Theoretical Insights on Methylbenzene Side-Chain Growth in ZSM-5 Zeolites for Methanol-to-Olefin Conversion

The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon‐pool network, in which certain organic species in the zeolite pores...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemistry : a European journal Ročník 15; číslo 41; s. 10803 - 10808
Hlavní autoři: Lesthaeghe, David, Horré, Annelies, Waroquier, Michel, Marin, Guy B., Van Speybroeck, Veronique
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim WILEY-VCH Verlag 19.10.2009
WILEY‐VCH Verlag
Témata:
ISSN:0947-6539, 1521-3765, 1521-3765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon‐pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date—the paring mechanism and the side‐chain mechanism—recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM‐5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side‐chain route) using both small and large zeolite cluster models of ZSM‐5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side‐chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de‐alkylation to produce ethene. These results suggest that the current formulation of the side‐chain route in ZSM‐5 may actually be a deactivating route to coke precursors rather than an active ethene‐producing hydrocarbon‐pool route. Other routes may be operating in alternative zeotype materials like the silico‐aluminophosphate SAPO‐34. Please release me, let me go: De‐alkylation to produce ethane can only proceed over high energy barriers. The methylbenzene side‐chain route for ethene formation from methanol in acid zeolite ZSM‐5 (methanol‐to‐olefins, or MTO) is modelled using both small and large clusters (see image). Side‐chain growth in the ortho position to the geminal methyl group seems favoured.
AbstractList The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon‐pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date—the paring mechanism and the side‐chain mechanism—recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM‐5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side‐chain route) using both small and large zeolite cluster models of ZSM‐5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side‐chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de‐alkylation to produce ethene. These results suggest that the current formulation of the side‐chain route in ZSM‐5 may actually be a deactivating route to coke precursors rather than an active ethene‐producing hydrocarbon‐pool route. Other routes may be operating in alternative zeotype materials like the silico‐aluminophosphate SAPO‐34. Please release me, let me go: De‐alkylation to produce ethane can only proceed over high energy barriers. The methylbenzene side‐chain route for ethene formation from methanol in acid zeolite ZSM‐5 (methanol‐to‐olefins, or MTO) is modelled using both small and large clusters (see image). Side‐chain growth in the ortho position to the geminal methyl group seems favoured.
The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon-pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date-the paring mechanism and the side-chain mechanism-recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM-5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side-chain route) using both small and large zeolite cluster models of ZSM-5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side-chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de-alkylation to produce ethene. These results suggest that the current formulation of the side-chain route in ZSM-5 may actually be a deactivating route to coke precursors rather than an active ethene-producing hydrocarbon-pool route. Other routes may be operating in alternative zeotype materials like the silico-aluminophosphate SAPO-34.The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon-pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date-the paring mechanism and the side-chain mechanism-recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM-5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side-chain route) using both small and large zeolite cluster models of ZSM-5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side-chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de-alkylation to produce ethene. These results suggest that the current formulation of the side-chain route in ZSM-5 may actually be a deactivating route to coke precursors rather than an active ethene-producing hydrocarbon-pool route. Other routes may be operating in alternative zeotype materials like the silico-aluminophosphate SAPO-34.
The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon-pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date-the paring mechanism and the side-chain mechanism-recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM-5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side-chain route) using both small and large zeolite cluster models of ZSM-5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side-chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de-alkylation to produce ethene. These results suggest that the current formulation of the side-chain route in ZSM-5 may actually be a deactivating route to coke precursors rather than an active ethene-producing hydrocarbon-pool route. Other routes may be operating in alternative zeotype materials like the silico-aluminophosphate SAPO-34.
Author Waroquier, Michel
Van Speybroeck, Veronique
Horré, Annelies
Lesthaeghe, David
Marin, Guy B.
Author_xml – sequence: 1
  givenname: David
  surname: Lesthaeghe
  fullname: Lesthaeghe, David
  email: david.lesthaeghe@ugent.be
  organization: Center for Molecular Modeling, Member of the QCMM Alliance Ghent-Brussels, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium), Fax: (+32) 9264-6697
– sequence: 2
  givenname: Annelies
  surname: Horré
  fullname: Horré, Annelies
  organization: Center for Molecular Modeling, Member of the QCMM Alliance Ghent-Brussels, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium), Fax: (+32) 9264-6697
– sequence: 3
  givenname: Michel
  surname: Waroquier
  fullname: Waroquier, Michel
  organization: Center for Molecular Modeling, Member of the QCMM Alliance Ghent-Brussels, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium), Fax: (+32) 9264-6697
– sequence: 4
  givenname: Guy B.
  surname: Marin
  fullname: Marin, Guy B.
  organization: Laboratorium voor Chemische Technologie, Ghent University, Krijgslaan 281-S5, 9000 Ghent (Belgium)
– sequence: 5
  givenname: Veronique
  surname: Van Speybroeck
  fullname: Van Speybroeck, Veronique
  email: veronique.vanspeybroeck@ugent.be
  organization: Center for Molecular Modeling, Member of the QCMM Alliance Ghent-Brussels, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium), Fax: (+32) 9264-6697
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19746483$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQRi1URLeFK0eUGycvdhzHzhGisq3UpYctAu3FcpIJMfXare2lLL8ely0rhIQ4zRzeG83Md4KOnHeA0EtK5pSQ8k0_wWZeEtIQKkr2BM0oLylmouZHaEaaSuCas-YYncT4lWSsZuwZOqaNqOpKshm6uZ7AB0im17a4cNF8mVIsvCuWkKad7cD9AAfFygyA20kbVyyCv09Tkbv1aol5sQZvTYJYjD78srTzFiePryyMmWq9-wYhGu-eo6ejthFePNZT9PH92XV7ji-vFhft20vcV3kn3Iwa-kHygY6SSl0OWnJdNqNsqCQdHenAOYCmdSdoJwYu6VBKQWXZdTUjPWWn6PV-7m3wd1uISW1M7MFa7cBvoxKsyv8ihGXy1SO57TYwqNtgNjrs1O__ZKDaA33wMQYYVW-STvmYFLSxihL1EIN6iEEdYsja_C_tMPlfQrMX7o2F3X9o1Z6fLf908d41McH3g6vDjaoFE1x9-rBQn5fVeiXeSSXZT5qOqcs
CitedBy_id crossref_primary_10_1016_j_jcat_2011_03_016
crossref_primary_10_1016_j_micromeso_2024_113199
crossref_primary_10_1016_j_cattod_2011_05_040
crossref_primary_10_1002_anie_202414724
crossref_primary_10_1016_j_micromeso_2019_109838
crossref_primary_10_1021_acscatal_5c00940
crossref_primary_10_1016_j_fuel_2021_121995
crossref_primary_10_1016_j_jcat_2014_10_016
crossref_primary_10_1039_D2CY01348G
crossref_primary_10_1039_C9CY02108F
crossref_primary_10_1002_cctc_201200580
crossref_primary_10_1002_chem_201301965
crossref_primary_10_1016_S1872_2067_18_63064_5
crossref_primary_10_1016_j_micromeso_2017_04_002
crossref_primary_10_1016_j_micromeso_2012_04_004
crossref_primary_10_1016_j_jcat_2016_12_024
crossref_primary_10_1016_S1872_2067_15_60891_9
crossref_primary_10_1038_s41467_023_38336_5
crossref_primary_10_1002_ange_202411197
crossref_primary_10_1007_s13203_016_0153_2
crossref_primary_10_1007_s40242_020_0216_x
crossref_primary_10_1002_cctc_201000286
crossref_primary_10_1039_D2CY01779B
crossref_primary_10_1002_apj_2354
crossref_primary_10_1016_j_cattod_2013_09_056
crossref_primary_10_1002_chem_201501355
crossref_primary_10_1007_s11705_016_1557_3
crossref_primary_10_1016_j_checat_2024_101168
crossref_primary_10_1007_s10563_013_9157_4
crossref_primary_10_1039_D0CY01056A
crossref_primary_10_1016_j_apcata_2012_02_006
crossref_primary_10_1038_s41563_020_0800_y
crossref_primary_10_1002_anie_202318250
crossref_primary_10_1016_j_micromeso_2015_09_039
crossref_primary_10_1016_j_jcat_2012_03_016
crossref_primary_10_1016_j_micromeso_2018_11_026
crossref_primary_10_1002_anie_202411197
crossref_primary_10_3390_molecules26123566
crossref_primary_10_1039_c1cc13153b
crossref_primary_10_1002_slct_201701483
crossref_primary_10_1016_j_jechem_2025_09_007
crossref_primary_10_1002_anie_201103657
crossref_primary_10_1016_S1872_2067_18_63117_1
crossref_primary_10_1007_s10562_016_1835_1
crossref_primary_10_1016_j_jaap_2018_09_002
crossref_primary_10_1021_ja1073992
crossref_primary_10_1002_cctc_201700916
crossref_primary_10_1002_chem_201002624
crossref_primary_10_1021_jacs_3c12087
crossref_primary_10_1002_chem_201403972
crossref_primary_10_1002_ange_202318250
crossref_primary_10_1002_cctc_201402714
crossref_primary_10_1016_j_jcat_2013_12_003
crossref_primary_10_1016_j_jcat_2015_12_007
crossref_primary_10_1039_C5CS00029G
crossref_primary_10_1021_jacs_9b07484
crossref_primary_10_1002_ange_202414724
crossref_primary_10_1016_j_micromeso_2022_111705
crossref_primary_10_1039_C5CS00304K
crossref_primary_10_1002_chem_201100920
crossref_primary_10_1016_j_ces_2022_117424
crossref_primary_10_1016_S1872_2067_22_64209_8
crossref_primary_10_1016_S1872_2067_10_60303_8
crossref_primary_10_1016_j_jcat_2011_09_018
crossref_primary_10_1002_ange_201103657
crossref_primary_10_1039_D2CY00021K
crossref_primary_10_1016_j_jcat_2013_11_003
crossref_primary_10_1016_j_jcat_2015_10_001
crossref_primary_10_1016_j_jcat_2018_10_022
crossref_primary_10_1039_C4CS00146J
crossref_primary_10_1039_D1CY00433F
crossref_primary_10_1002_cphc_201201023
crossref_primary_10_1002_chem_201203351
crossref_primary_10_1016_j_jcat_2021_10_025
crossref_primary_10_1002_adma_201902181
crossref_primary_10_1016_j_jcat_2013_04_015
crossref_primary_10_1016_j_jcat_2024_115363
crossref_primary_10_1016_j_jcat_2013_01_024
crossref_primary_10_1016_j_cattod_2025_115402
crossref_primary_10_1039_c0cp01996h
crossref_primary_10_1002_chem_201805664
crossref_primary_10_1093_nsr_nwad120
crossref_primary_10_1002_cctc_201200015
crossref_primary_10_3390_catal8120626
crossref_primary_10_1016_j_jcat_2018_11_018
crossref_primary_10_1002_chem_201301272
Cites_doi 10.1021/ja037073d
10.1021/ja016499u
10.1002/anie.200604309
10.1021/ja065810a
10.1063/1.2737444
10.1016/j.cplett.2005.09.136
10.1006/jcat.1994.1312
10.1039/B206483A
10.1002/anie.200504372
10.1021/ie0613974
10.1021/ar020006o
10.1002/ange.200604309
10.1002/chem.200801293
10.1002/ange.200503824
10.1002/ange.200705453
10.1016/0021-9517(86)90204-6
10.1002/anie.200705453
10.1021/jp045531e
10.1021/ja039432a
10.1021/ja807695p
10.1016/S1387-1811(98)00319-9
10.1002/anie.200503824
10.1021/ja994103x
10.1002/ange.200504372
10.1039/b902364j
10.1021/jp810350x
10.1021/ja048305r
ContentType Journal Article
Copyright Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7X8
DOI 10.1002/chem.200901723
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 10808
ExternalDocumentID 19746483
10_1002_chem_200901723
CHEM200901723
ark_67375_WNG_XM4ZS7B8_8
Genre article
Journal Article
GrantInformation_xml – fundername: BELSPO
– fundername: Research Board of Ghent University (BOF)
– fundername: Fund for Scientific Research—Flanders (FWO—Vlaanderen)
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
UQL
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
O8X
NPM
7X8
ID FETCH-LOGICAL-c4483-9faecd85d1f818a2da85a29f89180b1f1d55eea16b71b7d581d287182bb630c13
IEDL.DBID DRFUL
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271605900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Thu Oct 02 07:18:26 EDT 2025
Mon Jul 21 05:59:27 EDT 2025
Sat Nov 29 07:12:52 EST 2025
Tue Nov 18 21:50:05 EST 2025
Wed Jan 22 16:32:19 EST 2025
Tue Sep 09 05:32:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4483-9faecd85d1f818a2da85a29f89180b1f1d55eea16b71b7d581d287182bb630c13
Notes istex:1066BDC33F328E9FB9064F6C1CFCAAD11BF718AA
Fund for Scientific Research-Flanders (FWO-Vlaanderen)
ark:/67375/WNG-XM4ZS7B8-8
ArticleID:CHEM200901723
BELSPO
Research Board of Ghent University (BOF)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19746483
PQID 734090003
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_734090003
pubmed_primary_19746483
crossref_citationtrail_10_1002_chem_200901723
crossref_primary_10_1002_chem_200901723
wiley_primary_10_1002_chem_200901723_CHEM200901723
istex_primary_ark_67375_WNG_XM4ZS7B8_8
PublicationCentury 2000
PublicationDate October 19, 2009
PublicationDateYYYYMMDD 2009-10-19
PublicationDate_xml – month: 10
  year: 2009
  text: October 19, 2009
  day: 19
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2009
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen, M. Waroquier, J. Chem. Phys. 2007, 126, 13.
D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Ind. Eng. Chem. Res. 2007, 46, 8832.
W. G. Song, D. M. Marcus, H. Fu, J. O. Ehresmann, J. F. Haw, J. Am. Chem. Soc. 2002, 124, 3844.
D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Chem. Phys. Lett. 2006, 417, 309.
D. Lesthaeghe, B. De Sterck, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2007, 119, 1333
S. Grimme, J. Comput. Chem. 2006, 27, 1787.
D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2006, 118, 1746
J. F. Haw, Phys. Chem. Chem. Phys. 2002, 4, 5431.
M. Bjorgen, F. Bonino, S. Kolboe, K. P. Lillerud, A. Zecchina, S. Bordiga, J. Am. Chem. Soc. 2003, 125, 15863.
D. M. McCann, D. Lesthaeghe, P. W. Kletnieks, D. R. Guenther, M. J. Hayman, V. Van Speybroeck, M. Waroquier, J. F. Haw, Angew. Chem. 2008, 120, 5257
M. Boronat, P. M. Viruela, A. Corma, J. Am. Chem. Soc. 2004, 126, 3300.
S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K. P. Lillerud, S. Kolboe, M. Bjorgen, J. Am. Chem. Soc. 2006, 128, 14770.
D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, Phys. Chem. Chem. Phys. 2009, 11, 5222.
R. M. Dessau, J. Catal. 1986, 99, 111.
D. M. Marcus, K. A. McLachlan, M. A. Wildman, J. O. Ehresmann, P. W. Kletnieks, J. F. Haw, Angew. Chem. 2006, 118, 3205
X. Solans-Monfort, M. Sodupe, V. Branchadell, J. Sauer, R. Orlando, P. Ugliengo, J. Phys. Chem. B 2005, 109, 3539.
D. Mores, E. Stavitski, M. H. F. Kox, J. Kornatowski, U. Olsbye, B. M. Weckhuysen, Chem. Eur. J. 2008, 14, 11320.
Angew. Chem. Int. Ed. 2007, 46, 1311.
S. Svelle, C. Tuma, X. Rozanska, T. Kerber, J. Sauer, J. Am. Chem. Soc. 2009, 131, 816.
J. F. Haw, W. G. Song, D. M. Marcus, J. B. Nicholas, Acc. Chem. Res. 2003, 36, 317.
J. F. Haw, J. B. Nicholas, W. G. Song, F. Deng, Z. K. Wang, T. Xu, C. S. Heneghan, J. Am. Chem. Soc. 2000, 122, 4763.
I. M. Dahl, S. Kolboe, J. Catal. 1994, 149, 458.
M. Stöcker, Microporous Mesoporous Mater. 1999, 29, 3.
Angew. Chem. Int. Ed. 2006, 45, 1714.
D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, J. Am. Chem. Soc. 2004, 126, 9162.
Angew. Chem. Int. Ed. 2006, 45, 3133.
Angew. Chem. Int. Ed. 2008, 47, 5179.
C.-M. Wang, Y.-D. Wang, Z.-K. Xie, Z.-P. Liu, J. Phys. Chem. C 2009, 113, 4584.
2009; 11
2007; 126
2006; 417
1994; 149
2004; 126
1999; 29
1986; 99
2002; 124
2008; 14
2003; 36
2005; 109
2009; 113
2002; 4
2006
2000; 122
2009; 131
2007 2007; 119 46
2003; 125
2006; 128
2008 2008; 120 47
2007; 46
2006 2006; 118 45
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_11_3
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_13_3
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
Grimme S. (e_1_2_6_24_2) 2006
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_2_3
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_4_3
e_1_2_6_5_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_25_2
References_xml – reference: Angew. Chem. Int. Ed. 2006, 45, 1714.
– reference: R. M. Dessau, J. Catal. 1986, 99, 111.
– reference: I. M. Dahl, S. Kolboe, J. Catal. 1994, 149, 458.
– reference: C.-M. Wang, Y.-D. Wang, Z.-K. Xie, Z.-P. Liu, J. Phys. Chem. C 2009, 113, 4584.
– reference: D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, J. Am. Chem. Soc. 2004, 126, 9162.
– reference: A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen, M. Waroquier, J. Chem. Phys. 2007, 126, 13.
– reference: M. Bjorgen, F. Bonino, S. Kolboe, K. P. Lillerud, A. Zecchina, S. Bordiga, J. Am. Chem. Soc. 2003, 125, 15863.
– reference: D. M. Marcus, K. A. McLachlan, M. A. Wildman, J. O. Ehresmann, P. W. Kletnieks, J. F. Haw, Angew. Chem. 2006, 118, 3205;
– reference: X. Solans-Monfort, M. Sodupe, V. Branchadell, J. Sauer, R. Orlando, P. Ugliengo, J. Phys. Chem. B 2005, 109, 3539.
– reference: W. G. Song, D. M. Marcus, H. Fu, J. O. Ehresmann, J. F. Haw, J. Am. Chem. Soc. 2002, 124, 3844.
– reference: J. F. Haw, W. G. Song, D. M. Marcus, J. B. Nicholas, Acc. Chem. Res. 2003, 36, 317.
– reference: S. Grimme, J. Comput. Chem. 2006, 27, 1787.
– reference: S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K. P. Lillerud, S. Kolboe, M. Bjorgen, J. Am. Chem. Soc. 2006, 128, 14770.
– reference: D. Mores, E. Stavitski, M. H. F. Kox, J. Kornatowski, U. Olsbye, B. M. Weckhuysen, Chem. Eur. J. 2008, 14, 11320.
– reference: M. Boronat, P. M. Viruela, A. Corma, J. Am. Chem. Soc. 2004, 126, 3300.
– reference: D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Ind. Eng. Chem. Res. 2007, 46, 8832.
– reference: D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2006, 118, 1746;
– reference: D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, Phys. Chem. Chem. Phys. 2009, 11, 5222.
– reference: D. Lesthaeghe, B. De Sterck, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2007, 119, 1333;
– reference: S. Svelle, C. Tuma, X. Rozanska, T. Kerber, J. Sauer, J. Am. Chem. Soc. 2009, 131, 816.
– reference: M. Stöcker, Microporous Mesoporous Mater. 1999, 29, 3.
– reference: Angew. Chem. Int. Ed. 2007, 46, 1311.
– reference: Angew. Chem. Int. Ed. 2008, 47, 5179.
– reference: D. Lesthaeghe, V. Van Speybroeck, G. B. Marin, M. Waroquier, Chem. Phys. Lett. 2006, 417, 309.
– reference: D. M. McCann, D. Lesthaeghe, P. W. Kletnieks, D. R. Guenther, M. J. Hayman, V. Van Speybroeck, M. Waroquier, J. F. Haw, Angew. Chem. 2008, 120, 5257;
– reference: J. F. Haw, J. B. Nicholas, W. G. Song, F. Deng, Z. K. Wang, T. Xu, C. S. Heneghan, J. Am. Chem. Soc. 2000, 122, 4763.
– reference: Angew. Chem. Int. Ed. 2006, 45, 3133.
– reference: J. F. Haw, Phys. Chem. Chem. Phys. 2002, 4, 5431.
– volume: 4
  start-page: 5431
  year: 2002
  publication-title: Phys. Chem. Chem. Phys.
– volume: 109
  start-page: 3539
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 118 45
  start-page: 3205 3133
  year: 2006 2006
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 99
  start-page: 111
  year: 1986
  publication-title: J. Catal.
– volume: 120 47
  start-page: 5257 5179
  year: 2008 2008
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 14
  start-page: 11320
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 149
  start-page: 458
  year: 1994
  publication-title: J. Catal.
– volume: 11
  start-page: 5222
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 122
  start-page: 4763
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 417
  start-page: 309
  year: 2006
  publication-title: Chem. Phys. Lett.
– volume: 36
  start-page: 317
  year: 2003
  publication-title: Acc. Chem. Res.
– volume: 125
  start-page: 15863
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 14770
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 126
  start-page: 13
  year: 2007
  publication-title: J. Chem. Phys.
– start-page: 27
  year: 2006
  publication-title: J. Comput. Chem.
– volume: 119 46
  start-page: 1333 1311
  year: 2007 2007
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 126
  start-page: 9162
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 3
  year: 1999
  publication-title: Microporous Mesoporous Mater.
– volume: 46
  start-page: 8832
  year: 2007
  publication-title: Ind. Eng. Chem. Res.
– volume: 118 45
  start-page: 1746 1714
  year: 2006 2006
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 124
  start-page: 3844
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 4584
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 126
  start-page: 3300
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 816
  year: 2009
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_12_2
  doi: 10.1021/ja037073d
– ident: e_1_2_6_3_2
  doi: 10.1021/ja016499u
– ident: e_1_2_6_11_3
  doi: 10.1002/anie.200604309
– ident: e_1_2_6_10_2
  doi: 10.1021/ja065810a
– ident: e_1_2_6_23_2
  doi: 10.1063/1.2737444
– ident: e_1_2_6_5_2
  doi: 10.1016/j.cplett.2005.09.136
– ident: e_1_2_6_7_2
  doi: 10.1006/jcat.1994.1312
– ident: e_1_2_6_16_2
  doi: 10.1039/B206483A
– ident: e_1_2_6_2_3
  doi: 10.1002/anie.200504372
– ident: e_1_2_6_6_2
  doi: 10.1021/ie0613974
– ident: e_1_2_6_9_2
  doi: 10.1021/ar020006o
– ident: e_1_2_6_11_2
  doi: 10.1002/ange.200604309
– ident: e_1_2_6_17_2
  doi: 10.1002/chem.200801293
– ident: e_1_2_6_4_2
  doi: 10.1002/ange.200503824
– ident: e_1_2_6_13_2
  doi: 10.1002/ange.200705453
– ident: e_1_2_6_8_2
  doi: 10.1016/0021-9517(86)90204-6
– ident: e_1_2_6_13_3
  doi: 10.1002/anie.200705453
– ident: e_1_2_6_22_2
  doi: 10.1021/jp045531e
– ident: e_1_2_6_18_2
– ident: e_1_2_6_20_2
  doi: 10.1021/ja039432a
– ident: e_1_2_6_25_2
  doi: 10.1021/ja807695p
– ident: e_1_2_6_1_2
  doi: 10.1016/S1387-1811(98)00319-9
– start-page: 27
  year: 2006
  ident: e_1_2_6_24_2
  publication-title: J. Comput. Chem.
– ident: e_1_2_6_4_3
  doi: 10.1002/anie.200503824
– ident: e_1_2_6_19_2
  doi: 10.1021/ja994103x
– ident: e_1_2_6_2_2
  doi: 10.1002/ange.200504372
– ident: e_1_2_6_14_2
  doi: 10.1039/b902364j
– ident: e_1_2_6_15_2
  doi: 10.1021/jp810350x
– ident: e_1_2_6_21_2
  doi: 10.1021/ja048305r
SSID ssj0009633
Score 2.3568807
Snippet The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10803
SubjectTerms density functional calculations
methanol-to-olefins process
methylbenzene
side-chain reactions
zeolites
Title Theoretical Insights on Methylbenzene Side-Chain Growth in ZSM-5 Zeolites for Methanol-to-Olefin Conversion
URI https://api.istex.fr/ark:/67375/WNG-XM4ZS7B8-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200901723
https://www.ncbi.nlm.nih.gov/pubmed/19746483
https://www.proquest.com/docview/734090003
Volume 15
WOSCitedRecordID wos000271605900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLRJceC9kgZUPCE7R5lHHznG30AWJFkR3RdWL5Ve0FVWCmi5CnPgJ_EZ-yY6dNKUSCAkuUR7jxPGM7fn8-AbgWZYx37Fg65dlITZ4UagirFc00ip1_OMZlT7YBJtM-GyWv_9lF3_DD9ENuLma4dtrV8Glqo-2pKH4T34nee5QTLoH_QSNl_ag__LD6Pztlng3a8PJD1joaFg3xI1RcrT7hp2Oqe_K-OvvvM5dJ9b3QqPb_5__O3Cr9UDJcWMyd-GaLe_BjeEm8Nt9qM-2mxvJm7J28L0mVUnGFrW6VLb8hg0kmS6M_fn9x_BCLkpyimh-fUHwbD4d411K5tatrLM1Qa_Yp5RltcQn6woP75a2QNmhW_Lux-sewPno1dnwddjGZgg1Aro0zAtpteHUxAV2-TIxklOZ5AXPYx6puIgNpdbKOFMsVsxQdIsdNuOJUlka6Tjdh15ZlfYREEOVVsbwQjE9SC3PE4UoUxmNzlOqWB5AuFGM0C1xuYufsRQN5XIiXFGKrigDeNHJf24oO_4o-dzruROTq09uoRuj4uPkVMzGg_mUnXDBAyAbQxCoDDenIktbXdaCpQiQHbAM4GFjINtvIlTLsKwCSLwd_CUzwnFgdFcH_5LoMdz0k11uwU3-BHrr1aV9Ctf1l_WiXh3CHpvxw7Z-XAHoPhFu
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgi7RceD_C0wcEp2jzqB85QqG7K9qCaFdUvVh27GgrqgQ1XYQ48RP4jfwSZpw0VSUQEuIS5WEnsT0ez2ePvyHkGefCDyyg_TgPQeFFoYmgX7EoNynyj3OmfbAJMZnI-Tx733oT4l6Yhh-im3DDnuH1NXZwnJA-2rGGQqH8VvIMYUx6mfT6IEsg5L3XH4Znox3zLm_jyfdFiDysW-bGKDnaf8PeyNTDSv76O7Nz34r1w9Dw-n8owA1yrbVB6ctGaG6SS668RQ4H29Bvt0k9221vpKdljQC-plVJxw7adWVc-Q1UJJ0urfv5_cfgXC9Legx4fnNO4WwxHcNdRhcOfetcTcEu9jl1Wa3gyaaCw7uVKyDtAJ3e_YzdHXI2fDMbnIRtdIYwB0iXhlmhXW4ls3EBg75OrJZMJ1khs1hGJi5iy5hzOuZGxEZYBoYxojOZGMPTKI_Tu-SgrEp3n1DLTG6slYUReT91MksM4ExjczCfUiOygITbllF5S12OETRWqiFdThRWpeqqMiAvuvSfG9KOP6Z87hu6S6bXn9DVTTD1cXKs5uP-YipeSSUDQreSoKAxcFVFl666qJVIASIjtAzIvUZCdt8EsMahrgKSeEH4y88oZMHorh78S6an5PBkNh6p0enk7UNy1S99oftN9ogcbNYX7jG5kn_ZLOv1k7ab_ALNJBR2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFH6CFgEX9iWsPiA4RZOlXnKEDh1GTMuIzoiqF8uOHU1FlYyaDkKc-An8Rn4Jz06aqhIICXGJsthJ_J6X99nP3wN4wRj3Awv2foyF2OFFoY6wXdEo16njH2dU-WATfDIRs1l23HoTur0wDT9EN-HmWobvr10Dt-em2NuyhmKh_FbyzMGY9DL0By6STA_6-x9Hp0db5l3WxpMf8NDxsG6YG6Nkb_cNOyNT3wn56-_Mzl0r1g9Do5v_oQC34EZrg5LXTaW5DZdseQeuDTeh3-5CfbLd3kgOy9oB-JpUJRlb1OtS2_IbdpFkujD25_cfwzO1KMkB4vn1GcGz-XSMdymZW-dbZ2uCdrHPqcpqiU_WFR4-LG2BaYfO6d3P2N2D09Hbk-G7sI3OEOYI6dIwK5TNjaAmLnDQV4lRgqokK0QWi0jHRWwotVbFTPNYc0PRMHboTCRaszTK4_Q-9MqqtA-BGKpzbYwoNM8HqRVZohFnapOj-ZRqngUQbjQj85a63EXQWMqGdDmRTpSyE2UAr7r05w1pxx9TvvSK7pKp1Wfn6sap_DQ5kLPxYD7lb4QUAZBNTZCoDLeqokpbXdSSpwiRHbQM4EFTQ7bfRLDGUFYBJL4i_OVnpGPB6K4e_Uum53D1eH8kjw4n7x_Ddb_y5bxvsifQW68u7FO4kn9ZL-rVs7aV_AI6pRPx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+insights+on+methylbenzene+side-chain+growth+in+ZSM-5+zeolites+for+methanol-to-olefin+conversion&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Lesthaeghe%2C+David&rft.au=Horr%C3%A9%2C+Annelies&rft.au=Waroquier%2C+Michel&rft.au=Marin%2C+Guy+B&rft.date=2009-10-19&rft.eissn=1521-3765&rft.volume=15&rft.issue=41&rft.spage=10803&rft_id=info:doi/10.1002%2Fchem.200901723&rft_id=info%3Apmid%2F19746483&rft.externalDocID=19746483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon