Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural in the Absence and Presence of Glucose

Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ChemSusChem Ročník 6; číslo 9; s. 1659 - 1667
Hlavní autoři: Kwon, Youngkook, de Jong, Ed, Raoufmoghaddam, Saeed, Koper, Marc T. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim WILEY-VCH Verlag 01.09.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Témata:
ISSN:1864-5631, 1864-564X, 1864-564X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on‐line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst‐dependent because all catalysts show similar onset potentials (−0.5±0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm−2 with high selectivity> 85 %). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron‐transfer step during HMF reduction is not metal‐dependent, suggesting a non‐catalytic reaction with proton transfer directly from water in the electrolyte. A clean sweep: The hydrogenation of HMF in neutral media has been studied on a wide range of solid metal electrodes both in the absence and in the presence of glucose. From HMF hydrogenation, three groups of catalysts show affinities towards (1) DHMF, (2) DHMF and other products, depending on applied potentials, and (3) other products. HMF hydrogenation is shown to be preferred to glucose hydrogenation on all metals.
AbstractList Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte.Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte.
Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on‐line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst‐dependent because all catalysts show similar onset potentials (−0.5±0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm−2 with high selectivity> 85 %). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron‐transfer step during HMF reduction is not metal‐dependent, suggesting a non‐catalytic reaction with proton transfer directly from water in the electrolyte. A clean sweep: The hydrogenation of HMF in neutral media has been studied on a wide range of solid metal electrodes both in the absence and in the presence of glucose. From HMF hydrogenation, three groups of catalysts show affinities towards (1) DHMF, (2) DHMF and other products, depending on applied potentials, and (3) other products. HMF hydrogenation is shown to be preferred to glucose hydrogenation on all metals.
Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on‐line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst‐dependent because all catalysts show similar onset potentials (−0.5±0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 m M cm −2 with high selectivity> 85 %). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron‐transfer step during HMF reduction is not metal‐dependent, suggesting a non‐catalytic reaction with proton transfer directly from water in the electrolyte.
Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1)DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2)DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3)other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5±0.2V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1mMcm-2 with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte. [PUBLICATION ABSTRACT]
Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte.
Author de Jong, Ed
Raoufmoghaddam, Saeed
Kwon, Youngkook
Koper, Marc T. M.
Author_xml – sequence: 1
  givenname: Youngkook
  surname: Kwon
  fullname: Kwon, Youngkook
  organization: Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands), Fax: (+31) 071-527-4451
– sequence: 2
  givenname: Ed
  surname: de Jong
  fullname: de Jong, Ed
  organization: Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam (The Netherlands)
– sequence: 3
  givenname: Saeed
  surname: Raoufmoghaddam
  fullname: Raoufmoghaddam, Saeed
  organization: Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands), Fax: (+31) 071-527-4451
– sequence: 4
  givenname: Marc T. M.
  surname: Koper
  fullname: Koper, Marc T. M.
  email: m.koper@chem.leidenuniv.nl
  organization: Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands), Fax: (+31) 071-527-4451
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23857762$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAURkVJaB7ttsti6CYbT_SyZC-DSScNISmkpd2pGvmqUaqxUkkm8b-vJ06GEigFgV7nXKT7HaCdPvSA0DuCFwRjemxSMguKCcOYc_YK7ZNa8LIS_PvOds3IHjpI6RZjgRshXqM9yupKSkH30Y9TDybHYHTWfszOFGdjF8NP6HV2oS-CLary8ehhXEO-Gb0d4jS0L1xf5BsoTlYJegOF7rvic4R5M2lLP5iQ4A3atdonePs0H6KvH0-_tGflxdXyU3tyURrOa1ZS21FTNayStiZSVh3vGiaoliuBO5BGgLbcCKK7qqaaGag6KyfATrdUWGCH6GiuexfD7wFSVmuXDHivewhDUoRv_kyIYBP64QV6G4bYT6_bUJJi3JB6ot4_UcNqDZ26i26t46ieezcBfAZMDClFsMq4_Ni1HLXzimC1iUhtIlLbiCZt8UJ7rvxPoZmFe-dh_A-t2uvr9m-3nF2XMjxsXR1_KSGZrNS3y6W6xBSf45Yoyf4AW-iy_Q
CitedBy_id crossref_primary_10_1002_cssc_202400638
crossref_primary_10_1146_annurev_chembioeng_060718_030148
crossref_primary_10_1002_adma_202307799
crossref_primary_10_1007_s10800_020_01452_x
crossref_primary_10_1016_j_mcat_2024_114354
crossref_primary_10_3390_catal8120633
crossref_primary_10_1002_cssc_202100139
crossref_primary_10_1016_j_jece_2025_118630
crossref_primary_10_1002_cssc_202201074
crossref_primary_10_1002_tcr_202100034
crossref_primary_10_1021_acs_jpcc_4c08444
crossref_primary_10_1002_ange_202117809
crossref_primary_10_1002_cssc_201301356
crossref_primary_10_1038_s41598_022_23777_7
crossref_primary_10_3390_suschem2030029
crossref_primary_10_1002_elsa_202400019
crossref_primary_10_1016_j_coelec_2021_100795
crossref_primary_10_1002_cssc_202101037
crossref_primary_10_1002_cssc_201403329
crossref_primary_10_1002_cssc_202400869
crossref_primary_10_1039_D5TA02755A
crossref_primary_10_3390_mi12111405
crossref_primary_10_1016_j_mtsust_2023_100653
crossref_primary_10_1002_advs_202205077
crossref_primary_10_1016_j_mcat_2022_112487
crossref_primary_10_1002_kin_20992
crossref_primary_10_1002_anie_202117809
crossref_primary_10_1002_celc_201900734
crossref_primary_10_1007_s12649_019_00703_z
crossref_primary_10_3389_fchem_2022_1055865
crossref_primary_10_1002_cctc_202400449
crossref_primary_10_1007_s12161_023_02518_0
crossref_primary_10_1016_j_rser_2017_04_013
crossref_primary_10_1021_jacs_9b05397
crossref_primary_10_3389_fchem_2019_00529
crossref_primary_10_1016_j_rser_2018_12_010
crossref_primary_10_1039_D0CY00282H
crossref_primary_10_1016_j_catcom_2018_05_011
crossref_primary_10_1002_cssc_201500176
crossref_primary_10_1007_s00894_023_05764_5
crossref_primary_10_1016_j_fuproc_2021_107097
crossref_primary_10_1016_S1872_5813_23_60403_7
crossref_primary_10_1039_C8CY01280F
crossref_primary_10_1016_j_cej_2024_151001
crossref_primary_10_1002_celc_201900640
crossref_primary_10_1002_adma_202312778
crossref_primary_10_1002_cssc_202101575
crossref_primary_10_1002_cssc_202200952
crossref_primary_10_1002_cssc_202400546
crossref_primary_10_1021_acscatal_5c01181
crossref_primary_10_1186_s40643_023_00676_x
crossref_primary_10_1002_cssc_202401278
crossref_primary_10_1016_j_apcatb_2023_123576
crossref_primary_10_1039_C8SE00545A
crossref_primary_10_3390_ma16010394
crossref_primary_10_1002_chem_201803319
crossref_primary_10_1002_cssc_202200232
crossref_primary_10_1002_cssc_202400723
crossref_primary_10_1002_cssc_202102504
crossref_primary_10_1002_celc_201902161
crossref_primary_10_1002_celc_202500007
crossref_primary_10_1016_j_pecs_2016_04_004
crossref_primary_10_1021_jacs_7b06331
crossref_primary_10_1016_j_rser_2017_02_042
crossref_primary_10_1002_slct_201601522
crossref_primary_10_1039_D4SC00546E
crossref_primary_10_1016_j_cej_2014_11_044
crossref_primary_10_1002_cssc_201402530
crossref_primary_10_1038_s41929_019_0229_3
crossref_primary_10_1002_ente_202300307
crossref_primary_10_1002_ese3_1487
crossref_primary_10_1016_j_electacta_2023_143676
crossref_primary_10_1016_j_jechem_2020_04_073
crossref_primary_10_3390_polym14050943
crossref_primary_10_1002_cctc_201500097
crossref_primary_10_1016_j_jechem_2023_05_003
crossref_primary_10_1016_j_ijhydene_2022_06_211
crossref_primary_10_3389_fchem_2023_1200469
crossref_primary_10_1016_j_fuproc_2020_106528
crossref_primary_10_1038_s41467_022_33620_2
crossref_primary_10_1063_5_0205930
crossref_primary_10_1002_cssc_201601426
crossref_primary_10_1007_s12155_024_10797_6
crossref_primary_10_1016_j_jechem_2020_05_068
crossref_primary_10_1016_j_apcatb_2016_01_067
crossref_primary_10_1016_j_energy_2022_123944
Cites_doi 10.1021/cr068360d
10.1002/anie.201102156
10.1016/j.carbon.2007.01.013
10.1021/ie051088y
10.1016/j.elecom.2011.02.022
10.1126/science.1141199
10.1021/cs200599g
10.1016/j.apcatb.2005.11.016
10.1149/1.2114229
10.1021/cr050989d
10.1002/cssc.201200065
10.1039/B803711F
10.1038/nature05923
10.1021/ja200976j
10.1007/s10008-004-0585-y
10.1039/c0gc00789g
10.1016/j.catcom.2010.09.003
10.1002/ange.201102156
10.1007/BF00610988
10.1021/ja808537j
10.1002/jctb.503310165
10.1002/cssc.201200236
10.1039/c0gc00401d
10.1016/j.apcata.2011.06.018
10.1016/0926-860X(96)00136-6
10.1246/bcsj.74.1145
10.1002/cssc.201200722
10.1002/cctc.201100023
10.1039/c2gc35039d
10.1016/0144-4565(87)90072-2
10.1021/ie901012g
10.1007/BF00618739
10.1016/j.electacta.2003.07.020
10.1016/j.carres.2011.06.007
10.1023/B:TOCA.0000013537.13540.0e
10.1016/j.cattod.2012.05.008
10.1002/cssc.201300176
10.1016/j.jiec.2011.11.020
10.1021/cr300182k
10.1021/bk-2012-1105.ch001
10.1021/cr100171a
10.1002/cssc.201200250
10.1021/ac101058t
10.1038/nchem.1221
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201300443
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 1667
ExternalDocumentID 3083457271
23857762
10_1002_cssc_201300443
CSSC201300443
ark_67375_WNG_N020J0C1_7
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Netherlands Ministry of Economic Affairs
– fundername: Netherlands Ministry of Education, Culture and Science
GroupedDBID ---
05W
0R~
1OC
29B
31~
33P
4.4
5GY
5VS
66C
77Q
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADKYN
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY~
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
XV2
ZZTAW
~S-
AAYXX
CITATION
A00
AAHHS
AAYOK
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
P4E
WYJ
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4483-2fd2c59357f81775d4d9362a7b60de7c6eaf4c61ad582a3ce5df7362f0de26fe3
IEDL.DBID DRFUL
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325090400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 08:44:01 EDT 2025
Sat Nov 29 14:41:47 EST 2025
Wed Feb 19 01:52:11 EST 2025
Thu Oct 16 04:36:02 EDT 2025
Tue Nov 18 22:27:28 EST 2025
Tue Sep 09 05:08:35 EDT 2025
Sun Sep 21 06:18:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords carbohydrates
biomass
hydroxymethylfurfural
electrocatalysis
hydrogenation
Language English
License Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4483-2fd2c59357f81775d4d9362a7b60de7c6eaf4c61ad582a3ce5df7362f0de26fe3
Notes Netherlands Ministry of Education, Culture and Science
ark:/67375/WNG-N020J0C1-7
Netherlands Ministry of Economic Affairs
istex:55EBA445D56763E01A8F66EC82546504EA07D2B1
ArticleID:CSSC201300443
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 23857762
PQID 1437200918
PQPubID 986333
PageCount 9
ParticipantIDs proquest_miscellaneous_1438571163
proquest_journals_1437200918
pubmed_primary_23857762
crossref_citationtrail_10_1002_cssc_201300443
crossref_primary_10_1002_cssc_201300443
wiley_primary_10_1002_cssc_201300443_CSSC201300443
istex_primary_ark_67375_WNG_N020J0C1_7
PublicationCentury 2000
PublicationDate September 2013
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: September 2013
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References E. de Jong, M. A. Dam, L. Sipos, G.-J. M. Gruter in Biobased Monomers, Polymers, and Materials (Eds.: P. B. Smith, R. A. Gross), ACS Symposium Series, 2012, pp. 1-13.
F. Salak Asghari, H. Yoshida, Ind. Eng. Chem. Res. 2006, 45, 2163-2173.
A. C. A. de Vooys, G. L. Beltramo, B. van Riet, J. A. R. van Veen, M. T. M. Koper, Electrochim. Acta 2004, 49, 1307-1314.
S. P. Simeonov, J. A. S. Coelho, C. A. M. Afonso, ChemSusChem 2012, 5, 1388-1391.
Y. Kwon, M. T. M. Koper, ChemSusChem 2013, 6, 455-462.
S. C. S. Lai, M. T. M. Koper, Faraday Discuss. 2008, 140, 399-416.
G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098.
R. M. Musau, R. M. Munavu, Biomass 1987, 13, 67-74.
V. Schiavo, G. Descotes, J. Mentech, Bull. Soc. Chim. Fr. 1991, 704-711.
M. E. Zakrzewska, E. Bogel-Lukasik, R. Bogel-Lukasik, Chem. Rev. 2011, 111, 397-417.
K. R. Vuyyuru, P. Strasser, Catal. Today 2012, 195, 144-154.
Y. Kwon, S. C. S. Lai, P. Rodriguez, M. T. M. Koper, J. Am. Chem. Soc. 2011, 133, 6914-6917.
Y. Kwon, K. J. P. Schouten, M. T. M. Koper, ChemCatChem 2011, 3, 1176-1185.
J. M. Chapuzet, A. Lasia, J. Lessard, Electrocatalysis (Eds.: J. Lipowski, P. N. Ross), Wiley-VCH, Weinheim, 1998, pp. 155-196.
D. Mercadier, L. Rigal, A. Gaset, J. P. Gorrichon, J. Chem. Technol. Biotechnol. 1981, 31, 489-496.
A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso, Green Chem. 2011, 13, 754-793.
Q. Cao, X. Guo, J. Guan, X. Mu, D. Zhang, Appl. Catal. A 2011, 403, 98-103.
J. B. Binder, R. T. Raines, J. Am. Chem. Soc. 2009, 131, 1979-1985.
Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 128, 154-156.
D. Qu, Carbon 2007, 45, 1296-1301.
O. Brylev, M. Sarrazin, D. Belanger, L. Roue, Appl. Catal. B 2006, 64, 243-253.
Y. Kwon, S. E. F. Kleijn, K. J. P. Schouten, M. T. M. Koper, ChemSusChem 2012, 5, 1935-1943.
C. Moreau, M. N. Belgacem, A. Gandini, Top. Catal. 2004, 27, 11-30.
S. P. Verevkin, V. N. Emel′yanenko, E. N. Stepurko, R. V. Ralys, D. H. Zaitsau, A. Stark, Ind. Eng. Chem. Res. 2009, 48, 10087-10093.
A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502.
Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries (Ed.: G. H. Huber) NSF, 2008, pp. 66-71.
E.-S. Kang, D. W. Chae, B. Kim, Y. G. Kim, J. Ind. Eng. Chem. 2012, 18, 174-177.
S. P. Simeonov, J. A. S. Coelho, C. A. M. Afonso, ChemSusChem 2013, 6, 997-1000.
Y. Kwon, M. T. M. Koper, Anal. Chem. 2010, 82, 5420-5424.
H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597-1600.
Angew. Chem. Int. Ed. 2011, 50, 7083-7087.
Z. Yuan, C. Xu, S. Cheng, M. Leitch, Carbohydr. Res. 2011, 346, 2019-2023.
A. Santasalo-Aarnio, Y. Kwon, E. Ahlberg, K. Kontturi, T. Kallio, M. T. M. Koper, Electrochem. Commun. 2011, 13, 466-469.
P. N. Pintauro, D. K. Johnson, K. Park, M. M. Baizer, K. Nobe, J. Appl. Electrochem. 1984, 14, 209-220.
P. Rodriguez, Y. Kwon, M. T. M. Koper, Nat. Chem. 2012, 4, 177-182.
K. Seri, Y. Inoue, H. Ishida, Bull. Chem. Soc. Jpn. 2001, 74, 1145-1150.
A. Bin Kassim, C. L. Rice, A. T. Kuhn, J. Appl. Electrochem. 1981, 11, 261-267.
P. M. Grande, C. Bergs, P. D. de Maria, ChemSusChem 2012, 5, 1203-1206.
R. Alamillo, M. Tucker, M. Chia, Y. Pagan-Torres, J. Dumesic, Green Chem. 2012, 14, 1413-1419.
R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597.
A. Gandini, Green Chem. 2011, 13, 1061-1083.
Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M. T. M. Koper, ACS Catal. 2012, 2, 759-764.
S. Fei, J. Chen, S. Yao, G. Deng, L. Nie, Y. Kuang, J. Solid State Electrochem. 2005, 9, 498-503.
T. Buntara, S. Noel, P. H. Phua, I. Melian-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. 2011, 123, 7221-7225
K. Park, P. N. Pintauro, M. M. Baizer, K. Nobe, J. Electrochem. Soc. 1985, 132, 1850-1855.
Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-985.
C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G. Avignon, Appl. Catal. A 1996, 145, 211-224.
1987; 13
2007; 107
2007; 447
2012
2004; 27
2004; 49
2010; 128
1998
2008
2012; 18
2011; 13
2011 2011; 123 50
1991
2009; 131
2012; 14
2011; 3
1996; 145
2013; 6
2011; 111
2011; 133
2009; 48
2008; 140
2010; 82
2011; 346
2012; 195
2007; 316
2012; 2
2006; 64
2011; 403
2006; 45
1984; 14
2005; 9
2013; 113
2012; 4
2006; 106
2012; 5
2007; 45
1981; 31
2001; 74
1985; 132
1981; 11
e_1_2_6_31_2
e_1_2_6_30_2
Schiavo V. (e_1_2_6_22_2) 1991
Chapuzet J. M. (e_1_2_6_36_2) 1998
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
(e_1_2_6_44_2) 2008
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_25_3
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: P. M. Grande, C. Bergs, P. D. de Maria, ChemSusChem 2012, 5, 1203-1206.
– reference: Y. Kwon, S. E. F. Kleijn, K. J. P. Schouten, M. T. M. Koper, ChemSusChem 2012, 5, 1935-1943.
– reference: Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries (Ed.: G. H. Huber) NSF, 2008, pp. 66-71.
– reference: A. C. A. de Vooys, G. L. Beltramo, B. van Riet, J. A. R. van Veen, M. T. M. Koper, Electrochim. Acta 2004, 49, 1307-1314.
– reference: Y. Kwon, M. T. M. Koper, Anal. Chem. 2010, 82, 5420-5424.
– reference: C. Moreau, M. N. Belgacem, A. Gandini, Top. Catal. 2004, 27, 11-30.
– reference: Y. Kwon, K. J. P. Schouten, M. T. M. Koper, ChemCatChem 2011, 3, 1176-1185.
– reference: S. P. Verevkin, V. N. Emel′yanenko, E. N. Stepurko, R. V. Ralys, D. H. Zaitsau, A. Stark, Ind. Eng. Chem. Res. 2009, 48, 10087-10093.
– reference: Angew. Chem. Int. Ed. 2011, 50, 7083-7087.
– reference: A. Bin Kassim, C. L. Rice, A. T. Kuhn, J. Appl. Electrochem. 1981, 11, 261-267.
– reference: M. E. Zakrzewska, E. Bogel-Lukasik, R. Bogel-Lukasik, Chem. Rev. 2011, 111, 397-417.
– reference: J. M. Chapuzet, A. Lasia, J. Lessard, Electrocatalysis (Eds.: J. Lipowski, P. N. Ross), Wiley-VCH, Weinheim, 1998, pp. 155-196.
– reference: Y. Kwon, M. T. M. Koper, ChemSusChem 2013, 6, 455-462.
– reference: T. Buntara, S. Noel, P. H. Phua, I. Melian-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. 2011, 123, 7221-7225;
– reference: E. de Jong, M. A. Dam, L. Sipos, G.-J. M. Gruter in Biobased Monomers, Polymers, and Materials (Eds.: P. B. Smith, R. A. Gross), ACS Symposium Series, 2012, pp. 1-13.
– reference: P. N. Pintauro, D. K. Johnson, K. Park, M. M. Baizer, K. Nobe, J. Appl. Electrochem. 1984, 14, 209-220.
– reference: E.-S. Kang, D. W. Chae, B. Kim, Y. G. Kim, J. Ind. Eng. Chem. 2012, 18, 174-177.
– reference: D. Qu, Carbon 2007, 45, 1296-1301.
– reference: Y. Kwon, S. C. S. Lai, P. Rodriguez, M. T. M. Koper, J. Am. Chem. Soc. 2011, 133, 6914-6917.
– reference: R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597.
– reference: R. Alamillo, M. Tucker, M. Chia, Y. Pagan-Torres, J. Dumesic, Green Chem. 2012, 14, 1413-1419.
– reference: J. B. Binder, R. T. Raines, J. Am. Chem. Soc. 2009, 131, 1979-1985.
– reference: V. Schiavo, G. Descotes, J. Mentech, Bull. Soc. Chim. Fr. 1991, 704-711.
– reference: H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597-1600.
– reference: P. Rodriguez, Y. Kwon, M. T. M. Koper, Nat. Chem. 2012, 4, 177-182.
– reference: Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 128, 154-156.
– reference: G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098.
– reference: K. Park, P. N. Pintauro, M. M. Baizer, K. Nobe, J. Electrochem. Soc. 1985, 132, 1850-1855.
– reference: R. M. Musau, R. M. Munavu, Biomass 1987, 13, 67-74.
– reference: K. R. Vuyyuru, P. Strasser, Catal. Today 2012, 195, 144-154.
– reference: Z. Yuan, C. Xu, S. Cheng, M. Leitch, Carbohydr. Res. 2011, 346, 2019-2023.
– reference: Q. Cao, X. Guo, J. Guan, X. Mu, D. Zhang, Appl. Catal. A 2011, 403, 98-103.
– reference: C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G. Avignon, Appl. Catal. A 1996, 145, 211-224.
– reference: A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso, Green Chem. 2011, 13, 754-793.
– reference: S. Fei, J. Chen, S. Yao, G. Deng, L. Nie, Y. Kuang, J. Solid State Electrochem. 2005, 9, 498-503.
– reference: S. P. Simeonov, J. A. S. Coelho, C. A. M. Afonso, ChemSusChem 2013, 6, 997-1000.
– reference: O. Brylev, M. Sarrazin, D. Belanger, L. Roue, Appl. Catal. B 2006, 64, 243-253.
– reference: K. Seri, Y. Inoue, H. Ishida, Bull. Chem. Soc. Jpn. 2001, 74, 1145-1150.
– reference: S. P. Simeonov, J. A. S. Coelho, C. A. M. Afonso, ChemSusChem 2012, 5, 1388-1391.
– reference: D. Mercadier, L. Rigal, A. Gaset, J. P. Gorrichon, J. Chem. Technol. Biotechnol. 1981, 31, 489-496.
– reference: Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-985.
– reference: A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502.
– reference: S. C. S. Lai, M. T. M. Koper, Faraday Discuss. 2008, 140, 399-416.
– reference: F. Salak Asghari, H. Yoshida, Ind. Eng. Chem. Res. 2006, 45, 2163-2173.
– reference: Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M. T. M. Koper, ACS Catal. 2012, 2, 759-764.
– reference: A. Gandini, Green Chem. 2011, 13, 1061-1083.
– reference: A. Santasalo-Aarnio, Y. Kwon, E. Ahlberg, K. Kontturi, T. Kallio, M. T. M. Koper, Electrochem. Commun. 2011, 13, 466-469.
– volume: 403
  start-page: 98
  year: 2011
  end-page: 103
  publication-title: Appl. Catal. A
– volume: 4
  start-page: 177
  year: 2012
  end-page: 182
  publication-title: Nat. Chem.
– volume: 27
  start-page: 11
  year: 2004
  end-page: 30
  publication-title: Top. Catal.
– volume: 5
  start-page: 1935
  year: 2012
  end-page: 1943
  publication-title: ChemSusChem
– volume: 447
  start-page: 982
  year: 2007
  end-page: 985
  publication-title: Nature
– volume: 13
  start-page: 466
  year: 2011
  end-page: 469
  publication-title: Electrochem. Commun.
– volume: 45
  start-page: 2163
  year: 2006
  end-page: 2173
  publication-title: Ind. Eng. Chem. Res.
– volume: 31
  start-page: 489
  year: 1981
  end-page: 496
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 111
  start-page: 397
  year: 2011
  end-page: 417
  publication-title: Chem. Rev.
– volume: 5
  start-page: 1203
  year: 2012
  end-page: 1206
  publication-title: ChemSusChem
– volume: 128
  start-page: 154
  year: 2010
  end-page: 156
  publication-title: Catal. Commun.
– volume: 82
  start-page: 5420
  year: 2010
  end-page: 5424
  publication-title: Anal. Chem.
– volume: 133
  start-page: 6914
  year: 2011
  end-page: 6917
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 498
  year: 2005
  end-page: 503
  publication-title: J. Solid State Electrochem.
– start-page: 66
  year: 2008
  end-page: 71
– start-page: 155
  year: 1998
  end-page: 196
– volume: 106
  start-page: 4044
  year: 2006
  end-page: 4098
  publication-title: Chem. Rev.
– volume: 6
  start-page: 997
  year: 2013
  end-page: 1000
  publication-title: ChemSusChem
– volume: 18
  start-page: 174
  year: 2012
  end-page: 177
  publication-title: J. Ind. Eng. Chem.
– volume: 123 50
  start-page: 7221 7083
  year: 2011 2011
  end-page: 7225 7087
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 316
  start-page: 1597
  year: 2007
  end-page: 1600
  publication-title: Science
– volume: 14
  start-page: 209
  year: 1984
  end-page: 220
  publication-title: J. Appl. Electrochem.
– volume: 2
  start-page: 759
  year: 2012
  end-page: 764
  publication-title: ACS Catal.
– volume: 195
  start-page: 144
  year: 2012
  end-page: 154
  publication-title: Catal. Today
– volume: 3
  start-page: 1176
  year: 2011
  end-page: 1185
  publication-title: ChemCatChem
– volume: 107
  start-page: 2411
  year: 2007
  end-page: 2502
  publication-title: Chem. Rev.
– volume: 145
  start-page: 211
  year: 1996
  end-page: 224
  publication-title: Appl. Catal. A
– volume: 11
  start-page: 261
  year: 1981
  end-page: 267
  publication-title: J. Appl. Electrochem.
– volume: 74
  start-page: 1145
  year: 2001
  end-page: 1150
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 6
  start-page: 455
  year: 2013
  end-page: 462
  publication-title: ChemSusChem
– volume: 140
  start-page: 399
  year: 2008
  end-page: 416
  publication-title: Faraday Discuss.
– volume: 13
  start-page: 1061
  year: 2011
  end-page: 1083
  publication-title: Green Chem.
– volume: 13
  start-page: 67
  year: 1987
  end-page: 74
  publication-title: Biomass
– start-page: 1
  year: 2012
  end-page: 13
– volume: 131
  start-page: 1979
  year: 2009
  end-page: 1985
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 1850
  year: 1985
  end-page: 1855
  publication-title: J. Electrochem. Soc.
– start-page: 704
  year: 1991
  end-page: 711
  publication-title: Bull. Soc. Chim. Fr.
– volume: 64
  start-page: 243
  year: 2006
  end-page: 253
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 1388
  year: 2012
  end-page: 1391
  publication-title: ChemSusChem
– volume: 113
  start-page: 1499
  year: 2013
  end-page: 1597
  publication-title: Chem. Rev.
– volume: 13
  start-page: 754
  year: 2011
  end-page: 793
  publication-title: Green Chem.
– volume: 49
  start-page: 1307
  year: 2004
  end-page: 1314
  publication-title: Electrochim. Acta
– volume: 346
  start-page: 2019
  year: 2011
  end-page: 2023
  publication-title: Carbohydr. Res.
– volume: 14
  start-page: 1413
  year: 2012
  end-page: 1419
  publication-title: Green Chem.
– volume: 48
  start-page: 10087
  year: 2009
  end-page: 10093
  publication-title: Ind. Eng. Chem. Res.
– volume: 45
  start-page: 1296
  year: 2007
  end-page: 1301
  publication-title: Carbon
– ident: e_1_2_6_1_2
  doi: 10.1021/cr068360d
– ident: e_1_2_6_25_3
  doi: 10.1002/anie.201102156
– ident: e_1_2_6_38_2
  doi: 10.1016/j.carbon.2007.01.013
– ident: e_1_2_6_11_2
  doi: 10.1021/ie051088y
– ident: e_1_2_6_33_2
  doi: 10.1016/j.elecom.2011.02.022
– ident: e_1_2_6_14_2
  doi: 10.1126/science.1141199
– ident: e_1_2_6_34_2
  doi: 10.1021/cs200599g
– ident: e_1_2_6_39_2
  doi: 10.1016/j.apcatb.2005.11.016
– ident: e_1_2_6_41_2
  doi: 10.1149/1.2114229
– ident: e_1_2_6_2_2
  doi: 10.1021/cr050989d
– start-page: 66
  volume-title: Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries
  year: 2008
  ident: e_1_2_6_44_2
– ident: e_1_2_6_16_2
  doi: 10.1002/cssc.201200065
– ident: e_1_2_6_46_2
  doi: 10.1039/B803711F
– ident: e_1_2_6_26_2
  doi: 10.1038/nature05923
– ident: e_1_2_6_31_2
  doi: 10.1021/ja200976j
– ident: e_1_2_6_40_2
  doi: 10.1007/s10008-004-0585-y
– ident: e_1_2_6_20_2
  doi: 10.1039/c0gc00789g
– ident: e_1_2_6_23_2
  doi: 10.1016/j.catcom.2010.09.003
– start-page: 704
  year: 1991
  ident: e_1_2_6_22_2
  publication-title: Bull. Soc. Chim. Fr.
– ident: e_1_2_6_25_2
  doi: 10.1002/ange.201102156
– ident: e_1_2_6_42_2
  doi: 10.1007/BF00610988
– ident: e_1_2_6_27_2
  doi: 10.1021/ja808537j
– ident: e_1_2_6_12_2
  doi: 10.1002/jctb.503310165
– ident: e_1_2_6_10_2
  doi: 10.1002/cssc.201200236
– ident: e_1_2_6_15_2
  doi: 10.1039/c0gc00401d
– ident: e_1_2_6_9_2
  doi: 10.1016/j.apcata.2011.06.018
– ident: e_1_2_6_6_2
  doi: 10.1016/0926-860X(96)00136-6
– ident: e_1_2_6_13_2
  doi: 10.1246/bcsj.74.1145
– ident: e_1_2_6_28_2
  doi: 10.1002/cssc.201200722
– ident: e_1_2_6_32_2
  doi: 10.1002/cctc.201100023
– ident: e_1_2_6_24_2
  doi: 10.1039/c2gc35039d
– ident: e_1_2_6_5_2
  doi: 10.1016/0144-4565(87)90072-2
– ident: e_1_2_6_45_2
  doi: 10.1021/ie901012g
– start-page: 155
  volume-title: Electrocatalysis
  year: 1998
  ident: e_1_2_6_36_2
– ident: e_1_2_6_43_2
  doi: 10.1007/BF00618739
– ident: e_1_2_6_37_2
  doi: 10.1016/j.electacta.2003.07.020
– ident: e_1_2_6_8_2
  doi: 10.1016/j.carres.2011.06.007
– ident: e_1_2_6_18_2
  doi: 10.1023/B:TOCA.0000013537.13540.0e
– ident: e_1_2_6_21_2
  doi: 10.1016/j.cattod.2012.05.008
– ident: e_1_2_6_17_2
  doi: 10.1002/cssc.201300176
– ident: e_1_2_6_3_2
  doi: 10.1016/j.jiec.2011.11.020
– ident: e_1_2_6_4_2
  doi: 10.1021/cr300182k
– ident: e_1_2_6_19_2
  doi: 10.1021/bk-2012-1105.ch001
– ident: e_1_2_6_7_2
  doi: 10.1021/cr100171a
– ident: e_1_2_6_29_2
  doi: 10.1002/cssc.201200250
– ident: e_1_2_6_30_2
  doi: 10.1021/ac101058t
– ident: e_1_2_6_35_2
  doi: 10.1038/nchem.1221
SSID ssj0060966
Score 2.4394407
Snippet Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal...
Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1659
SubjectTerms biomass
carbohydrates
Catalysis
electrocatalysis
Electrochemistry
Electrodes
Furaldehyde - analogs & derivatives
Furaldehyde - chemistry
Furans - chemistry
Glucose - chemistry
Hydrogenation
hydroxymethylfurfural
Metals - chemistry
Title Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural in the Absence and Presence of Glucose
URI https://api.istex.fr/ark:/67375/WNG-N020J0C1-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201300443
https://www.ncbi.nlm.nih.gov/pubmed/23857762
https://www.proquest.com/docview/1437200918
https://www.proquest.com/docview/1438571163
Volume 6
WOSCitedRecordID wos000325090400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXSS4UN6ElspICE5REyd-5Fil3VYIrSpKxd4ix7GlqlUWJV3UvfET-I38EsbOo6wEQoKj47FjeWY83_gxA_AmSlKbpZkMtcnKMI11GZaUo88jlDEmRsQhtU82IeZzuVhkp7-84u_iQ4wbbk4z_HrtFFyV7f5t0FDdti4EoTuOSdNkC6YUhTedwPTw4-z8w7Aac4To_oWR5GnIeBIPgRsjur_Zw4Zhmro5vvkd6twEsd4Kzbb_f_wP4UGPQMlBJzKP4I6pH8O9fEj89gTKoy41jt_ZWSMVOVlXzRIlzXORLC1hP7599x9v1i4F9frKrhrrAniQi5ogpCQHZeuWDKLqipz6F05YwIbH3Q35p3A-O_qUn4R9KoZQo_-WhNRWVLMsYcLKWAhWpVWGpk-JkkeVEZobZVPNY1UxSVWiDausQAKLtZRbkzyDSb2szQsgmnPFDYs4doS-D5eIoaww6OeVEQpHFEA48KHQfZxyly7jqugiLNPCzVwxzlwA70b6L12Ejj9SvvVsHclUc-nutQlWfJ4fF3NEzu-jPC5EALsD34tepVv0kVxCH4RXMoDXYzWyxp2wqNosV55GMhEjxg3geScv48-oq0LTEwD1YvGXwRb52Vk-ll7-S6MduE998g53I24XJtfNyryCu_rr9UXb7MGWWMi9Xl1-Ao2sE48
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7BLlK5lN_SQAEjIThFTZzYTo5V6HaBJapoK3qzEseWKqosSrqoe-MReEaehLHzg1YCISGOjsdO4pmxv7HHMwAvgyg2aZwmvtJp6cehKv2ScrR5RKG1DhFxJMolmxB5npyfp8e9N6G9C9PFhxg33KxmuPnaKrjdkN7_FTVUta2NQWjPY-I4ugnTGGWJTWD65uPsbDFMxxwxurtilPDYZzwKh8iNAd3f7GFjZZraQb7-HezcRLFuGZrd-Q8_cBe2ewxKDjqhuQc3dH0ftrIh9dsDKA-75Dhub2eNVGS-rpolyprjI1kawn58--4eXq9tEur1pVk1xobwIBc1QVBJDsrWThqkqCty7O44YQEbHnU-8g_hbHZ4ms39PhmDr9CCi3xqKqpYGjFhklAIVsVViotfIUoeVFoorgsTKx4WFUtoESnNKiOQwGAt5UZHOzCpl7XeBaI4L7hmAceO0PrhCaIoIzRaemWA4hF44A-MkKqPVG4TZlzKLsYylXbk5DhyHrwe6b90MTr-SPnK8XUkK5rP1rNNMPkpP5I5Yud3QRZK4cHewHjZK3WLVpJN6YMAK_HgxViNrLFnLEWtlytHkzARIsr14FEnMOPLqK3CxccD6uTiLx8rs5OTbCw9_pdGz2FrfvphIRdv8_dP4DZ1qTysf9weTK6alX4Kt9TXq4u2edZrzU-SQhaX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BF0EvlJ9CUwoYCcEpauLEdnKs0m4LVNGKUtGblTi2VFFlq6SLujcegWfkSTp2fqqVQEiIo-Oxk3hm7G_s8QzA2yCKTRqnia90WvpxqEq_pBxtHlForUNEHIlyySZEnidnZ-ms9ya0d2G6-BDjhpvVDDdfWwXXl5XZvY0aqtrWxiC05zFxHN2FScxSjro52f88PT0epmOOGN1dMUp47DMehUPkxoDurvawsjJN7CBf_w52rqJYtwxNN_7DDzyChz0GJXud0DyGO7p-Ag-yIfXbUygPuuQ4bm9niVTkaFk1c5Q1x0cyN4T9-vHTPbxe2iTUywuzaIwN4UHOa4KgkuyVrZ00SFFXZObuOGEBGx52PvKbcDo9-JId-X0yBl-hBRf51FRUsTRiwiShEKyKqxQXv0KUPKi0UFwXJlY8LCqW0CJSmlVGIIHBWsqNjp7BWj2v9RYQxXnBNQs4doTWD08QRRmh0dIrAxSPwAN_YIRUfaRymzDjQnYxlqm0IyfHkfPg_Uh_2cXo-CPlO8fXkaxovlnPNsHk1_xQ5oidPwZZKIUHOwPjZa_ULVpJNqUPAqzEgzdjNbLGnrEUtZ4vHE3CRIgo14PnncCML6O2ChcfD6iTi798rMxOTrKxtP0vjV7D_dn-VB5_yD-9gHXqMnlY97gdWLtqFvol3FPfr87b5lWvNDf7JhYS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+Hydrogenation+of+5%E2%80%90Hydroxymethylfurfural+in+the+Absence+and+Presence+of+Glucose&rft.jtitle=ChemSusChem&rft.au=Kwon%2C+Youngkook&rft.au=de%E2%80%85Jong%2C+Ed&rft.au=Raoufmoghaddam%2C+Saeed&rft.au=Koper%2C+Marc+T.+M.&rft.date=2013-09-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=6&rft.issue=9&rft.spage=1659&rft.epage=1667&rft_id=info:doi/10.1002%2Fcssc.201300443&rft.externalDBID=10.1002%252Fcssc.201300443&rft.externalDocID=CSSC201300443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon