page: 149
  year: 2016
  end-page: 158
  article-title: Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem
  publication-title: Forest Ecology and Management
– year: 2022e
– volume: 602
  start-page: 442
  year: 2022
  end-page: 448
  article-title: Warming weakens the night‐time barrier to global fire
  publication-title: Nature
– volume: 21
  start-page: 1074
  year: 2012
  end-page: 1082
  article-title: Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems
  publication-title: Global Ecology and Biogeography
– volume: 291
  year: 2020
  article-title: Effects of disturbance patterns and deadwood on the microclimate in European beech forests
  publication-title: Agricultural and Forest Meteorology
– volume: 11
  start-page: 3305
  year: 2019
  end-page: 3320
  article-title: When does vapor pressure deficit drive or reduce evapotranspiration?
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 125
  year: 2020
  article-title: Delineating environmental stresses to primary production of US forests from tree rings: effects of climate seasonality, soil, and topography
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 44
  start-page: 67
  year: 2000
  end-page: 75
  article-title: The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview
  publication-title: International Journal of Biometeorology
– year: 2018c
– volume: 231
  start-page: 2174
  year: 2021
  end-page: 2185
  article-title: Why trees grow at night
  publication-title: New Phytologist
– volume: 9
  start-page: 1937
  year: 2016
  end-page: 1958
  article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscientific Model Development
– volume: 29
  start-page: 567
  year: 1978
  end-page: 577
  article-title: The responses of net photosynthesis to vapour pressure deficit and CO2 concentration in (sensu lato), a C4 species from a cool temperate climate
  publication-title: Journal of Experimental Botany
– volume: 7
  start-page: 109
  year: 2020
  article-title: Version 4 of the CRU TS monthly high‐resolution gridded multivariate climate dataset
  publication-title: Scientific Data
– volume: 42
  start-page: 1104
  year: 2019
  end-page: 1111
  article-title: Beyond isohydricity: the role of environmental variability in determining plant drought responses
  publication-title: Plant, Cell & Environment
– volume: 9
  start-page: 2800
  year: 2019
  article-title: Defining optimal soybean sowing dates across the US
  publication-title: Scientific Reports
– volume: 122
  start-page: 2061
  year: 2017
  end-page: 2079
  article-title: Historic and projected changes in vapor pressure deficit suggest a continental‐scale drying of the United States atmosphere
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 11
  year: 2023
  article-title: Earlier ecological drought detection by involving the interaction of phenology and Eco‐Physiological function
  publication-title: Earth's Future
– volume: 9
  start-page: 52
  year: 1996
  end-page: 66
  article-title: Vertical profiles in a Brunei rain forest: II. Leaf characteristics of Dryobalanops lanceolata
  publication-title: Journal of Tropical Forest Science
– volume: 284
  start-page: 114
  year: 2003
  end-page: 130
  article-title: The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approach
  publication-title: Journal of Hydrology
– year: 2022p
– volume: 200
  start-page: 388
  year: 2013
  end-page: 401
  article-title: Drought‐induced defoliation and long periods of near‐zero gas exchange play a key role in accentuating metabolic decline of Scots pine
  publication-title: New Phytologist
– volume: 25
  start-page: 3395
  year: 2019
  end-page: 3405
  article-title: Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity
  publication-title: Global Change Biology
– volume: 322
  year: 2022
  article-title: Vapour pressure deficit is the main driver of tree canopy conductance across biomes
  publication-title: Agricultural and Forest Meteorology
– volume: 14
  start-page: 074023
  issue: 7
  year: 2019
  article-title: Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit
  publication-title: Environmental Research Letters
– volume: 42
  start-page: 2823
  year: 2015
  end-page: 2829
  article-title: Heat wave flash droughts in decline
  publication-title: Geophysical Research Letters
– volume: 43
  start-page: 9686
  year: 2016
  end-page: 9695
  article-title: High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil
  publication-title: Geophysical Research Letters
– volume: 233
  start-page: 2429
  year: 2022
  end-page: 2441
  article-title: Limitation by vapour pressure deficit shapes different intra‐annual growth patterns of diffuse‐and ring‐porous temperate broadleaves
  publication-title: New Phytologist
– volume: 20
  start-page: 57
  year: 2000
  end-page: 63
  article-title: Influence of temperature and leaf‐to‐air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce ( )
  publication-title: Tree Physiology
– volume: 99
  start-page: 911
  year: 2018
  end-page: 919
  article-title: Flash droughts: A review and assessment of the challenges imposed by rapid‐onset droughts in the United States
  publication-title: Bulletin of the American Meteorological Society
– volume: 9
  year: 2023
  article-title: Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity
  publication-title: Science Advances
– article-title: AmeriFlux BASE US‐xTR NEON Treehaven (TREE), Ver. 5‐5, AmeriFlux
– volume: 8
  start-page: 585
  year: 2017
  article-title: Population‐level differentiation in growth rates and leaf traits in seedlings of the neotropical live oak Quercus oleoides grown under natural and manipulated precipitation regimes
  publication-title: Frontiers in Plant Science
– year: 1980
– volume: 528
  start-page: 119
  year: 2015
  end-page: 122
  article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation
  publication-title: Nature
– volume: 239
  start-page: 2083
  year: 2023
  end-page: 2098
  article-title: The role of height‐driven constraints and compensations on tree vulnerability to drought
  publication-title: New Phytologist
– volume: 344
  start-page: 516
  year: 2014
  end-page: 519
  article-title: Greater sensitivity to drought accompanies maize yield increase in the US Midwest
  publication-title: Science
– volume: 281
  start-page: 237
  year: 1998
  end-page: 240
  article-title: Primary production of the biosphere: integrating terrestrial and oceanic components
  publication-title: Science
– year: 2020
– volume: 116
  start-page: 18848
  year: 2019
  end-page: 18853
  article-title: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity
  publication-title: Proceedings of the National Academy of Sciences
– year: 2022k
– volume: 29
  start-page: 5415
  year: 2023
  end-page: 5428
  article-title: Observed forest trait velocities have not kept pace with hydraulic stress from climate change
  publication-title: Global Change Biology
– volume: 18
  start-page: 3476
  year: 2012
  article-title: Reconciling the optimal and empirical approaches to modelling stomatal conductance
  publication-title: Global Change Biology
– article-title: AmeriFlux BASE US‐xUN NEON University of Notre Dame Environmental Research Center (UNDE), Ver. 5‐5, AmeriFlux
– volume: 3
  start-page: 2711
  year: 2013
  end-page: 2729
  article-title: Global change‐type drought‐induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health
  publication-title: Ecology and Evolution
– volume: 149
  start-page: 247
  year: 2001
  end-page: 264
  article-title: Stomatal conductance of forest species after long‐term exposure to elevated CO2 concentration: a synthesis
  publication-title: New Phytologist
– volume: 223
  start-page: 632
  year: 2019
  end-page: 646
  article-title: Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient
  publication-title: New Phytologist
– volume: 30
  start-page: 10
  year: 2016
  end-page: 19
  article-title: Does the stress‐gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems
  publication-title: Functional Ecology
– volume: 4
  start-page: 266
  year: 2013
  article-title: The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die‐off
  publication-title: Frontiers in Plant Science
– volume: 381
  start-page: 672
  year: 2023
  end-page: 677
  article-title: Global water use efficiency saturation due to increased vapor pressure deficit
  publication-title: Science
– volume: 235
  start-page: 1344
  year: 2022
  end-page: 1350
  article-title: In situ, direct observation of seasonal embolism dynamics in Aleppo pine trees growing on the dry edge of their distribution
  publication-title: New Phytologist
– volume: 10
  start-page: 437
  year: 2009
  end-page: 446
  article-title: Grass‐to‐tree facilitation in an arid grazed environment (Aïr Mountains, Sahara)
  publication-title: Basic and Applied Ecology
– volume: 16
  start-page: 1164
  year: 2006
  end-page: 1182
  article-title: Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes
  publication-title: Ecological Applications
– volume: 24
  start-page: 5164
  year: 2018
  end-page: 5175
  article-title: Global patterns of interannual climate–fire relationships
  publication-title: Global Change Biology
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 29
  article-title: Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi‐year droughts
  publication-title: Earth System Dynamics Discussions
– volume: 102
  start-page: 475
  year: 2010
  end-page: 482
  article-title: Assessment across the United States of the benefits of altered soybean drought traits
  publication-title: Agronomy Journal
– volume: 110
  start-page: 52
  year: 2013
  end-page: 57
  article-title: Response of vegetation to drought time‐scales across global land biomes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 257
  start-page: 435
  year: 2009
  end-page: 442
  article-title: Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest
  publication-title: Forest Ecology and Management
– volume: 149
  start-page: 78
  year: 1980
  end-page: 90
  article-title: A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species
  publication-title: Planta
– volume: 24
  start-page: 5243
  year: 2018
  end-page: 5258
  article-title: Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes
  publication-title: Global Change Biology
– volume: 225
  start-page: 713
  year: 2020
  end-page: 726
  article-title: Temporal shifts in iso/anisohydry revealed from daily observations of plant water potential in a dominant desert shrub
  publication-title: New Phytologist
– volume: 25
  start-page: 2399
  year: 2021
  end-page: 2417
  article-title: Global ecosystem‐scale plant hydraulic traits retrieved using model–data fusion
  publication-title: Hydrology and Earth System Sciences
– volume: 28
  start-page: 1133
  year: 2022
  end-page: 1146
  article-title: Extreme heat increases stomatal conductance and drought‐induced mortality risk in vulnerable plant species
  publication-title: Global Change Biology
– volume: 30
  year: 2024
  article-title: Atmospheric drying and soil drying: differential effects on grass community composition
  publication-title: Global Change Biology
– volume: 212
  start-page: 577
  year: 2016
  end-page: 589
  article-title: Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits
  publication-title: New Phytologist
– volume: 119
  year: 2022
  article-title: Flash drought early warning based on the trajectory of solar‐induced chlorophyll fluorescence
  publication-title: Proceedings of the National Academy of Sciences
– volume: 10
  year: 2022
  article-title: Hydrological intensification will increase the complexity of water resource management
  publication-title: Earth's Future
– volume: 2
  year: 2021
  article-title: Land‐atmosphere interactions exacerbated the drought and heatwave over northern Europe during summer 2018
  publication-title: AGU Advances
– volume: 480
  year: 2021
  article-title: Temporal changes in Mediterranean forest ecosystem services are driven by stand development, rather than by climate‐related disturbances
  publication-title: Forest Ecology and Management
– year: 2022n
– volume: 115
  start-page: 4863
  year: 2018
  end-page: 4868
  article-title: Trends in continental temperature and humidity directly linked to ocean warming
  publication-title: Proceedings of the National Academy of Sciences
– volume: 6
  start-page: 1023
  year: 2016
  end-page: 1027
  article-title: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
  publication-title: Nature Climate Change
– volume: 89
  start-page: 183
  year: 2002
  end-page: 189
  article-title: Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited
  publication-title: Annals of Botany
– volume: 443
  start-page: 205
  year: 2006
  end-page: 209
  article-title: Land–atmosphere coupling and climate change in Europe
  publication-title: Nature
– volume: 597
  start-page: 225
  year: 2021
  end-page: 229
  article-title: Widespread woody plant use of water stored in bedrock
  publication-title: Nature
– volume: 122
  start-page: 50
  year: 2012
  end-page: 65
  article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
  publication-title: Remote Sensing of Environment
– volume: 878
  year: 2023
  article-title: Projected long‐term climate trends reveal the critical role of vapor pressure deficit for soybean yields in the US Midwest
  publication-title: Science of the Total Environment
– volume: 116
  year: 2011
  article-title: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008
  publication-title: Journal of Geophysical Research
– volume: 39
  start-page: 2342
  year: 2016
  end-page: 2345
  article-title: Toward an index of desiccation time to tree mortality under drought
  publication-title: Plant, Cell & Environment
– year: 2022y
– year: 2022
– volume: 3‐5
  year: 2021a
  article-title: AmeriFlux FLUXNET‐1F US‐Ro5 Rosemount I18_South
– volume: 108
  start-page: 19820
  year: 2011
  end-page: 19823
  article-title: Alternative perspective on the control of transpiration by radiation
  publication-title: Proceedings of the National Academy of Sciences
– volume: 115
  start-page: E8349
  year: 2018
  end-page: E8357
  article-title: Decreasing fire season precipitation increased recent western US forest wildfire activity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  year: 2021
  article-title: Understanding how fuel treatments interact with climate and biophysical setting to affect fire, water, and forest health: a process‐based modeling approach
  publication-title: Frontiers in Forests and Global Change
– volume: 18
  start-page: 339
  year: 1995
  end-page: 355
  article-title: A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants
  publication-title: Plant, Cell & Environment
– volume: 39
  start-page: 482
  year: 2016
  end-page: 484
  article-title: Stomatal responses to humidity: has the ‘black box' finally been opened?
  publication-title: Plant, Cell & Environment
– year: 2021a
– volume: 6
  year: 2016
  article-title: Increasing flash droughts over China during the recent global warming hiatus
  publication-title: Scientific Reports
– year: 2023
  article-title: How land surface characteristics influence the development of flash drought through the drivers of soil moisture and vapor pressure deficit
– volume: 3
  start-page: 294
  year: 2022
  end-page: 308
  article-title: Mechanisms of woody‐plant mortality under rising drought
  publication-title: CO2 and Vapour Pressure Deficit. Nature Reviews Earth & Environment
– volume: 116
  year: 2011
  article-title: A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests
  publication-title: Journal of Geophysical Research
– year: 2022i
– year: 2022t
– volume: 36
  start-page: 520
  year: 2021
  end-page: 532
  article-title: Why is tree drought mortality so hard to predict?
  publication-title: Trends in Ecology & Evolution
– volume: 73
  start-page: 673
  year: 2022
  end-page: 702
  article-title: Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide
  publication-title: Annual Review of Plant Biology
– volume: 238
  start-page: 952
  year: 2023
  end-page: 970
  article-title: Integrating plant physiology into simulation of fire behavior and effects
  publication-title: New Phytologist
– volume: 10
  start-page: 1983
  year: 2014
  end-page: 2006
  article-title: HadISDH land surface multi‐variable humidity and temperature record for climate monitoring
  publication-title: Climate of the Past
– volume: 12
  start-page: 1
  year: 2013
  end-page: 16
  article-title: Advances in soil evaporation physics—a review
  publication-title: Vadose Zone Journal
– volume: 12
  year: 2021
  article-title: Sustainable irrigation based on co‐regulation of soil water supply and atmospheric evaporative demand
  publication-title: Nature Communications
– year: 1987
– volume: 608
  start-page: 528
  year: 2022
  end-page: 533
  article-title: Tropical tree mortality has increased with rising atmospheric water stress
  publication-title: Nature
– volume: 9
  year: 2021
  article-title: Past variance and future projections of the environmental conditions driving western US summertime wildfire burn area
  publication-title: Earth's Future
– volume: 3
  start-page: 871
  year: 2022
  end-page: 880
  article-title: Vapour pressure deficit determines critical thresholds for global coffee production under climate change
  publication-title: Nature Food
– volume: 212
  start-page: 377
  year: 2016
  end-page: 388
  article-title: The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize
  publication-title: New Phytologist
– volume: 239
  start-page: 54
  year: 2023
  end-page: 65
  article-title: Rising vapor‐pressure deficit increases nitrogen fixation in a legume crop
  publication-title: New Phytologist
– volume: 25
  start-page: 2242
  year: 2019
  end-page: 2257
  article-title: Observed and modelled historical trends in the water‐use efficiency of plants and ecosystems
  publication-title: Global Change Biology
– volume: 506
  start-page: 212
  year: 2014
  end-page: 215
  article-title: A two‐fold increase of carbon cycle sensitivity to tropical temperature variations
  publication-title: Nature
– volume: 12
  year: 2017
  article-title: Stomatal conductance increases with rising temperature
  publication-title: Plant Signaling & Behavior
– year: 2016
– year: 2022d
– volume: 221
  start-page: 195
  year: 2019
  end-page: 208
  article-title: Linking variation in intrinsic water‐use efficiency to isohydricity: a comparison at multiple spatiotemporal scales
  publication-title: New Phytologist
– volume: 27
  start-page: 26
  year: 2017
  end-page: 36
  article-title: Climate change and the eco‐hydrology of fire: will area burned increase in a warming western USA?
  publication-title: Ecological Applications
– article-title: AmeriFlux BASE US‐xYE NEON Yellowstone Northern Range (Frog Rock) (YELL), Ver. 5‐5, AmeriFlux
– volume: 10
  start-page: 191
  year: 2020
  end-page: 199
  article-title: Flash droughts present a new challenge for subseasonal‐to‐seasonal prediction
  publication-title: Nature Climate Change
– volume: 65
  start-page: 667
  year: 2014
  end-page: 687
  article-title: Nonstructural carbon in woody plants
  publication-title: Annual Review of Plant Biology
– year: 2010
– volume: 226
  start-page: 1325
  year: 2020
  end-page: 1340
  article-title: Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient
  publication-title: New Phytologist
– volume: 94
  start-page: 114
  year: 2005
  end-page: 125
  article-title: Relationship between desiccation and viability of maize pollen
  publication-title: Field Crops Research
– volume: 375
  start-page: 666
  year: 1995
  end-page: 670
  article-title: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980
  publication-title: Nature
– volume: 32
  start-page: 968
  year: 2009
  end-page: 979
  article-title: Leaf stomatal responses to vapour pressure deficit under current and CO2‐enriched atmosphere explained by the economics of gas exchange
  publication-title: Plant, Cell & Environment
– volume: 182–183
  start-page: 204
  year: 2013
  end-page: 214
  article-title: How should we model plant responses to drought? An analysis of stomatal and non‐stomatal responses to water stress
  publication-title: Agricultural and Forest Meteorology
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast–slow'plant economics spectrum: a traits manifesto
  publication-title: Journal of Ecology
– volume: 320
  start-page: 1444
  year: 2008
  end-page: 1449
  article-title: Forests and climate change: forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 45
  start-page: 3275
  year: 2022
  end-page: 3289
  article-title: Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought
  publication-title: Plant, Cell & Environment
– volume: 58
  start-page: 971
  year: 2022
  end-page: 994
  article-title: OpenET: filling a critical data gap in water management for the Western United States
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 39
  start-page: 38
  year: 2016
  end-page: 49
  article-title: Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation
  publication-title: Plant, Cell & Environment
– volume: 10
  start-page: 1903
  year: 2017
  end-page: 1925
  article-title: GLEAM v3: satellite‐based land evaporation and root‐zone soil moisture
  publication-title: Geoscientific Model Development
– volume: 43
  start-page: 11661
  year: 2016
  end-page: 11670
  article-title: Evaporation estimates using weather station data and boundary layer theory
  publication-title: Geophysical Research Letters
– volume: 167
  start-page: 833
  year: 2015
  end-page: 843
  article-title: The evolution of mechanisms driving the stomatal response to vapor pressure deficit
  publication-title: Plant Physiology
– volume: 229
  start-page: 2413
  year: 2021
  end-page: 2445
  article-title: Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2
  publication-title: New Phytologist
– volume: 45
  start-page: 2852
  year: 2018
  end-page: 2859
  article-title: Increasingly important role of atmospheric aridity on Tibetan alpine grasslands
  publication-title: Geophysical Research Letters
– volume: 233
  start-page: 1560
  year: 2022
  end-page: 1596
  article-title: A meta‐analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole‐plant level
  publication-title: New Phytologist
– volume: 13
  year: 2018
  article-title: In ecoregions across western USA streamflow increases during post‐wildfire recovery
  publication-title: Environmental Research Letters
– volume: 17
  year: 2022
  article-title: Climate drivers of global wildfire burned area
  publication-title: Environmental Research Letters
– year: 2022o
– volume: 36
  start-page: 2399
  year: 2022
  end-page: 2411
  article-title: Quantifying within‐species trait variation in space and time reveals limits to trait‐mediated drought response
  publication-title: Functional Ecology
– volume: 24
  start-page: 2284
  year: 2018
  end-page: 2304
  article-title: Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data
  publication-title: Global Change Biology
– year: 2021c
– volume: 117
  start-page: 8532
  year: 2020
  end-page: 8538
  article-title: Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition
  publication-title: Proceedings of the National Academy of Sciences
– volume: 10
  year: 2019
  article-title: Are we approaching a water ceiling to maize yields in the United States?
  publication-title: Ecosphere
– volume: 231
  start-page: 617
  year: 2021
  end-page: 630
  article-title: Climate and functional traits jointly mediate tree water‐use strategies
  publication-title: New Phytologist
– volume: 13
  start-page: 7161
  year: 2022
  article-title: Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand
  publication-title: Nature Communications
– volume: 11
  start-page: 4892
  year: 2020
  article-title: Soil moisture dominates dryness stress on ecosystem production globally
  publication-title: Nature Communications
– volume: 19
  start-page: 1343
  year: 2016
  end-page: 1352
  article-title: Mapping ‘hydroscapes’ along the iso‐to anisohydric continuum of stomatal regulation of plant water status
  publication-title: Ecology Letters
– volume: 50
  year: 2023
  article-title: Dry live fuels increase the likelihood of lightning‐caused fires
  publication-title: Geophysical Research Letters
– volume: 5
  start-page: 787
  year: 1978
  end-page: 800
  article-title: Feedforward responses of stomata to humidity
  publication-title: Functional Plant Biology
– year: 2022ff
– volume: 99
  start-page: 167
  year: 2018
  end-page: 187
  article-title: Reservoir evaporation in the Western United States: current science, challenges, and future needs
  publication-title: Bulletin of the American Meteorological Society
– volume: 9
  start-page: 880
  year: 2019
  end-page: 885
  article-title: Reduced resilience as an early warning signal of forest mortality
  publication-title: Nature Climate Change
– volume: 151
  year: 1954
  article-title: Basic laws of turbulent mixing in the surface layer of the atmosphere
  publication-title: Contributions of the Geophysical Institute of the Academy of Sciences of the USSR
– article-title: AmeriFlux BASE US‐xWR NEON Wind River Experimental Forest (WREF), Ver. 5‐5, AmeriFlux
– volume: 15
  start-page: 158
  year: 2022
  end-page: 164
  article-title: Confronting the water potential information gap
  publication-title: Nature Geoscience
– volume: 49
  year: 2022
  article-title: Rapid growth of large forest fires drives the exponential response of annual forest‐fire area to aridity in the western United States
  publication-title: Geophysical Research Letters
– volume: 250‐251
  start-page: 24
  year: 2018
  end-page: 34
  article-title: Diel ecosystem conductance response to vapor pressure deficit is suboptimal and independent of soil moisture
  publication-title: Agricultural and Forest Meteorology
– year: 2019a
– volume: 42
  start-page: 153
  year: 2015
  end-page: 161
  article-title: Artificial amplification of warming trends across the mountains of the western United States
  publication-title: Geophysical Research Letters
– volume: 14
  year: 2019
  article-title: Coupling between the terrestrial carbon and water cycles—a review
  publication-title: Environmental Research Letters
– year: 2018
– volume: 221
  start-page: 693
  year: 2019
  end-page: 705
  article-title: On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls
  publication-title: New Phytologist
– volume: 10
  year: 2017
  article-title: Contrasting strategies of hydraulic control in two codominant temperate tree species
  publication-title: Ecohydrology
– year: 2022r
– year: 2022ee
– year: 2022b
– year: 1965
– volume: 130
  start-page: 301
  year: 2022
  end-page: 316
  article-title: Extreme undersaturation in the intercellular airspace of leaves: a failure of Gaastra or Ohm?
  publication-title: Annals of Botany
– volume: 766
  start-page: 198
  year: 1984
  end-page: 208
  article-title: Structural reorganisation of chloroplast thylakoid membranes in response to heat‐stress
  publication-title: Biochimica et Biophysica Acta (BBA)‐Bioenergetics
– volume: 14
  start-page: 6674
  year: 2013
  end-page: 6689
  article-title: Transgenerational, dynamic methylation of stomata genes in response to low relative humidity
  publication-title: International Journal of Molecular Sciences
– volume: 58
  start-page: 431
  year: 2020
  end-page: 442
  article-title: Riparian buffers act as a microclimatic refugia in oil palm landscapes
  publication-title: Journal of Applied Ecology
– article-title: AmeriFlux BASE US‐xWD NEON Woodworth (WOOD), Ver. 5‐5, AmeriFlux
– volume: 106
  start-page: 7063
  year: 2009
  end-page: 7066
  article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought
  publication-title: Proceedings of the National Academy of Sciences
– volume: 2
  year: 2023
  article-title: Low‐elevation conifers in California's Sierra Nevada are out of equilibrium with climate
  publication-title: PNAS Nexus
– volume: 33
  start-page: 317
  year: 1982
  end-page: 345
  article-title: Stomatal conductance and photosynthesis
  publication-title: Annual Review of Plant Physiology
– volume: 22
  start-page: 1515
  year: 1999
  end-page: 1526
  article-title: Survey and synthesis of intra‐and interspecific variation in stomatal sensitivity to vapour pressure deficit
  publication-title: Plant, Cell & Environment
– volume: 279
  year: 2019
  article-title: Maize yield under a changing climate: the hidden role of vapor pressure deficit
  publication-title: Agricultural and Forest Meteorology
– year: 2022m
– volume: 147
  start-page: 4186
  year: 2021
  end-page: 4227
  article-title: The ERA5 global reanalysis: preliminary extension to 1950
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 1983
– volume: 2
  year: 2023
  article-title: A practical exploration of land cover impacts on surface and air temperature when they are most consequential
  publication-title: Environmental Research: Climate
– volume: 43
  start-page: 5079
  year: 2016
  end-page: 5088
  article-title: Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds
  publication-title: Geophysical Research Letters
– volume: 28
  start-page: 4794
  year: 2022
  end-page: 4806
  article-title: Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 US Southwest hot drought
  publication-title: Global Change Biology
– year: 2022x
– volume: 287
  year: 2020
  article-title: Redefining droughts for the US Corn Belt: the dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of maize and soybean
  publication-title: Agricultural and Forest Meteorology
– volume: 86
  start-page: 495
  year: 2016
  end-page: 516
  article-title: Dynamics of non‐structural carbohydrates in terrestrial plants: a global synthesis
  publication-title: Ecological Monographs
– volume: 28
  start-page: 2541
  year: 2022
  end-page: 2554
  article-title: Representing plant diversity in land models: an evolutionary approach to make “Functional Types” more functional
  publication-title: Global Change Biology
– volume: 8
  start-page: 431
  year: 2015
  end-page: 452
  article-title: A test of an optimal stomatal conductance scheme within the CABLE land surface model
  publication-title: Geoscientific Model Development
– volume: 231
  start-page: 1798
  year: 2021
  end-page: 1813
  article-title: Hydraulically‐vulnerable trees survive on deep‐water access during droughts in a tropical forest
  publication-title: New Phytologist
– volume: 565
  start-page: 476
  year: 2019
  end-page: 479
  article-title: Large influence of soil moisture on long‐term terrestrial carbon uptake
  publication-title: Nature
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 22
  start-page: 716
  year: 2016
  end-page: 726
  article-title: Improving the monitoring of crop productivity using spaceborne solar‐induced fluorescence
  publication-title: Global Change Biology
– volume: 15
  start-page: 5593
  year: 2022
  end-page: 5626
  article-title: SurEau‐Ecos v2. 0: a trait‐based plant hydraulics model for simulations of plant water status and drought‐induced mortality at the ecosystem level
  publication-title: Geoscientific Model Development
– volume: 13
  start-page: 28
  year: 2022
  article-title: The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests
  publication-title: Nature Communications
– volume: 109
  start-page: 1962
  year: 2021
  end-page: 1968
  article-title: Biodiversity and ecosystem functioning: have our experiments and indices been underestimating the role of facilitation?
  publication-title: Journal of Ecology
– volume: 5
  year: 2019
  article-title: Increased atmospheric vapor pressure deficit reduces global vegetation growth
  publication-title: Science Advances
– volume: 247
  start-page: 414
  year: 2017
  end-page: 423
  article-title: Meteorological conditions associated with the onset of flash drought in the eastern United States
  publication-title: Agricultural and Forest Meteorology
– volume: 391
  start-page: 202
  year: 2010
  end-page: 216
  article-title: A review of drought concepts
  publication-title: Journal of Hydrology
– volume: 234
  start-page: 55
  year: 2019
  end-page: 65
  article-title: Toward building a transparent statistical model for improving crop yield prediction: modeling rainfed corn in the US
  publication-title: Field Crops Research
– volume: 107
  start-page: 1978
  year: 2015
  end-page: 1986
  article-title: Limited‐transpiration trait may increase maize drought tolerance in the US Corn Belt
  publication-title: Agronomy Journal
– volume: 108
  start-page: 4035
  year: 2011
  end-page: 4040
  article-title: Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation
  publication-title: Proceedings of the National Academy of Sciences
– volume: 618
  start-page: 755
  year: 2023
  end-page: 760
  article-title: Increasingly negative tropical water–interannual CO2 growth rate coupling
  publication-title: Nature
– volume: 237
  start-page: 22
  year: 2023
  end-page: 47
  article-title: Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications
  publication-title: New Phytologist
– start-page: 286
  year: 2000
– volume: 30
  start-page: 2113
  year: 2007
  end-page: 2122
  article-title: What limits evaporation from Mediterranean oak woodlands—the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?
  publication-title: Advances in Water Resources
– volume: 323
  start-page: 521
  year: 2009
  end-page: 524
  article-title: Widespread increase of tree mortality rates in the western United States
  publication-title: Science
– year: 1977
– volume: 36
  start-page: 24
  year: 2022
  end-page: 37
  article-title: Opportunities, challenges and pitfalls in characterizing plant water‐use strategies
  publication-title: Functional Ecology
– volume: 8
  start-page: 6749
  year: 2018
  article-title: Disequilibrium of fire‐prone forests sets the stage for a rapid decline in conifer dominance during the 21st century
  publication-title: Scientific Reports
– volume: 119
  year: 2022
  article-title: Growing impact of wildfire on western US water supply
  publication-title: Proceedings of the National Academy of Sciences
– year: 2022h
– volume: 117
  start-page: 29720
  year: 2020
  end-page: 29729
  article-title: Forest and woodland replacement patterns following drought‐related mortality
  publication-title: Proceedings of the National Academy of Sciences
– volume: 24
  start-page: 1119
  year: 2004
  end-page: 1127
  article-title: Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species
  publication-title: Tree Physiology
– volume: 47
  year: 2020
  article-title: Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017
  publication-title: Geophysical Research Letters
– volume: 31
  start-page: 800
  year: 2017
  end-page: 808
  article-title: Spatial and temporal changes in vapor pressure deficit and their impacts on crop yields in China during 1980–2008
  publication-title: Journal of Meteorological Research
– year: 2022s
– volume: 590
  year: 2020
  article-title: Connections between the hydrological cycle and crop yield in the rainfed US Corn Belt
  publication-title: Journal of Hydrology
– volume: 23
  start-page: 3742
  year: 2017
  end-page: 3757
  article-title: Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback
  publication-title: Global Change Biology
– year: 2021b
– volume: 210
  start-page: 108
  year: 2016
  end-page: 121
  article-title: Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach
  publication-title: New Phytologist
– volume: 16
  year: 2021
  article-title: Challenges and opportunities in precision irrigation decision‐support systems for center pivots
  publication-title: Environmental Research Letters
– volume: 14
  start-page: 538
  year: 2000
  end-page: 545
  article-title: Ecological implications of xylem cavitation for several Pinaceae in the Pacific Northern USA
  publication-title: Functional Ecology
– volume: 2
  start-page: 30
  year: 2019
  article-title: We're not doing enough prescribed fire in the Western United States to mitigate wildfire risk
  publication-title: Fire
– volume: 9
  start-page: 915
  year: 2018
  end-page: 937
  article-title: Recent changes of relative humidity: regional connections with land and ocean processes
  publication-title: Earth System Dynamics
– volume: 479
  start-page: 371
  year: 2022
  end-page: 387
  article-title: Increasing relative abundance of C4 plants mitigates a dryness‐stress effect on gross primary productivity along an aridity gradient in grassland ecosystems
  publication-title: Plant and Soil
– year: 2022c
– volume: 6
  start-page: 104
  year: 1976
  end-page: 112
  article-title: Environmental control of leaf water conductance in conifers
  publication-title: Canadian Journal of Forest Research
– year: 2022gg
– ident: e_1_2_8_374_1
  doi: 10.1016/j.foreco.2019.117500
– ident: e_1_2_8_387_1
– ident: e_1_2_8_217_1
  doi: 10.1029/2019MS001790
– ident: e_1_2_8_89_1
  doi: 10.1029/2020AV000283
– ident: e_1_2_8_401_1
  doi: 10.5194/cp-10-1983-2014
– ident: e_1_2_8_177_1
  doi: 10.1111/gcb.13913
– ident: e_1_2_8_353_1
  doi: 10.1016/j.earscirev.2010.02.004
– ident: e_1_2_8_392_1
  doi: 10.5194/esd-9-915-2018
– ident: e_1_2_8_257_1
– ident: e_1_2_8_8_1
  doi: 10.1111/gcb.16040
– ident: e_1_2_8_361_1
  doi: 10.1111/pce.12852
– ident: e_1_2_8_96_1
  doi: 10.1002/ece3.664
– volume: 55
  start-page: 165
  year: 1989
  ident: e_1_2_8_166_1
  article-title: A three‐dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data
  publication-title: Aspects of Climate Variability in the Pacific and the Western Americas
– ident: e_1_2_8_155_1
  doi: 10.1038/nature15374
– ident: e_1_2_8_69_1
– ident: e_1_2_8_269_1
– ident: e_1_2_8_338_1
  doi: 10.2737/INT-GTR-143
– ident: e_1_2_8_425_1
  doi: 10.1016/j.jhydrol.2020.125398
– ident: e_1_2_8_394_1
  doi: 10.1111/nph.18208
– ident: e_1_2_8_325_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_8_336_1
  doi: 10.1111/gcb.14107
– ident: e_1_2_8_343_1
  doi: 10.1139/x76-013
– ident: e_1_2_8_247_1
  doi: 10.1073/pnas.1113878108
– ident: e_1_2_8_274_1
– ident: e_1_2_8_149_1
  doi: 10.1073/pnas.1802316115
– volume: 24
  start-page: 111
  year: 2000
  ident: e_1_2_8_78_1
  article-title: Microclimate gradients across a forest edge
  publication-title: New Zealand Journal of Ecology
– ident: e_1_2_8_85_1
  doi: 10.1111/nph.18770
– ident: e_1_2_8_165_1
  doi: 10.5194/gmd-8-431-2015
– ident: e_1_2_8_48_1
– ident: e_1_2_8_26_1
  doi: 10.1073/pnas.2002314117
– ident: e_1_2_8_253_1
– ident: e_1_2_8_262_1
– ident: e_1_2_8_162_1
  doi: 10.1111/1365-2435.13945
– ident: e_1_2_8_398_1
  doi: 10.1038/nature12915
– ident: e_1_2_8_82_1
– ident: e_1_2_8_378_1
  doi: 10.1016/j.agrformet.2020.108066
– ident: e_1_2_8_168_1
– ident: e_1_2_8_373_1
  doi: 10.1073/pnas.1604581113
– ident: e_1_2_8_417_1
  doi: 10.1038/s41467-021-25254-7
– ident: e_1_2_8_399_1
  doi: 10.1002/ecy.4109
– ident: e_1_2_8_228_1
  doi: 10.1002/eap.1420
– ident: e_1_2_8_237_1
  doi: 10.2134/agronj15.0016
– ident: e_1_2_8_363_1
– ident: e_1_2_8_291_1
– ident: e_1_2_8_236_1
  doi: 10.1111/nph.15681
– ident: e_1_2_8_11_1
  doi: 10.1175/2010JCLI3812.1
– ident: e_1_2_8_68_1
  doi: 10.1088/1748-9326/ab9faf
– ident: e_1_2_8_205_1
  doi: 10.1111/gcb.15548
– ident: e_1_2_8_19_1
– ident: e_1_2_8_402_1
  doi: 10.1029/2019EF001210
– ident: e_1_2_8_302_1
  doi: 10.2136/vzj2012.0163
– ident: e_1_2_8_72_1
  doi: 10.1093/jxb/eraa002
– ident: e_1_2_8_412_1
  doi: 10.1093/jxb/erz150
– ident: e_1_2_8_278_1
– ident: e_1_2_8_100_1
  doi: 10.1007/978-3-319-69099-5_6
– ident: e_1_2_8_30_1
  doi: 10.1111/pce.14244
– ident: e_1_2_8_202_1
  doi: 10.1016/0022-5193(65)90077-9
– ident: e_1_2_8_420_1
  doi: 10.1038/s41558-022-01505-3
– ident: e_1_2_8_153_1
  doi: 10.1038/s41586-021-03325-5
– ident: e_1_2_8_413_1
  doi: 10.1111/nph.15384
– ident: e_1_2_8_321_1
  doi: 10.3389/fpls.2017.00585
– ident: e_1_2_8_250_1
  doi: 10.1093/jxb/erq438
– ident: e_1_2_8_138_1
  doi: 10.1088/1748-9326/ac5fa1
– ident: e_1_2_8_156_1
  doi: 10.21203/rs.3.rs-595210/v1
– ident: e_1_2_8_160_1
  doi: 10.1111/gcb.14415
– ident: e_1_2_8_335_1
  doi: 10.1046/j.1469-8137.2001.00054.x
– ident: e_1_2_8_334_1
  doi: 10.1093/aob/mcac094
– ident: e_1_2_8_113_1
  doi: 10.1002/2016GL069121
– ident: e_1_2_8_295_1
– ident: e_1_2_8_426_1
  doi: 10.1111/nph.17552
– ident: e_1_2_8_379_1
– ident: e_1_2_8_211_1
  doi: 10.1111/gcb.15976
– ident: e_1_2_8_266_1
– ident: e_1_2_8_332_1
  doi: 10.1029/2020JG005665
– ident: e_1_2_8_60_1
  doi: 10.1016/S0022-1694(03)00264-6
– ident: e_1_2_8_137_1
  doi: 10.1038/s41586-018-0848-x
– ident: e_1_2_8_308_1
  doi: 10.1038/nclimate1693
– ident: e_1_2_8_277_1
– ident: e_1_2_8_241_1
  doi: 10.1016/j.jhydrol.2010.07.012
– ident: e_1_2_8_135_1
– ident: e_1_2_8_189_1
  doi: 10.1016/j.agrformet.2019.107642
– ident: e_1_2_8_395_1
  doi: 10.1111/nph.16866
– ident: e_1_2_8_224_1
  doi: 10.1038/nclimate2641
– ident: e_1_2_8_45_1
  doi: 10.1126/science.1155121
– ident: e_1_2_8_410_1
  doi: 10.1111/1365-2745.13665
– volume-title: Physiology of woody plants
  year: 2010
  ident: e_1_2_8_306_1
– ident: e_1_2_8_87_1
  doi: 10.1002/2017GL076803
– ident: e_1_2_8_270_1
– ident: e_1_2_8_242_1
  doi: 10.1002/ece3.1008
– ident: e_1_2_8_65_1
– ident: e_1_2_8_188_1
  doi: 10.1016/j.fcr.2019.02.005
– ident: e_1_2_8_110_1
  doi: 10.1111/nph.19130
– ident: e_1_2_8_261_1
– ident: e_1_2_8_206_1
  doi: 10.1175/JHM-D-22-0158.1
– ident: e_1_2_8_108_1
  doi: 10.1111/pce.13486
– ident: e_1_2_8_198_1
  doi: 10.5194/hess-25-2399-2021
– ident: e_1_2_8_154_1
  doi: 10.1111/gcb.17106
– ident: e_1_2_8_4_1
  doi: 10.1111/gcb.14405
– ident: e_1_2_8_44_1
  doi: 10.17190/AMF/1246088
– ident: e_1_2_8_6_1
  doi: 10.1111/1365-2745.13595
– ident: e_1_2_8_43_1
  doi: 10.1111/pce.12758
– ident: e_1_2_8_317_1
  doi: 10.1007/s00442-007-0740-0
– ident: e_1_2_8_381_1
  doi: 10.1016/j.tree.2021.02.001
– ident: e_1_2_8_376_1
  doi: 10.1111/gcb.12498
– ident: e_1_2_8_9_1
  doi: 10.1038/s41586-018-0539-7
– ident: e_1_2_8_356_1
  doi: 10.1038/s41598-018-24642-2
– ident: e_1_2_8_22_1
  doi: 10.1007/978-94-017-0519-6_48
– ident: e_1_2_8_77_1
  doi: 10.1111/gcb.16214
– ident: e_1_2_8_405_1
  doi: 10.1111/1365-2664.13784
– ident: e_1_2_8_148_1
  doi: 10.1016/j.foreco.2020.118523
– ident: e_1_2_8_98_1
  doi: 10.1111/avsc.12556
– ident: e_1_2_8_311_1
  doi: 10.1038/s41558-020-0709-0
– ident: e_1_2_8_220_1
  doi: 10.1038/s41586-021-03761-3
– ident: e_1_2_8_182_1
– ident: e_1_2_8_286_1
– ident: e_1_2_8_121_1
  doi: 10.1016/j.agrformet.2022.109029
– ident: e_1_2_8_382_1
  doi: 10.1073/pnas.1917521117
– ident: e_1_2_8_36_1
  doi: 10.1029/2020JG006027
– ident: e_1_2_8_396_1
  doi: 10.1007/s11104-022-05529-8
– ident: e_1_2_8_287_1
– ident: e_1_2_8_315_1
  doi: 10.1111/nph.17802
– ident: e_1_2_8_210_1
  doi: 10.1126/science.1165000
– ident: e_1_2_8_256_1
– ident: e_1_2_8_319_1
  doi: 10.1641/B580607
– ident: e_1_2_8_246_1
  doi: 10.1111/nph.18929
– ident: e_1_2_8_415_1
  doi: 10.1126/sciadv.aax1396
– ident: e_1_2_8_173_1
  doi: 10.3390/fire2020030
– ident: e_1_2_8_357_1
– ident: e_1_2_8_372_1
– ident: e_1_2_8_3_1
  doi: 10.1073/pnas.1607171113
– ident: e_1_2_8_53_1
  doi: 10.17190/AMF/1246068
– ident: e_1_2_8_115_1
  doi: 10.1029/2019WR026058
– ident: e_1_2_8_61_1
  doi: 10.1038/s41598-018-25838-2
– volume: 9
  start-page: 52
  year: 1996
  ident: e_1_2_8_23_1
  article-title: Vertical profiles in a Brunei rain forest: II. Leaf characteristics of Dryobalanops lanceolata
  publication-title: Journal of Tropical Forest Science
– ident: e_1_2_8_56_1
  doi: 10.1126/science.abm4875
– ident: e_1_2_8_67_1
  doi: 10.1038/s41586-018-0240-x
– ident: e_1_2_8_324_1
– ident: e_1_2_8_191_1
– ident: e_1_2_8_323_1
  doi: 10.1038/s41559-021-01654-2
– ident: e_1_2_8_197_1
  doi: 10.1038/s41467-020-18631-1
– ident: e_1_2_8_127_1
  doi: 10.1038/s41467-022-28652-7
– ident: e_1_2_8_310_1
  doi: 10.1111/j.1466-8238.2012.00769.x
– ident: e_1_2_8_408_1
  doi: 10.1890/13-1855.1
– ident: e_1_2_8_83_1
– ident: e_1_2_8_18_1
– ident: e_1_2_8_196_1
  doi: 10.1038/s41586-023-06056-x
– ident: e_1_2_8_330_1
  doi: 10.1016/j.wace.2015.10.004
– ident: e_1_2_8_404_1
  doi: 10.1073/pnas.2114069119
– ident: e_1_2_8_139_1
  doi: 10.1111/nph.16485
– ident: e_1_2_8_290_1
– ident: e_1_2_8_340_1
  doi: 10.1111/nph.19000
– ident: e_1_2_8_80_1
  doi: 10.1002/ecs2.2773
– ident: e_1_2_8_51_1
  doi: 10.1104/pp.111.175638
– ident: e_1_2_8_90_1
  doi: 10.1093/treephys/tpq054
– ident: e_1_2_8_157_1
  doi: 10.1029/2021JG006431
– ident: e_1_2_8_200_1
  doi: 10.1038/s41558-020-0781-5
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_8_249_1
  article-title: Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi‐year droughts
  publication-title: Earth System Dynamics Discussions
– ident: e_1_2_8_342_1
  doi: 10.5194/gmd-15-5593-2022
– ident: e_1_2_8_248_1
  doi: 10.1038/s41598-019-38971-3
– ident: e_1_2_8_370_1
– ident: e_1_2_8_73_1
– ident: e_1_2_8_326_1
  doi: 10.1073/pnas.1602384113
– ident: e_1_2_8_359_1
– ident: e_1_2_8_423_1
  doi: 10.1073/pnas.1904955116
– ident: e_1_2_8_130_1
  doi: 10.1088/1748-9326/ab22d6
– ident: e_1_2_8_28_1
  doi: 10.1002/qj.4174
– ident: e_1_2_8_132_1
  doi: 10.1111/nph.13748
– ident: e_1_2_8_122_1
  doi: 10.1111/nph.17404
– ident: e_1_2_8_231_1
  doi: 10.1111/j.1365-2486.2012.02790.x
– ident: e_1_2_8_390_1
  doi: 10.1175/2009JCLI2909.1
– ident: e_1_2_8_294_1
– ident: e_1_2_8_152_1
  doi: 10.1038/s41467-023-36794-5
– ident: e_1_2_8_213_1
  doi: 10.1111/j.1469-8137.2009.02954.x
– ident: e_1_2_8_309_1
  doi: 10.1029/2020GL089858
– ident: e_1_2_8_133_1
– ident: e_1_2_8_164_1
  doi: 10.1111/j.1365-3040.2009.01977.x
– ident: e_1_2_8_111_1
  doi: 10.1002/2016JD025855
– ident: e_1_2_8_358_1
  doi: 10.1016/j.plantsci.2017.04.007
– ident: e_1_2_8_314_1
  doi: 10.1046/j.1365-2435.2000.t01-1-00451.x
– ident: e_1_2_8_264_1
– ident: e_1_2_8_360_1
  doi: 10.2134/agronj2009.0195
– ident: e_1_2_8_123_1
  doi: 10.1016/j.fcr.2004.12.001
– ident: e_1_2_8_118_1
– ident: e_1_2_8_16_1
  doi: 10.1126/sciadv.aat4313
– ident: e_1_2_8_349_1
– ident: e_1_2_8_279_1
– ident: e_1_2_8_383_1
  doi: 10.1111/gcb.14680
– ident: e_1_2_8_29_1
  doi: 10.1038/nplants.2015.139
– ident: e_1_2_8_207_1
  doi: 10.17190/AMF/1245971
– ident: e_1_2_8_194_1
– ident: e_1_2_8_421_1
  doi: 10.1126/sciadv.adf3166
– ident: e_1_2_8_131_1
  doi: 10.1038/s41561-018-0133-5
– start-page: 286
  volume-title: An Introduction to Environmental Biophysics
  year: 2000
  ident: e_1_2_8_59_1
– ident: e_1_2_8_46_1
  doi: 10.3389/fpls.2013.00266
– ident: e_1_2_8_50_1
  doi: 10.1111/pce.12651
– ident: e_1_2_8_204_1
  doi: 10.1093/jxb/29.3.567
– ident: e_1_2_8_369_1
  doi: 10.1016/j.scitotenv.2023.162960
– ident: e_1_2_8_54_1
  doi: 10.1111/1365-2435.12592
– ident: e_1_2_8_282_1
– ident: e_1_2_8_297_1
  doi: 10.1038/s41561-022-00909-2
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.0901438106
– ident: e_1_2_8_172_1
  doi: 10.1038/nature02417
– ident: e_1_2_8_114_1
  doi: 10.1126/science.281.5374.237
– ident: e_1_2_8_86_1
  doi: 10.1146/annurev-arplant-050213-040054
– ident: e_1_2_8_52_1
  doi: 10.3389/ffgc.2020.591162
– ident: e_1_2_8_79_1
  doi: 10.1093/treephys/20.1.57
– ident: e_1_2_8_47_1
  doi: 10.1029/2020EF001645
– ident: e_1_2_8_128_1
  doi: 10.1111/pce.12588
– ident: e_1_2_8_35_1
  doi: 10.1029/2021WR030687
– ident: e_1_2_8_367_1
– ident: e_1_2_8_344_1
  doi: 10.1016/j.eja.2019.03.009
– ident: e_1_2_8_107_1
  doi: 10.1111/nph.15451
– ident: e_1_2_8_299_1
– ident: e_1_2_8_254_1
– ident: e_1_2_8_33_1
– ident: e_1_2_8_233_1
  doi: 10.1093/treephys/tpt012
– ident: e_1_2_8_226_1
  doi: 10.1038/s43017-022-00272-1
– ident: e_1_2_8_180_1
  doi: 10.1073/pnas.1100371108
– ident: e_1_2_8_292_1
– ident: e_1_2_8_346_1
  doi: 10.1093/jxb/erac033
– ident: e_1_2_8_216_1
– ident: e_1_2_8_243_1
  doi: 10.1002/2015GL064018
– ident: e_1_2_8_352_1
  doi: 10.17190/AMF/1246112
– ident: e_1_2_8_235_1
  doi: 10.1111/1752-1688.12956
– ident: e_1_2_8_141_1
  doi: 10.1111/nph.16196
– ident: e_1_2_8_337_1
  doi: 10.1111/nph.15684
– ident: e_1_2_8_393_1
  doi: 10.1111/nph.18539
– ident: e_1_2_8_159_1
  doi: 10.1029/2021GL097131
– ident: e_1_2_8_303_1
  doi: 10.1046/j.1365-3040.1999.00513.x
– ident: e_1_2_8_289_1
– ident: e_1_2_8_385_1
  doi: 10.1111/nph.14053
– ident: e_1_2_8_136_1
  doi: 10.1016/0005-2728(84)90232-9
– ident: e_1_2_8_140_1
  doi: 10.1111/gcb.13136
– ident: e_1_2_8_84_1
– ident: e_1_2_8_104_1
  doi: 10.1071/PP9780787
– ident: e_1_2_8_212_1
  doi: 10.5194/gmd-10-1903-2017
– ident: e_1_2_8_312_1
  doi: 10.1111/nph.16872
– ident: e_1_2_8_222_1
  doi: 10.1104/pp.110.170704
– volume: 39
  start-page: 1961
  year: 2019
  ident: e_1_2_8_411_1
  article-title: Incorporating non‐stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit
  publication-title: Tree Physiology
– ident: e_1_2_8_377_1
  doi: 10.1038/ngeo950
– ident: e_1_2_8_238_1
  doi: 10.17190/AMF/1246036
– ident: e_1_2_8_12_1
  doi: 10.1016/j.baae.2008.10.008
– ident: e_1_2_8_388_1
  doi: 10.1080/15592324.2017.1356534
– ident: e_1_2_8_112_1
  doi: 10.1029/2021EF002487
– ident: e_1_2_8_327_1
– ident: e_1_2_8_288_1
– ident: e_1_2_8_389_1
– ident: e_1_2_8_318_1
  doi: 10.1111/gcb.16847
– ident: e_1_2_8_146_1
  doi: 10.1002/qj.3803
– ident: e_1_2_8_320_1
  doi: 10.1016/j.foreco.2008.09.029
– ident: e_1_2_8_255_1
– ident: e_1_2_8_260_1
– ident: e_1_2_8_400_1
– ident: e_1_2_8_14_1
  doi: 10.1016/S1360-1385(03)00136-5
– ident: e_1_2_8_57_1
  doi: 10.1111/nph.16456
– ident: e_1_2_8_232_1
  doi: 10.1007/BF00378398
– ident: e_1_2_8_259_1
– ident: e_1_2_8_167_1
  doi: 10.1038/375666a0
– ident: e_1_2_8_368_1
  doi: 10.1002/2016GL069416
– ident: e_1_2_8_414_1
  doi: 10.1029/2020JG005892
– ident: e_1_2_8_209_1
  doi: 10.1175/JCLI‐D‐22‐0477.1
– ident: e_1_2_8_407_1
– ident: e_1_2_8_355_1
  doi: 10.1002/grl.50956
– ident: e_1_2_8_284_1
– ident: e_1_2_8_58_1
  doi: 10.1111/pce.12449
– ident: e_1_2_8_49_1
  doi: 10.1093/treephys/24.10.1119
– ident: e_1_2_8_147_1
  doi: 10.1093/pnasnexus/pgad004
– ident: e_1_2_8_272_1
– ident: e_1_2_8_38_1
– ident: e_1_2_8_218_1
  doi: 10.1002/eco.1815
– ident: e_1_2_8_171_1
– ident: e_1_2_8_199_1
  doi: 10.1038/s41558-019-0583-9
– ident: e_1_2_8_322_1
  doi: 10.1029/2022GL100975
– ident: e_1_2_8_31_1
– ident: e_1_2_8_134_1
– ident: e_1_2_8_179_1
– ident: e_1_2_8_181_1
  doi: 10.1111/gcb.14634
– ident: e_1_2_8_281_1
– ident: e_1_2_8_251_1
– ident: e_1_2_8_364_1
– ident: e_1_2_8_93_1
– ident: e_1_2_8_99_1
  doi: 10.3390/atmos13071143
– ident: e_1_2_8_365_1
– ident: e_1_2_8_95_1
  doi: 10.1111/nph.15395
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1365-3040.2007.01641.x
– ident: e_1_2_8_116_1
– ident: e_1_2_8_252_1
– ident: e_1_2_8_384_1
  doi: 10.1111/nph.17952
– ident: e_1_2_8_183_1
– ident: e_1_2_8_34_1
  doi: 10.1086/297397
– ident: e_1_2_8_63_1
  doi: 10.1029/2022EF002667
– ident: e_1_2_8_64_1
– ident: e_1_2_8_178_1
– ident: e_1_2_8_221_1
  doi: 10.1111/nph.15027
– ident: e_1_2_8_403_1
  doi: 10.1038/s41558-022-01290-z
– ident: e_1_2_8_92_1
  doi: 10.1016/j.agrformet.2017.08.026
– ident: e_1_2_8_229_1
  doi: 10.1046/j.1469-8137.2001.00028.x
– ident: e_1_2_8_339_1
  doi: 10.1038/nature15539
– ident: e_1_2_8_143_1
  doi: 10.1038/s41597-020-0453-3
– ident: e_1_2_8_106_1
  doi: 10.1146/annurev.pp.33.060182.001533
– ident: e_1_2_8_55_1
  doi: 10.1073/pnas.1722312115
– ident: e_1_2_8_17_1
– ident: e_1_2_8_267_1
– ident: e_1_2_8_223_1
  doi: 10.1890/1051-0761(2006)016[1164:HMOPPG]2.0.CO;2
– ident: e_1_2_8_234_1
  doi: 10.1111/ele.12670
– ident: e_1_2_8_151_1
  doi: 10.1016/j.agrformet.2019.107692
– ident: e_1_2_8_307_1
– ident: e_1_2_8_101_1
  doi: 10.1111/gcb.14413
– ident: e_1_2_8_161_1
  doi: 10.1111/gcb.13636
– ident: e_1_2_8_239_1
  doi: 10.1029/2010JG001486
– ident: e_1_2_8_276_1
– ident: e_1_2_8_21_1
  doi: 10.1016/j.advwatres.2006.06.013
– ident: e_1_2_8_192_1
– ident: e_1_2_8_13_1
  doi: 10.1111/ele.13516
– ident: e_1_2_8_41_1
  doi: 10.1111/nph.19257
– ident: e_1_2_8_185_1
  doi: 10.1111/j.1365-3040.1995.tb00370.x
– ident: e_1_2_8_380_1
  doi: 10.3390/ijms14046674
– ident: e_1_2_8_366_1
  doi: 10.1073/pnas.2205682119
– ident: e_1_2_8_190_1
  doi: 10.1016/j.agrformet.2017.12.078
– ident: e_1_2_8_280_1
– ident: e_1_2_8_362_1
  doi: 10.1111/nph.14059
– ident: e_1_2_8_125_1
– ident: e_1_2_8_219_1
  doi: 10.1104/pp.114.252940
– ident: e_1_2_8_419_1
  doi: 10.1007/s13351-017-6137-z
– ident: e_1_2_8_184_1
  doi: 10.1002/fee.2278
– ident: e_1_2_8_273_1
– ident: e_1_2_8_37_1
– ident: e_1_2_8_296_1
  doi: 10.1088/2752-5295/accdf9
– ident: e_1_2_8_305_1
  doi: 10.1002/2014GL062803
– ident: e_1_2_8_409_1
  doi: 10.1111/1365-2745.12397
– ident: e_1_2_8_345_1
  doi: 10.1038/s41467-021-27579-9
– ident: e_1_2_8_74_1
  doi: 10.1029/2010JD015541
– ident: e_1_2_8_422_1
  doi: 10.1016/j.agrformet.2013.05.009
– ident: e_1_2_8_163_1
  doi: 10.1038/s43016-022-00614-8
– ident: e_1_2_8_40_1
– ident: e_1_2_8_174_1
  doi: 10.1016/j.pbi.2015.05.003
– ident: e_1_2_8_2_1
  doi: 10.1071/WF16165
– ident: e_1_2_8_120_1
  doi: 10.1093/aob/mcf027
– ident: e_1_2_8_333_1
  doi: 10.1016/j.foreco.2020.118623
– ident: e_1_2_8_347_1
  doi: 10.1111/pce.14425
– ident: e_1_2_8_103_1
  doi: 10.5194/gmd-9-1937-2016
– ident: e_1_2_8_97_1
– ident: e_1_2_8_258_1
– ident: e_1_2_8_91_1
  doi: 10.1038/nature14213
– ident: e_1_2_8_124_1
  doi: 10.1016/j.agrformet.2017.08.031
– ident: e_1_2_8_285_1
– ident: e_1_2_8_386_1
– ident: e_1_2_8_271_1
– ident: e_1_2_8_42_1
– ident: e_1_2_8_109_1
  doi: 10.1016/j.ecolind.2023.109944
– ident: e_1_2_8_240_1
  doi: 10.1002/eap.2411
– ident: e_1_2_8_66_1
  doi: 10.1111/nph.17464
– ident: e_1_2_8_300_1
– ident: e_1_2_8_193_1
– ident: e_1_2_8_201_1
  doi: 10.1126/science.1251423
– volume-title: Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses
  year: 1980
  ident: e_1_2_8_186_1
– ident: e_1_2_8_230_1
  doi: 10.1111/j.1365-2486.2010.02375.x
– ident: e_1_2_8_406_1
  doi: 10.1088/1748-9326/aa9c5a
– ident: e_1_2_8_20_1
  doi: 10.1038/s41586-021-04325-1
– ident: e_1_2_8_75_1
  doi: 10.1002/joc.1688
– ident: e_1_2_8_208_1
  doi: 10.17190/AMF/1245984
– ident: e_1_2_8_375_1
  doi: 10.1111/ppl.13752
– ident: e_1_2_8_331_1
– ident: e_1_2_8_76_1
  doi: 10.1029/2019JG005499
– ident: e_1_2_8_268_1
– ident: e_1_2_8_301_1
  doi: 10.17190/AMF/1246048
– ident: e_1_2_8_70_1
  doi: 10.1038/s41467-022-34966-3
– ident: e_1_2_8_391_1
  doi: 10.1073/pnas.1207068110
– ident: e_1_2_8_227_1
– ident: e_1_2_8_275_1
– ident: e_1_2_8_350_1
  doi: 10.17190/AMF/1246104
– ident: e_1_2_8_351_1
  doi: 10.17190/AMF/1246113
– ident: e_1_2_8_27_1
  doi: 10.1038/s41586-022-04737-7
– ident: e_1_2_8_169_1
  doi: 10.1111/1365-2435.14112
– ident: e_1_2_8_316_1
  doi: 10.1111/nph.12278
– ident: e_1_2_8_328_1
– ident: e_1_2_8_10_1
  doi: 10.1016/j.rse.2011.08.025
– ident: e_1_2_8_348_1
– ident: e_1_2_8_142_1
  doi: 10.1038/s41467-022-29289-2
– volume: 151
  year: 1954
  ident: e_1_2_8_245_1
  article-title: Basic laws of turbulent mixing in the surface layer of the atmosphere
  publication-title: Contributions of the Geophysical Institute of the Academy of Sciences of the USSR
– ident: e_1_2_8_117_1
– ident: e_1_2_8_62_1
– start-page: 646
  volume-title: Physical hydrology
  year: 2002
  ident: e_1_2_8_88_1
– ident: e_1_2_8_313_1
  doi: 10.1111/gcb.14884
– ident: e_1_2_8_94_1
  doi: 10.1175/JTECH-D-22-0024.1
– ident: e_1_2_8_150_1
– ident: e_1_2_8_176_1
  doi: 10.1007/s004840000066
– ident: e_1_2_8_418_1
  doi: 10.1088/1748-9326/ab2603
– ident: e_1_2_8_15_1
  doi: 10.1016/S0048-9697(00)00528-3
– ident: e_1_2_8_32_1
– ident: e_1_2_8_214_1
  doi: 10.1111/pce.12846
– ident: e_1_2_8_265_1
– ident: e_1_2_8_195_1
– ident: e_1_2_8_215_1
  doi: 10.1002/ecm.1231
– ident: e_1_2_8_298_1
  doi: 10.1038/nclimate3114
– ident: e_1_2_8_304_1
  doi: 10.1175/BAMS-D-17-0149.1
– ident: e_1_2_8_119_1
– ident: e_1_2_8_329_1
  doi: 10.1038/s43016-020-0028-7
– ident: e_1_2_8_175_1
  doi: 10.1126/science.1100217
– ident: e_1_2_8_71_1
  doi: 10.1007/s13595-021-01067-y
– ident: e_1_2_8_416_1
  doi: 10.1088/1748-9326/abe436
– ident: e_1_2_8_144_1
  doi: 10.1146/annurev-arplant-102820-012804
– ident: e_1_2_8_244_1
  doi: 10.1073/pnas.2202767119
– ident: e_1_2_8_293_1
– ident: e_1_2_8_145_1
  doi: 10.1016/j.foreco.2015.12.038
– ident: e_1_2_8_263_1
– ident: e_1_2_8_102_1
– ident: e_1_2_8_341_1
  doi: 10.14358/PERS.74.11.1379
– ident: e_1_2_8_81_1
  doi: 10.1093/treephys/tpaa153
– ident: e_1_2_8_170_1
  doi: 10.1016/j.agrformet.2020.107930
– ident: e_1_2_8_39_1
– ident: e_1_2_8_225_1
  doi: 10.1016/j.oneear.2023.02.007
– ident: e_1_2_8_424_1
  doi: 10.1126/sciadv.aau5740
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1469-8137.2007.02035.x
– ident: e_1_2_8_397_1
  doi: 10.1038/srep30571
– ident: e_1_2_8_158_1
  doi: 10.1016/j.rse.2022.112950
– ident: e_1_2_8_129_1
  doi: 10.1002/2016GL070819
– ident: e_1_2_8_24_1
– ident: e_1_2_8_126_1
  doi: 10.1175/BAMS-D-15-00224.1
– ident: e_1_2_8_187_1
  doi: 10.1126/science.adf5041
– ident: e_1_2_8_203_1
  doi: 10.1111/j.1365-3040.1991.tb01439.x
– ident: e_1_2_8_283_1
– ident: e_1_2_8_105_1
  doi: 10.1007/BF00386231
– ident: e_1_2_8_354_1
  doi: 10.1038/nature05095
– ident: e_1_2_8_371_1
SSID ssj0001479
Score 2.6688988
SecondaryResourceType review_article
Snippet An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems....
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3561
SubjectTerms Agricultural land
Biodiversity
carbon
carbon cycling
climate
Climate Change
Crop yield
Drought
Droughts
Ecosystem
Ecosystem management
Ecosystem services
ecosystems
Entanglement
environment
Environmental changes
Environmental impact
Environmental management
Environmental risk
ENVIRONMENTAL SCIENCES
evolution
Forest management
Grasslands
management
Moisture content
Photosynthesis
plant physiology
Pressure effects
Provisioning
Risk reduction
Soil water
Terrestrial ecosystems
Vapor Pressure
vapor pressure deficit
Water - metabolism
Water - physiology
Water resources
Wildfires
Title The impacts of rising vapour pressure deficit in natural and managed ecosystems
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14846
https://www.ncbi.nlm.nih.gov/pubmed/38348610
https://www.proquest.com/docview/3093050580
https://www.proquest.com/docview/2926079312
https://www.proquest.com/docview/3153705769
https://www.osti.gov/biblio/2301779
Volume 47
WOSCitedRecordID wos001160054800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-3040
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001479
  issn: 0140-7791
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB70VPBFW9vqqZW0-ODLwiXZ2yT4ZK1HH4o9SoV7C9kkC0LZPW7vBP97J8neUkGh4MuysNns5MeXmdlMvgE4r0xhcudZ5kfjcZZbYzPF8VJaj9pFWa8KE5NNiNtbOZup6QZcrs_CJH6I_odbQEZcrwPATdn-A_K59QhzVJ-bsEUplyFvA8un_TJM80S0F-IXhVC0oxUKYTz9q8-U0aBBUL1kaD63W6Pimey_SeR3sNfZm-QqTZD3sOHrA9hJGSgfD2D7W4PW4eMH-IXzhaQjky1pKoLYR6VGHswcayAxWna18MT5wDixJPc1iZSgWLWpHUkxsI6gL5uooduPcDe5-XP9I-uSLWQWPbQCXcgcR0bQMh9Z1OOuMpzTKmwrlmYsnTLBFTEFc9VIeOFRzytvhHKUO0bLquCfYFA3tT8CQo3NmUCBmJRobXHpZO5UyUumPJd-NISLda9r2zGRh4QYf_XaI8GO0rGjhvC1LzpP9BsvFToJQ6fRZgjEtzZECNmlRueK4sAP4XQ9orrDZ6vD_m_I4SdRmC_9Y0RW2C4xtW9WrWYKfT1cvih7vQxHhSHQ5C3wM4dptvRyou-PHUtDc-OkeL0Benp9E2-O_7_oCewytK9SuNspDJaLlf8M2_Zhed8uziIU8Cpm8gy2vv-e3P18ApONC-Y
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3STUp7ado0bbf5qFJ66MWw-ljLgl6SkJCQdLuHBHITsiRDoNjLejeQf9-R5DUNJBDIZTGsbMvSPL0Za_wG4EdlciOcZ5kfjceZsMZmiuNPaT2yi7Je5SYWm5CTSXFzo6Zr8Gv1LUzSh-hfuAVkxPU6ADy8kP4P5TPrEefIn69gXSDLBCtnYtqvw1Qkpb2QwCilop2uUMjj6U99wEaDBlH1mKf50HGNzHO6-bI-v4d3ncdJDpOJfIA1X2_B61SD8n4LNo4a9A_vP8IftBiSPppsSVMRRD_SGrkzM7wCifmyy7knzgfNiQW5rUkUBcVLm9qRlAXrCEazSRy63Ybr05Or47OsK7eQWYzRcgwiBc6NpKUYWWRyVxnOaRU2FkszLpwyIRgxOXPVSHrpkemVN1I5yh2jZZXzTzCom9p_AUKNFUxih1hRoL_FC1cIp0peMuV54UdD-Lkadm07LfJQEuOvXsUkOFA6DtQQvvdNZ0mA47FGO2HuNHoNQfrWhhwhu9AYXlGc-SHsrqZUdwhtddgBDlX8CuzMQf83YitsmJjaN8tWM4XRHi5glD3dhiNlSHR6c7zN52QufT8x-seBpeFxo1U8_QB6enwSD74-v-k3eHN29ftSX55PLnbgLUNvKyW_7cJgMV_6Pdiwd4vbdr4fcfEP2OANSQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6tBt7Wbuu3bJ-TBt72IshkhzLgr1sbcPGShrGCn0TsnSGQrFDnBT63-9kOaaFFgZ7MQbL8unjp7uzTr8D-FzazKYeRYKj8ThJnXWJlnQpHJJ20Q51ZttkE2o6za-u9GwDvq7PwkR-iP6HW0BGu14HgOPcl_dQPndIOCf9-Qw205BEZgCbp78nl-f9SszTyLUXQhiV0rxjFgqRPP3LD_TRoCZcPWZrPjRdW90z2f4_qXfgVWdzsm9xkryGDax24XnMQnm3C1vfa7IQ797ABc0ZFo9NNqwuGeGfFBu7tXOqgbURs6sFMo-BdWLJrivW0oJS1bbyLMbBekb-bKSHbvbgcnL25-RH0iVcSBx5aRm5kSmNjuJFOnKky31ppeRl2Fos7Dj32gZ3xGbClyOFCknXa7RKey694EWZyX0YVHWF74Bx61KhSCCR52RxydznqdeFLIRGmeNoCF_W3W5cx0YekmLcmLVXQh1l2o4awqe-6DxScDxW6CCMnSG7IZDfuhAl5JaGHCxOIz-Ew_WQmg6jjQl7wCGPX07CfOwfE7rClomtsF41Rmjy92gJ4-LpMpKUhiKzN6PPvI3TpZeT_H_qWB6a286KpxtgZidn7c37fy_6AV7MTifm_Of01wG8FGRuxei3QxgsFys8gi13u7xuFscdMP4CPogOXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impacts+of+rising+vapour+pressure+deficit+in+natural+and+managed+ecosystems&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Novick%2C+Kimberly+A.&rft.au=Ficklin%2C+Darren+L.&rft.au=Grossiord%2C+Charlotte&rft.au=Konings%2C+Alexandra+G.&rft.date=2024-09-01&rft.pub=Wiley&rft.issn=0140-7791&rft.volume=47&rft.issue=9&rft_id=info:doi/10.1111%2Fpce.14846&rft.externalDocID=2301779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon