Theoretical Insights on Methylbenzene Side-Chain Growth in ZSM-5 Zeolites for Methanol-to-Olefin Conversion
The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon‐pool network, in which certain organic species in the zeolite pores...
Saved in:
| Published in: | Chemistry : a European journal Vol. 15; no. 41; pp. 10803 - 10808 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
WILEY-VCH Verlag
19.10.2009
WILEY‐VCH Verlag |
| Subjects: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon‐pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date—the paring mechanism and the side‐chain mechanism—recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM‐5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side‐chain route) using both small and large zeolite cluster models of ZSM‐5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side‐chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de‐alkylation to produce ethene. These results suggest that the current formulation of the side‐chain route in ZSM‐5 may actually be a deactivating route to coke precursors rather than an active ethene‐producing hydrocarbon‐pool route. Other routes may be operating in alternative zeotype materials like the silico‐aluminophosphate SAPO‐34.
Please release me, let me go: De‐alkylation to produce ethane can only proceed over high energy barriers. The methylbenzene side‐chain route for ethene formation from methanol in acid zeolite ZSM‐5 (methanol‐to‐olefins, or MTO) is modelled using both small and large clusters (see image). Side‐chain growth in the ortho position to the geminal methyl group seems favoured. |
|---|---|
| AbstractList | The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon‐pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date—the paring mechanism and the side‐chain mechanism—recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM‐5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side‐chain route) using both small and large zeolite cluster models of ZSM‐5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side‐chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de‐alkylation to produce ethene. These results suggest that the current formulation of the side‐chain route in ZSM‐5 may actually be a deactivating route to coke precursors rather than an active ethene‐producing hydrocarbon‐pool route. Other routes may be operating in alternative zeotype materials like the silico‐aluminophosphate SAPO‐34.
Please release me, let me go: De‐alkylation to produce ethane can only proceed over high energy barriers. The methylbenzene side‐chain route for ethene formation from methanol in acid zeolite ZSM‐5 (methanol‐to‐olefins, or MTO) is modelled using both small and large clusters (see image). Side‐chain growth in the ortho position to the geminal methyl group seems favoured. The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon-pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date-the paring mechanism and the side-chain mechanism-recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM-5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side-chain route) using both small and large zeolite cluster models of ZSM-5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side-chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de-alkylation to produce ethene. These results suggest that the current formulation of the side-chain route in ZSM-5 may actually be a deactivating route to coke precursors rather than an active ethene-producing hydrocarbon-pool route. Other routes may be operating in alternative zeotype materials like the silico-aluminophosphate SAPO-34.The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon-pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date-the paring mechanism and the side-chain mechanism-recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM-5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side-chain route) using both small and large zeolite cluster models of ZSM-5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side-chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de-alkylation to produce ethene. These results suggest that the current formulation of the side-chain route in ZSM-5 may actually be a deactivating route to coke precursors rather than an active ethene-producing hydrocarbon-pool route. Other routes may be operating in alternative zeotype materials like the silico-aluminophosphate SAPO-34. The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon-pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date-the paring mechanism and the side-chain mechanism-recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM-5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side-chain route) using both small and large zeolite cluster models of ZSM-5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side-chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de-alkylation to produce ethene. These results suggest that the current formulation of the side-chain route in ZSM-5 may actually be a deactivating route to coke precursors rather than an active ethene-producing hydrocarbon-pool route. Other routes may be operating in alternative zeotype materials like the silico-aluminophosphate SAPO-34. |
| Author | Waroquier, Michel Van Speybroeck, Veronique Horré, Annelies Lesthaeghe, David Marin, Guy B. |
| Author_xml | – sequence: 1 givenname: David surname: Lesthaeghe fullname: Lesthaeghe, David email: david.lesthaeghe@ugent.be organization: Center for Molecular Modeling, Member of the QCMM Alliance Ghent-Brussels, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium), Fax: (+32) 9264-6697 – sequence: 2 givenname: Annelies surname: Horré fullname: Horré, Annelies organization: Center for Molecular Modeling, Member of the QCMM Alliance Ghent-Brussels, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium), Fax: (+32) 9264-6697 – sequence: 3 givenname: Michel surname: Waroquier fullname: Waroquier, Michel organization: Center for Molecular Modeling, Member of the QCMM Alliance Ghent-Brussels, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium), Fax: (+32) 9264-6697 – sequence: 4 givenname: Guy B. surname: Marin fullname: Marin, Guy B. organization: Laboratorium voor Chemische Technologie, Ghent University, Krijgslaan 281-S5, 9000 Ghent (Belgium) – sequence: 5 givenname: Veronique surname: Van Speybroeck fullname: Van Speybroeck, Veronique email: veronique.vanspeybroeck@ugent.be organization: Center for Molecular Modeling, Member of the QCMM Alliance Ghent-Brussels, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium), Fax: (+32) 9264-6697 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19746483$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFv1DAQRi1URLeFK0eUGycvdhzHzhGisq3UpYctAu3FcpIJMfXare2lLL8ely0rhIQ4zRzeG83Md4KOnHeA0EtK5pSQ8k0_wWZeEtIQKkr2BM0oLylmouZHaEaaSuCas-YYncT4lWSsZuwZOqaNqOpKshm6uZ7AB0im17a4cNF8mVIsvCuWkKad7cD9AAfFygyA20kbVyyCv09Tkbv1aol5sQZvTYJYjD78srTzFiePryyMmWq9-wYhGu-eo6ejthFePNZT9PH92XV7ji-vFhft20vcV3kn3Iwa-kHygY6SSl0OWnJdNqNsqCQdHenAOYCmdSdoJwYu6VBKQWXZdTUjPWWn6PV-7m3wd1uISW1M7MFa7cBvoxKsyv8ihGXy1SO57TYwqNtgNjrs1O__ZKDaA33wMQYYVW-STvmYFLSxihL1EIN6iEEdYsja_C_tMPlfQrMX7o2F3X9o1Z6fLf908d41McH3g6vDjaoFE1x9-rBQn5fVeiXeSSXZT5qOqcs |
| CitedBy_id | crossref_primary_10_1016_j_jcat_2011_03_016 crossref_primary_10_1016_j_micromeso_2024_113199 crossref_primary_10_1016_j_cattod_2011_05_040 crossref_primary_10_1002_anie_202414724 crossref_primary_10_1016_j_micromeso_2019_109838 crossref_primary_10_1021_acscatal_5c00940 crossref_primary_10_1016_j_fuel_2021_121995 crossref_primary_10_1016_j_jcat_2014_10_016 crossref_primary_10_1039_D2CY01348G crossref_primary_10_1039_C9CY02108F crossref_primary_10_1002_cctc_201200580 crossref_primary_10_1002_chem_201301965 crossref_primary_10_1016_S1872_2067_18_63064_5 crossref_primary_10_1016_j_micromeso_2017_04_002 crossref_primary_10_1016_j_micromeso_2012_04_004 crossref_primary_10_1016_j_jcat_2016_12_024 crossref_primary_10_1016_S1872_2067_15_60891_9 crossref_primary_10_1038_s41467_023_38336_5 crossref_primary_10_1002_ange_202411197 crossref_primary_10_1007_s13203_016_0153_2 crossref_primary_10_1007_s40242_020_0216_x crossref_primary_10_1002_cctc_201000286 crossref_primary_10_1039_D2CY01779B crossref_primary_10_1002_apj_2354 crossref_primary_10_1016_j_cattod_2013_09_056 crossref_primary_10_1002_chem_201501355 crossref_primary_10_1007_s11705_016_1557_3 crossref_primary_10_1016_j_checat_2024_101168 crossref_primary_10_1007_s10563_013_9157_4 crossref_primary_10_1039_D0CY01056A crossref_primary_10_1016_j_apcata_2012_02_006 crossref_primary_10_1038_s41563_020_0800_y crossref_primary_10_1002_anie_202318250 crossref_primary_10_1016_j_micromeso_2015_09_039 crossref_primary_10_1016_j_jcat_2012_03_016 crossref_primary_10_1016_j_micromeso_2018_11_026 crossref_primary_10_1002_anie_202411197 crossref_primary_10_3390_molecules26123566 crossref_primary_10_1039_c1cc13153b crossref_primary_10_1002_slct_201701483 crossref_primary_10_1016_j_jechem_2025_09_007 crossref_primary_10_1002_anie_201103657 crossref_primary_10_1016_S1872_2067_18_63117_1 crossref_primary_10_1007_s10562_016_1835_1 crossref_primary_10_1016_j_jaap_2018_09_002 crossref_primary_10_1021_ja1073992 crossref_primary_10_1002_cctc_201700916 crossref_primary_10_1002_chem_201002624 crossref_primary_10_1021_jacs_3c12087 crossref_primary_10_1002_chem_201403972 crossref_primary_10_1002_ange_202318250 crossref_primary_10_1002_cctc_201402714 crossref_primary_10_1016_j_jcat_2013_12_003 crossref_primary_10_1016_j_jcat_2015_12_007 crossref_primary_10_1039_C5CS00029G crossref_primary_10_1021_jacs_9b07484 crossref_primary_10_1002_ange_202414724 crossref_primary_10_1016_j_micromeso_2022_111705 crossref_primary_10_1039_C5CS00304K crossref_primary_10_1002_chem_201100920 crossref_primary_10_1016_j_ces_2022_117424 crossref_primary_10_1016_S1872_2067_22_64209_8 crossref_primary_10_1016_S1872_2067_10_60303_8 crossref_primary_10_1016_j_jcat_2011_09_018 crossref_primary_10_1002_ange_201103657 crossref_primary_10_1039_D2CY00021K crossref_primary_10_1016_j_jcat_2013_11_003 crossref_primary_10_1016_j_jcat_2015_10_001 crossref_primary_10_1016_j_jcat_2018_10_022 crossref_primary_10_1039_C4CS00146J crossref_primary_10_1039_D1CY00433F crossref_primary_10_1002_cphc_201201023 crossref_primary_10_1002_chem_201203351 crossref_primary_10_1016_j_jcat_2021_10_025 crossref_primary_10_1002_adma_201902181 crossref_primary_10_1016_j_jcat_2013_04_015 crossref_primary_10_1016_j_jcat_2024_115363 crossref_primary_10_1016_j_jcat_2013_01_024 crossref_primary_10_1016_j_cattod_2025_115402 crossref_primary_10_1039_c0cp01996h crossref_primary_10_1002_chem_201805664 crossref_primary_10_1093_nsr_nwad120 crossref_primary_10_1002_cctc_201200015 crossref_primary_10_3390_catal8120626 crossref_primary_10_1016_j_jcat_2018_11_018 crossref_primary_10_1002_chem_201301272 |
| Cites_doi | 10.1021/ja037073d 10.1021/ja016499u 10.1002/anie.200604309 10.1021/ja065810a 10.1063/1.2737444 10.1016/j.cplett.2005.09.136 10.1006/jcat.1994.1312 10.1039/B206483A 10.1002/anie.200504372 10.1021/ie0613974 10.1021/ar020006o 10.1002/ange.200604309 10.1002/chem.200801293 10.1002/ange.200503824 10.1002/ange.200705453 10.1016/0021-9517(86)90204-6 10.1002/anie.200705453 10.1021/jp045531e 10.1021/ja039432a 10.1021/ja807695p 10.1016/S1387-1811(98)00319-9 10.1002/anie.200503824 10.1021/ja994103x 10.1002/ange.200504372 10.1039/b902364j 10.1021/jp810350x 10.1021/ja048305r |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION NPM 7X8 |
| DOI | 10.1002/chem.200901723 |
| DatabaseName | Istex CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 10808 |
| ExternalDocumentID | 19746483 10_1002_chem_200901723 CHEM200901723 ark_67375_WNG_XM4ZS7B8_8 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: BELSPO – fundername: Research Board of Ghent University (BOF) – fundername: Fund for Scientific Research—Flanders (FWO—Vlaanderen) |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT UQL V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGC RWI WRC AAYXX CITATION O8X NPM 7X8 |
| ID | FETCH-LOGICAL-c4483-9faecd85d1f818a2da85a29f89180b1f1d55eea16b71b7d581d287182bb630c13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 131 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271605900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Thu Oct 02 07:18:26 EDT 2025 Mon Jul 21 05:59:27 EDT 2025 Sat Nov 29 07:12:52 EST 2025 Tue Nov 18 21:50:05 EST 2025 Wed Jan 22 16:32:19 EST 2025 Tue Sep 09 05:32:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 41 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4483-9faecd85d1f818a2da85a29f89180b1f1d55eea16b71b7d581d287182bb630c13 |
| Notes | istex:1066BDC33F328E9FB9064F6C1CFCAAD11BF718AA Fund for Scientific Research-Flanders (FWO-Vlaanderen) ark:/67375/WNG-XM4ZS7B8-8 ArticleID:CHEM200901723 BELSPO Research Board of Ghent University (BOF) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19746483 |
| PQID | 734090003 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_734090003 pubmed_primary_19746483 crossref_citationtrail_10_1002_chem_200901723 crossref_primary_10_1002_chem_200901723 wiley_primary_10_1002_chem_200901723_CHEM200901723 istex_primary_ark_67375_WNG_XM4ZS7B8_8 |
| PublicationCentury | 2000 |
| PublicationDate | October 19, 2009 |
| PublicationDateYYYYMMDD | 2009-10-19 |
| PublicationDate_xml | – month: 10 year: 2009 text: October 19, 2009 day: 19 |
| PublicationDecade | 2000 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chem. Eur. J |
| PublicationYear | 2009 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
| References | A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen, M. Waroquier, J. Chem. Phys. 2007, 126, 13. D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Ind. Eng. Chem. Res. 2007, 46, 8832. W. G. Song, D. M. Marcus, H. Fu, J. O. Ehresmann, J. F. Haw, J. Am. Chem. Soc. 2002, 124, 3844. D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Chem. Phys. Lett. 2006, 417, 309. D. Lesthaeghe, B. De Sterck, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2007, 119, 1333 S. Grimme, J. Comput. Chem. 2006, 27, 1787. D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2006, 118, 1746 J. F. Haw, Phys. Chem. Chem. Phys. 2002, 4, 5431. M. Bjorgen, F. Bonino, S. Kolboe, K. P. Lillerud, A. Zecchina, S. Bordiga, J. Am. Chem. Soc. 2003, 125, 15863. D. M. McCann, D. Lesthaeghe, P. W. Kletnieks, D. R. Guenther, M. J. Hayman, V. Van Speybroeck, M. Waroquier, J. F. Haw, Angew. Chem. 2008, 120, 5257 M. Boronat, P. M. Viruela, A. Corma, J. Am. Chem. Soc. 2004, 126, 3300. S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K. P. Lillerud, S. Kolboe, M. Bjorgen, J. Am. Chem. Soc. 2006, 128, 14770. D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, Phys. Chem. Chem. Phys. 2009, 11, 5222. R. M. Dessau, J. Catal. 1986, 99, 111. D. M. Marcus, K. A. McLachlan, M. A. Wildman, J. O. Ehresmann, P. W. Kletnieks, J. F. Haw, Angew. Chem. 2006, 118, 3205 X. Solans-Monfort, M. Sodupe, V. Branchadell, J. Sauer, R. Orlando, P. Ugliengo, J. Phys. Chem. B 2005, 109, 3539. D. Mores, E. Stavitski, M. H. F. Kox, J. Kornatowski, U. Olsbye, B. M. Weckhuysen, Chem. Eur. J. 2008, 14, 11320. Angew. Chem. Int. Ed. 2007, 46, 1311. S. Svelle, C. Tuma, X. Rozanska, T. Kerber, J. Sauer, J. Am. Chem. Soc. 2009, 131, 816. J. F. Haw, W. G. Song, D. M. Marcus, J. B. Nicholas, Acc. Chem. Res. 2003, 36, 317. J. F. Haw, J. B. Nicholas, W. G. Song, F. Deng, Z. K. Wang, T. Xu, C. S. Heneghan, J. Am. Chem. Soc. 2000, 122, 4763. I. M. Dahl, S. Kolboe, J. Catal. 1994, 149, 458. M. Stöcker, Microporous Mesoporous Mater. 1999, 29, 3. Angew. Chem. Int. Ed. 2006, 45, 1714. D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, J. Am. Chem. Soc. 2004, 126, 9162. Angew. Chem. Int. Ed. 2006, 45, 3133. Angew. Chem. Int. Ed. 2008, 47, 5179. C.-M. Wang, Y.-D. Wang, Z.-K. Xie, Z.-P. Liu, J. Phys. Chem. C 2009, 113, 4584. 2009; 11 2007; 126 2006; 417 1994; 149 2004; 126 1999; 29 1986; 99 2002; 124 2008; 14 2003; 36 2005; 109 2009; 113 2002; 4 2006 2000; 122 2009; 131 2007 2007; 119 46 2003; 125 2006; 128 2008 2008; 120 47 2007; 46 2006 2006; 118 45 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_11_3 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_13_3 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_20_2 Grimme S. (e_1_2_6_24_2) 2006 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_4_2 e_1_2_6_2_3 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_4_3 e_1_2_6_5_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_25_2 |
| References_xml | – reference: Angew. Chem. Int. Ed. 2006, 45, 1714. – reference: R. M. Dessau, J. Catal. 1986, 99, 111. – reference: I. M. Dahl, S. Kolboe, J. Catal. 1994, 149, 458. – reference: C.-M. Wang, Y.-D. Wang, Z.-K. Xie, Z.-P. Liu, J. Phys. Chem. C 2009, 113, 4584. – reference: D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, J. Am. Chem. Soc. 2004, 126, 9162. – reference: A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen, M. Waroquier, J. Chem. Phys. 2007, 126, 13. – reference: M. Bjorgen, F. Bonino, S. Kolboe, K. P. Lillerud, A. Zecchina, S. Bordiga, J. Am. Chem. Soc. 2003, 125, 15863. – reference: D. M. Marcus, K. A. McLachlan, M. A. Wildman, J. O. Ehresmann, P. W. Kletnieks, J. F. Haw, Angew. Chem. 2006, 118, 3205; – reference: X. Solans-Monfort, M. Sodupe, V. Branchadell, J. Sauer, R. Orlando, P. Ugliengo, J. Phys. Chem. B 2005, 109, 3539. – reference: W. G. Song, D. M. Marcus, H. Fu, J. O. Ehresmann, J. F. Haw, J. Am. Chem. Soc. 2002, 124, 3844. – reference: J. F. Haw, W. G. Song, D. M. Marcus, J. B. Nicholas, Acc. Chem. Res. 2003, 36, 317. – reference: S. Grimme, J. Comput. Chem. 2006, 27, 1787. – reference: S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K. P. Lillerud, S. Kolboe, M. Bjorgen, J. Am. Chem. Soc. 2006, 128, 14770. – reference: D. Mores, E. Stavitski, M. H. F. Kox, J. Kornatowski, U. Olsbye, B. M. Weckhuysen, Chem. Eur. J. 2008, 14, 11320. – reference: M. Boronat, P. M. Viruela, A. Corma, J. Am. Chem. Soc. 2004, 126, 3300. – reference: D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Ind. Eng. Chem. Res. 2007, 46, 8832. – reference: D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2006, 118, 1746; – reference: D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, Phys. Chem. Chem. Phys. 2009, 11, 5222. – reference: D. Lesthaeghe, B. De Sterck, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2007, 119, 1333; – reference: S. Svelle, C. Tuma, X. Rozanska, T. Kerber, J. Sauer, J. Am. Chem. Soc. 2009, 131, 816. – reference: M. Stöcker, Microporous Mesoporous Mater. 1999, 29, 3. – reference: Angew. Chem. Int. Ed. 2007, 46, 1311. – reference: Angew. Chem. Int. Ed. 2008, 47, 5179. – reference: D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Chem. Phys. Lett. 2006, 417, 309. – reference: D. M. McCann, D. Lesthaeghe, P. W. Kletnieks, D. R. Guenther, M. J. Hayman, V. Van Speybroeck, M. Waroquier, J. F. Haw, Angew. Chem. 2008, 120, 5257; – reference: J. F. Haw, J. B. Nicholas, W. G. Song, F. Deng, Z. K. Wang, T. Xu, C. S. Heneghan, J. Am. Chem. Soc. 2000, 122, 4763. – reference: Angew. Chem. Int. Ed. 2006, 45, 3133. – reference: J. F. Haw, Phys. Chem. Chem. Phys. 2002, 4, 5431. – volume: 4 start-page: 5431 year: 2002 publication-title: Phys. Chem. Chem. Phys. – volume: 109 start-page: 3539 year: 2005 publication-title: J. Phys. Chem. B – volume: 118 45 start-page: 3205 3133 year: 2006 2006 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 99 start-page: 111 year: 1986 publication-title: J. Catal. – volume: 120 47 start-page: 5257 5179 year: 2008 2008 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 14 start-page: 11320 year: 2008 publication-title: Chem. Eur. J. – volume: 149 start-page: 458 year: 1994 publication-title: J. Catal. – volume: 11 start-page: 5222 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 122 start-page: 4763 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 417 start-page: 309 year: 2006 publication-title: Chem. Phys. Lett. – volume: 36 start-page: 317 year: 2003 publication-title: Acc. Chem. Res. – volume: 125 start-page: 15863 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 14770 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 13 year: 2007 publication-title: J. Chem. Phys. – start-page: 27 year: 2006 publication-title: J. Comput. Chem. – volume: 119 46 start-page: 1333 1311 year: 2007 2007 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 126 start-page: 9162 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 3 year: 1999 publication-title: Microporous Mesoporous Mater. – volume: 46 start-page: 8832 year: 2007 publication-title: Ind. Eng. Chem. Res. – volume: 118 45 start-page: 1746 1714 year: 2006 2006 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 124 start-page: 3844 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 4584 year: 2009 publication-title: J. Phys. Chem. C – volume: 126 start-page: 3300 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 816 year: 2009 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_12_2 doi: 10.1021/ja037073d – ident: e_1_2_6_3_2 doi: 10.1021/ja016499u – ident: e_1_2_6_11_3 doi: 10.1002/anie.200604309 – ident: e_1_2_6_10_2 doi: 10.1021/ja065810a – ident: e_1_2_6_23_2 doi: 10.1063/1.2737444 – ident: e_1_2_6_5_2 doi: 10.1016/j.cplett.2005.09.136 – ident: e_1_2_6_7_2 doi: 10.1006/jcat.1994.1312 – ident: e_1_2_6_16_2 doi: 10.1039/B206483A – ident: e_1_2_6_2_3 doi: 10.1002/anie.200504372 – ident: e_1_2_6_6_2 doi: 10.1021/ie0613974 – ident: e_1_2_6_9_2 doi: 10.1021/ar020006o – ident: e_1_2_6_11_2 doi: 10.1002/ange.200604309 – ident: e_1_2_6_17_2 doi: 10.1002/chem.200801293 – ident: e_1_2_6_4_2 doi: 10.1002/ange.200503824 – ident: e_1_2_6_13_2 doi: 10.1002/ange.200705453 – ident: e_1_2_6_8_2 doi: 10.1016/0021-9517(86)90204-6 – ident: e_1_2_6_13_3 doi: 10.1002/anie.200705453 – ident: e_1_2_6_22_2 doi: 10.1021/jp045531e – ident: e_1_2_6_18_2 – ident: e_1_2_6_20_2 doi: 10.1021/ja039432a – ident: e_1_2_6_25_2 doi: 10.1021/ja807695p – ident: e_1_2_6_1_2 doi: 10.1016/S1387-1811(98)00319-9 – start-page: 27 year: 2006 ident: e_1_2_6_24_2 publication-title: J. Comput. Chem. – ident: e_1_2_6_4_3 doi: 10.1002/anie.200503824 – ident: e_1_2_6_19_2 doi: 10.1021/ja994103x – ident: e_1_2_6_2_2 doi: 10.1002/ange.200504372 – ident: e_1_2_6_14_2 doi: 10.1039/b902364j – ident: e_1_2_6_15_2 doi: 10.1021/jp810350x – ident: e_1_2_6_21_2 doi: 10.1021/ja048305r |
| SSID | ssj0009633 |
| Score | 2.3568807 |
| Snippet | The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10803 |
| SubjectTerms | density functional calculations methanol-to-olefins process methylbenzene side-chain reactions zeolites |
| Title | Theoretical Insights on Methylbenzene Side-Chain Growth in ZSM-5 Zeolites for Methanol-to-Olefin Conversion |
| URI | https://api.istex.fr/ark:/67375/WNG-XM4ZS7B8-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200901723 https://www.ncbi.nlm.nih.gov/pubmed/19746483 https://www.proquest.com/docview/734090003 |
| Volume | 15 |
| WOSCitedRecordID | wos000271605900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLRJceD_CY-UDglO0iR3H9hEKXZC2BdFdUfVi2YmjragS1HQR4sRP4DfySxgnaUolEBJcojzGiTMztmfsmc8AT4qM0ZhlUUhtLsIkzVloEmFCW6A1QAuXJqpJFD4R06mcz9W7X7L4W3yIfsLNt4ymv_YN3Nj6aAcaiv_UZJIr78WwAxhSVF4-gOHL9-Ozkx3wbtptJ5-I0MOwboEbI3q0_4a9gWnoefzld1bnvhHbjELj6_9f_xtwrbNAyfNWZW7CJVfegiuj7cZvt6E-3SU3kjdl7d33mlQlmTiU6sq68it2kGS2zN2Pb99H52ZZkmP05jfnBM8Wswne5WThfGSdqwlaxU1JU1YrfLKp8PB25QqkHfmQ92a-7g6cjV-djl6H3d4MYYYOHQtVYVyWS57HBQ75huZGckNVIVUsIxsXcc65cyZOrYityDmaxd43k9TalEVZzO7CoKxKdx-IUMoJ7hQWsAkVqbIqo2meOC4NYyYKINwKRmcdcLnfP2OlW8hlqj0rdc_KAJ719J9ayI4_Uj5t5NyTmfVHH-gmuP4wPdbzSbKYiRdSywDIVhE0CsOvqZjSVRe1FgwdZO9YBnCvVZDdN9FVS5FXAdBGD_5SGe0xMPqrB_9S6CFcbRa7fMCNegSDzfrCPYbL2efNsl4fwoGYy8OuffwEyJcSRA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BFmn3srwhPH1AcIo2seM4PkKhuyvagmhXVL1YduJoq60S1HRXiBM_gd_IL2GcpKkqgZAQlyiPcRLPjO0Ze-YzwIs8ZTRkaeBTkwk_ijPm60ho3-RoDdDcxpGsE4WHYjxOZjP5sY0mdLkwDT5EN-HmWkbdX7sG7iakj7aooVipOpVcOjeGXYdehLqESt57-2lwNtwi78btfvKR8B0O6wa5MaBHu2_YGZl6jslff2d27lqx9TA0uPkfKnALDlsblLxulOY2XLPFHdjvb7Z-uwvVdJveSE6LyjnwFSkLMrIo16WxxTfsIslkkdmf33_0z_WiIMfoz6_PCZ7NJyO8y8ncutg6WxG0i-uSuiiX-GRd4uHD0uZI23dB7_WM3T04G7yb9k_8dncGP0WXjvky1zbNEp6FOQ76mmY64ZrKPJFhEpgwDzPOrdVhbERoRMbRMHbeWUKNiVmQhuw-7BVlYR8CEVJawa3EAiaiIpZGpjTOIssTzZgOPPA3klFpC13udtBYqgZ0mSrHStWx0oNXHf2XBrTjj5Qva0F3ZHp14ULdBFefx8dqNormE_EmUYkHZKMJCoXhVlV0YcvLSgmGLrJzLT140GjI9pvorMXIKw9orQh_-RnlUDC6q0f_Uug57J9MR0M1PB2_fwwH9dKXC7-RT2Bvvbq0T-FGerVeVKtnbTP5BbXvFUw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5Bi4ALb3bD0wcEp2gTO4njI3TpsqItK7orql4sO3a0FVWyaroIceIn8Bv5JYyTNFUlEBLiEuUxTuIZP2bsmW8AXuQZoyHLAp9qw_0oMcxXEVe-zlEboLlNIlEHCo_4ZJLOZuKk9SZ0sTANPkS34OZ6Rj1euw5uL0x-sEUNxUrVoeTCmTHsKvQjl0mmB_3Dj8Oz0RZ5N2nzyUfcdzisG-TGgB7svmFnZuo7Jn_9ndq5q8XW09Dw9n-owB241eqg5HXTaO7CFVvcgxuDTeq3-1CdbsMbyXFROQO-ImVBxhblutS2-IZDJJkujP35_cfgXC0KcoT2_Pqc4Nl8Osa7MZlb51tnK4J6cV1SFeUSn6xLPHxY2hxpB87pvV6xewBnw7eng3d-m53Bz9CkY77Ilc1MGpswx0lfUaPSWFGRpyJMAx3moYlja1WYaB5qbmJUjJ11llKtExZkIXsIvaIs7D4QLoTlsRVYQEeUJ0KLjCYmsnGqGFOBB_5GMjJroctdBo2lbECXqXSslB0rPXjV0V80oB1_pHxZC7ojU6vPztWNx_LT5EjOxtF8yt-kMvWAbFqCRGG4XRVV2PKykpyhiexMSw_2mhay_SYaawnyygNaN4S__Ix0KBjd1aN_KfQcrp8cDuXoePL-Mdysd76c9414Ar316tI-hWvZl_WiWj1re8kvIpoUxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Insights+on+Methylbenzene+Side%E2%80%90Chain+Growth+in+ZSM%E2%80%905+Zeolites+for+Methanol%E2%80%90to%E2%80%90Olefin+Conversion&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Lesthaeghe%2C+David&rft.au=Horr%C3%A9%2C+Annelies&rft.au=Waroquier%2C+Michel&rft.au=Marin%2C+Guy%E2%80%85B.&rft.date=2009-10-19&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=15&rft.issue=41&rft.spage=10803&rft.epage=10808&rft_id=info:doi/10.1002%2Fchem.200901723&rft.externalDBID=10.1002%252Fchem.200901723&rft.externalDocID=CHEM200901723 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |