Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural in the Absence and Presence of Glucose
Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetr...
Uloženo v:
| Vydáno v: | ChemSusChem Ročník 6; číslo 9; s. 1659 - 1667 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
WILEY-VCH Verlag
01.09.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on‐line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst‐dependent because all catalysts show similar onset potentials (−0.5±0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm−2 with high selectivity> 85 %). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron‐transfer step during HMF reduction is not metal‐dependent, suggesting a non‐catalytic reaction with proton transfer directly from water in the electrolyte.
A clean sweep: The hydrogenation of HMF in neutral media has been studied on a wide range of solid metal electrodes both in the absence and in the presence of glucose. From HMF hydrogenation, three groups of catalysts show affinities towards (1) DHMF, (2) DHMF and other products, depending on applied potentials, and (3) other products. HMF hydrogenation is shown to be preferred to glucose hydrogenation on all metals. |
|---|---|
| AbstractList | Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte.Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte. Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on‐line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst‐dependent because all catalysts show similar onset potentials (−0.5±0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm−2 with high selectivity> 85 %). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron‐transfer step during HMF reduction is not metal‐dependent, suggesting a non‐catalytic reaction with proton transfer directly from water in the electrolyte. A clean sweep: The hydrogenation of HMF in neutral media has been studied on a wide range of solid metal electrodes both in the absence and in the presence of glucose. From HMF hydrogenation, three groups of catalysts show affinities towards (1) DHMF, (2) DHMF and other products, depending on applied potentials, and (3) other products. HMF hydrogenation is shown to be preferred to glucose hydrogenation on all metals. Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on‐line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst‐dependent because all catalysts show similar onset potentials (−0.5±0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 m M cm −2 with high selectivity> 85 %). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron‐transfer step during HMF reduction is not metal‐dependent, suggesting a non‐catalytic reaction with proton transfer directly from water in the electrolyte. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1)DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2)DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3)other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5±0.2V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1mMcm-2 with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte. [PUBLICATION ABSTRACT] Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte. |
| Author | de Jong, Ed Raoufmoghaddam, Saeed Kwon, Youngkook Koper, Marc T. M. |
| Author_xml | – sequence: 1 givenname: Youngkook surname: Kwon fullname: Kwon, Youngkook organization: Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands), Fax: (+31) 071-527-4451 – sequence: 2 givenname: Ed surname: de Jong fullname: de Jong, Ed organization: Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam (The Netherlands) – sequence: 3 givenname: Saeed surname: Raoufmoghaddam fullname: Raoufmoghaddam, Saeed organization: Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands), Fax: (+31) 071-527-4451 – sequence: 4 givenname: Marc T. M. surname: Koper fullname: Koper, Marc T. M. email: m.koper@chem.leidenuniv.nl organization: Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (The Netherlands), Fax: (+31) 071-527-4451 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23857762$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtr3DAURkVJaB7ttsti6CYbT_SyZC-DSScNISmkpd2pGvmqUaqxUkkm8b-vJ06GEigFgV7nXKT7HaCdPvSA0DuCFwRjemxSMguKCcOYc_YK7ZNa8LIS_PvOds3IHjpI6RZjgRshXqM9yupKSkH30Y9TDybHYHTWfszOFGdjF8NP6HV2oS-CLary8ehhXEO-Gb0d4jS0L1xf5BsoTlYJegOF7rvic4R5M2lLP5iQ4A3atdonePs0H6KvH0-_tGflxdXyU3tyURrOa1ZS21FTNayStiZSVh3vGiaoliuBO5BGgLbcCKK7qqaaGag6KyfATrdUWGCH6GiuexfD7wFSVmuXDHivewhDUoRv_kyIYBP64QV6G4bYT6_bUJJi3JB6ot4_UcNqDZ26i26t46ieezcBfAZMDClFsMq4_Ni1HLXzimC1iUhtIlLbiCZt8UJ7rvxPoZmFe-dh_A-t2uvr9m-3nF2XMjxsXR1_KSGZrNS3y6W6xBSf45Yoyf4AW-iy_Q |
| CitedBy_id | crossref_primary_10_1002_cssc_202400638 crossref_primary_10_1146_annurev_chembioeng_060718_030148 crossref_primary_10_1002_adma_202307799 crossref_primary_10_1007_s10800_020_01452_x crossref_primary_10_1016_j_mcat_2024_114354 crossref_primary_10_3390_catal8120633 crossref_primary_10_1002_cssc_202100139 crossref_primary_10_1016_j_jece_2025_118630 crossref_primary_10_1002_cssc_202201074 crossref_primary_10_1002_tcr_202100034 crossref_primary_10_1021_acs_jpcc_4c08444 crossref_primary_10_1002_ange_202117809 crossref_primary_10_1002_cssc_201301356 crossref_primary_10_1038_s41598_022_23777_7 crossref_primary_10_3390_suschem2030029 crossref_primary_10_1002_elsa_202400019 crossref_primary_10_1016_j_coelec_2021_100795 crossref_primary_10_1002_cssc_202101037 crossref_primary_10_1002_cssc_201403329 crossref_primary_10_1002_cssc_202400869 crossref_primary_10_1039_D5TA02755A crossref_primary_10_3390_mi12111405 crossref_primary_10_1016_j_mtsust_2023_100653 crossref_primary_10_1002_advs_202205077 crossref_primary_10_1016_j_mcat_2022_112487 crossref_primary_10_1002_kin_20992 crossref_primary_10_1002_anie_202117809 crossref_primary_10_1002_celc_201900734 crossref_primary_10_1007_s12649_019_00703_z crossref_primary_10_3389_fchem_2022_1055865 crossref_primary_10_1002_cctc_202400449 crossref_primary_10_1007_s12161_023_02518_0 crossref_primary_10_1016_j_rser_2017_04_013 crossref_primary_10_1021_jacs_9b05397 crossref_primary_10_3389_fchem_2019_00529 crossref_primary_10_1016_j_rser_2018_12_010 crossref_primary_10_1039_D0CY00282H crossref_primary_10_1016_j_catcom_2018_05_011 crossref_primary_10_1002_cssc_201500176 crossref_primary_10_1007_s00894_023_05764_5 crossref_primary_10_1016_j_fuproc_2021_107097 crossref_primary_10_1016_S1872_5813_23_60403_7 crossref_primary_10_1039_C8CY01280F crossref_primary_10_1016_j_cej_2024_151001 crossref_primary_10_1002_celc_201900640 crossref_primary_10_1002_adma_202312778 crossref_primary_10_1002_cssc_202101575 crossref_primary_10_1002_cssc_202200952 crossref_primary_10_1002_cssc_202400546 crossref_primary_10_1021_acscatal_5c01181 crossref_primary_10_1186_s40643_023_00676_x crossref_primary_10_1002_cssc_202401278 crossref_primary_10_1016_j_apcatb_2023_123576 crossref_primary_10_1039_C8SE00545A crossref_primary_10_3390_ma16010394 crossref_primary_10_1002_chem_201803319 crossref_primary_10_1002_cssc_202200232 crossref_primary_10_1002_cssc_202400723 crossref_primary_10_1002_cssc_202102504 crossref_primary_10_1002_celc_201902161 crossref_primary_10_1002_celc_202500007 crossref_primary_10_1016_j_pecs_2016_04_004 crossref_primary_10_1021_jacs_7b06331 crossref_primary_10_1016_j_rser_2017_02_042 crossref_primary_10_1002_slct_201601522 crossref_primary_10_1039_D4SC00546E crossref_primary_10_1016_j_cej_2014_11_044 crossref_primary_10_1002_cssc_201402530 crossref_primary_10_1038_s41929_019_0229_3 crossref_primary_10_1002_ente_202300307 crossref_primary_10_1002_ese3_1487 crossref_primary_10_1016_j_electacta_2023_143676 crossref_primary_10_1016_j_jechem_2020_04_073 crossref_primary_10_3390_polym14050943 crossref_primary_10_1002_cctc_201500097 crossref_primary_10_1016_j_jechem_2023_05_003 crossref_primary_10_1016_j_ijhydene_2022_06_211 crossref_primary_10_3389_fchem_2023_1200469 crossref_primary_10_1016_j_fuproc_2020_106528 crossref_primary_10_1038_s41467_022_33620_2 crossref_primary_10_1063_5_0205930 crossref_primary_10_1002_cssc_201601426 crossref_primary_10_1007_s12155_024_10797_6 crossref_primary_10_1016_j_jechem_2020_05_068 crossref_primary_10_1016_j_apcatb_2016_01_067 crossref_primary_10_1016_j_energy_2022_123944 |
| Cites_doi | 10.1021/cr068360d 10.1002/anie.201102156 10.1016/j.carbon.2007.01.013 10.1021/ie051088y 10.1016/j.elecom.2011.02.022 10.1126/science.1141199 10.1021/cs200599g 10.1016/j.apcatb.2005.11.016 10.1149/1.2114229 10.1021/cr050989d 10.1002/cssc.201200065 10.1039/B803711F 10.1038/nature05923 10.1021/ja200976j 10.1007/s10008-004-0585-y 10.1039/c0gc00789g 10.1016/j.catcom.2010.09.003 10.1002/ange.201102156 10.1007/BF00610988 10.1021/ja808537j 10.1002/jctb.503310165 10.1002/cssc.201200236 10.1039/c0gc00401d 10.1016/j.apcata.2011.06.018 10.1016/0926-860X(96)00136-6 10.1246/bcsj.74.1145 10.1002/cssc.201200722 10.1002/cctc.201100023 10.1039/c2gc35039d 10.1016/0144-4565(87)90072-2 10.1021/ie901012g 10.1007/BF00618739 10.1016/j.electacta.2003.07.020 10.1016/j.carres.2011.06.007 10.1023/B:TOCA.0000013537.13540.0e 10.1016/j.cattod.2012.05.008 10.1002/cssc.201300176 10.1016/j.jiec.2011.11.020 10.1021/cr300182k 10.1021/bk-2012-1105.ch001 10.1021/cr100171a 10.1002/cssc.201200250 10.1021/ac101058t 10.1038/nchem.1221 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.201300443 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 1667 |
| ExternalDocumentID | 3083457271 23857762 10_1002_cssc_201300443 CSSC201300443 ark_67375_WNG_N020J0C1_7 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Netherlands Ministry of Economic Affairs – fundername: Netherlands Ministry of Education, Culture and Science |
| GroupedDBID | --- 05W 0R~ 1OC 29B 31~ 33P 4.4 5GY 5VS 66C 77Q 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADKYN ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MY~ O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR XV2 ZZTAW ~S- AAYXX CITATION A00 AAHHS AAYOK ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM P4E WYJ 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4483-2fd2c59357f81775d4d9362a7b60de7c6eaf4c61ad582a3ce5df7362f0de26fe3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325090400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Fri Jul 11 08:44:01 EDT 2025 Sat Nov 29 14:41:47 EST 2025 Wed Feb 19 01:52:11 EST 2025 Thu Oct 16 04:36:02 EDT 2025 Tue Nov 18 22:27:28 EST 2025 Tue Sep 09 05:08:35 EDT 2025 Sun Sep 21 06:18:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | carbohydrates biomass hydroxymethylfurfural electrocatalysis hydrogenation |
| Language | English |
| License | Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4483-2fd2c59357f81775d4d9362a7b60de7c6eaf4c61ad582a3ce5df7362f0de26fe3 |
| Notes | Netherlands Ministry of Education, Culture and Science ark:/67375/WNG-N020J0C1-7 Netherlands Ministry of Economic Affairs istex:55EBA445D56763E01A8F66EC82546504EA07D2B1 ArticleID:CSSC201300443 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 23857762 |
| PQID | 1437200918 |
| PQPubID | 986333 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1438571163 proquest_journals_1437200918 pubmed_primary_23857762 crossref_citationtrail_10_1002_cssc_201300443 crossref_primary_10_1002_cssc_201300443 wiley_primary_10_1002_cssc_201300443_CSSC201300443 istex_primary_ark_67375_WNG_N020J0C1_7 |
| PublicationCentury | 2000 |
| PublicationDate | September 2013 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: September 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2013 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | E. de Jong, M. A. Dam, L. Sipos, G.-J. M. Gruter in Biobased Monomers, Polymers, and Materials (Eds.: P. B. Smith, R. A. Gross), ACS Symposium Series, 2012, pp. 1-13. F. Salak Asghari, H. Yoshida, Ind. Eng. Chem. Res. 2006, 45, 2163-2173. A. C. A. de Vooys, G. L. Beltramo, B. van Riet, J. A. R. van Veen, M. T. M. Koper, Electrochim. Acta 2004, 49, 1307-1314. S. P. Simeonov, J. A. S. Coelho, C. A. M. Afonso, ChemSusChem 2012, 5, 1388-1391. Y. Kwon, M. T. M. Koper, ChemSusChem 2013, 6, 455-462. S. C. S. Lai, M. T. M. Koper, Faraday Discuss. 2008, 140, 399-416. G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098. R. M. Musau, R. M. Munavu, Biomass 1987, 13, 67-74. V. Schiavo, G. Descotes, J. Mentech, Bull. Soc. Chim. Fr. 1991, 704-711. M. E. Zakrzewska, E. Bogel-Lukasik, R. Bogel-Lukasik, Chem. Rev. 2011, 111, 397-417. K. R. Vuyyuru, P. Strasser, Catal. Today 2012, 195, 144-154. Y. Kwon, S. C. S. Lai, P. Rodriguez, M. T. M. Koper, J. Am. Chem. Soc. 2011, 133, 6914-6917. Y. Kwon, K. J. P. Schouten, M. T. M. Koper, ChemCatChem 2011, 3, 1176-1185. J. M. Chapuzet, A. Lasia, J. Lessard, Electrocatalysis (Eds.: J. Lipowski, P. N. Ross), Wiley-VCH, Weinheim, 1998, pp. 155-196. D. Mercadier, L. Rigal, A. Gaset, J. P. Gorrichon, J. Chem. Technol. Biotechnol. 1981, 31, 489-496. A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso, Green Chem. 2011, 13, 754-793. Q. Cao, X. Guo, J. Guan, X. Mu, D. Zhang, Appl. Catal. A 2011, 403, 98-103. J. B. Binder, R. T. Raines, J. Am. Chem. Soc. 2009, 131, 1979-1985. Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 128, 154-156. D. Qu, Carbon 2007, 45, 1296-1301. O. Brylev, M. Sarrazin, D. Belanger, L. Roue, Appl. Catal. B 2006, 64, 243-253. Y. Kwon, S. E. F. Kleijn, K. J. P. Schouten, M. T. M. Koper, ChemSusChem 2012, 5, 1935-1943. C. Moreau, M. N. Belgacem, A. Gandini, Top. Catal. 2004, 27, 11-30. S. P. Verevkin, V. N. Emel′yanenko, E. N. Stepurko, R. V. Ralys, D. H. Zaitsau, A. Stark, Ind. Eng. Chem. Res. 2009, 48, 10087-10093. A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries (Ed.: G. H. Huber) NSF, 2008, pp. 66-71. E.-S. Kang, D. W. Chae, B. Kim, Y. G. Kim, J. Ind. Eng. Chem. 2012, 18, 174-177. S. P. Simeonov, J. A. S. Coelho, C. A. M. Afonso, ChemSusChem 2013, 6, 997-1000. Y. Kwon, M. T. M. Koper, Anal. Chem. 2010, 82, 5420-5424. H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597-1600. Angew. Chem. Int. Ed. 2011, 50, 7083-7087. Z. Yuan, C. Xu, S. Cheng, M. Leitch, Carbohydr. Res. 2011, 346, 2019-2023. A. Santasalo-Aarnio, Y. Kwon, E. Ahlberg, K. Kontturi, T. Kallio, M. T. M. Koper, Electrochem. Commun. 2011, 13, 466-469. P. N. Pintauro, D. K. Johnson, K. Park, M. M. Baizer, K. Nobe, J. Appl. Electrochem. 1984, 14, 209-220. P. Rodriguez, Y. Kwon, M. T. M. Koper, Nat. Chem. 2012, 4, 177-182. K. Seri, Y. Inoue, H. Ishida, Bull. Chem. Soc. Jpn. 2001, 74, 1145-1150. A. Bin Kassim, C. L. Rice, A. T. Kuhn, J. Appl. Electrochem. 1981, 11, 261-267. P. M. Grande, C. Bergs, P. D. de Maria, ChemSusChem 2012, 5, 1203-1206. R. Alamillo, M. Tucker, M. Chia, Y. Pagan-Torres, J. Dumesic, Green Chem. 2012, 14, 1413-1419. R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597. A. Gandini, Green Chem. 2011, 13, 1061-1083. Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M. T. M. Koper, ACS Catal. 2012, 2, 759-764. S. Fei, J. Chen, S. Yao, G. Deng, L. Nie, Y. Kuang, J. Solid State Electrochem. 2005, 9, 498-503. T. Buntara, S. Noel, P. H. Phua, I. Melian-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. 2011, 123, 7221-7225 K. Park, P. N. Pintauro, M. M. Baizer, K. Nobe, J. Electrochem. Soc. 1985, 132, 1850-1855. Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-985. C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G. Avignon, Appl. Catal. A 1996, 145, 211-224. 1987; 13 2007; 107 2007; 447 2012 2004; 27 2004; 49 2010; 128 1998 2008 2012; 18 2011; 13 2011 2011; 123 50 1991 2009; 131 2012; 14 2011; 3 1996; 145 2013; 6 2011; 111 2011; 133 2009; 48 2008; 140 2010; 82 2011; 346 2012; 195 2007; 316 2012; 2 2006; 64 2011; 403 2006; 45 1984; 14 2005; 9 2013; 113 2012; 4 2006; 106 2012; 5 2007; 45 1981; 31 2001; 74 1985; 132 1981; 11 e_1_2_6_31_2 e_1_2_6_30_2 Schiavo V. (e_1_2_6_22_2) 1991 Chapuzet J. M. (e_1_2_6_36_2) 1998 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_42_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 (e_1_2_6_44_2) 2008 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_25_3 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_25_2 e_1_2_6_46_2 |
| References_xml | – reference: P. M. Grande, C. Bergs, P. D. de Maria, ChemSusChem 2012, 5, 1203-1206. – reference: Y. Kwon, S. E. F. Kleijn, K. J. P. Schouten, M. T. M. Koper, ChemSusChem 2012, 5, 1935-1943. – reference: Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries (Ed.: G. H. Huber) NSF, 2008, pp. 66-71. – reference: A. C. A. de Vooys, G. L. Beltramo, B. van Riet, J. A. R. van Veen, M. T. M. Koper, Electrochim. Acta 2004, 49, 1307-1314. – reference: Y. Kwon, M. T. M. Koper, Anal. Chem. 2010, 82, 5420-5424. – reference: C. Moreau, M. N. Belgacem, A. Gandini, Top. Catal. 2004, 27, 11-30. – reference: Y. Kwon, K. J. P. Schouten, M. T. M. Koper, ChemCatChem 2011, 3, 1176-1185. – reference: S. P. Verevkin, V. N. Emel′yanenko, E. N. Stepurko, R. V. Ralys, D. H. Zaitsau, A. Stark, Ind. Eng. Chem. Res. 2009, 48, 10087-10093. – reference: Angew. Chem. Int. Ed. 2011, 50, 7083-7087. – reference: A. Bin Kassim, C. L. Rice, A. T. Kuhn, J. Appl. Electrochem. 1981, 11, 261-267. – reference: M. E. Zakrzewska, E. Bogel-Lukasik, R. Bogel-Lukasik, Chem. Rev. 2011, 111, 397-417. – reference: J. M. Chapuzet, A. Lasia, J. Lessard, Electrocatalysis (Eds.: J. Lipowski, P. N. Ross), Wiley-VCH, Weinheim, 1998, pp. 155-196. – reference: Y. Kwon, M. T. M. Koper, ChemSusChem 2013, 6, 455-462. – reference: T. Buntara, S. Noel, P. H. Phua, I. Melian-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. 2011, 123, 7221-7225; – reference: E. de Jong, M. A. Dam, L. Sipos, G.-J. M. Gruter in Biobased Monomers, Polymers, and Materials (Eds.: P. B. Smith, R. A. Gross), ACS Symposium Series, 2012, pp. 1-13. – reference: P. N. Pintauro, D. K. Johnson, K. Park, M. M. Baizer, K. Nobe, J. Appl. Electrochem. 1984, 14, 209-220. – reference: E.-S. Kang, D. W. Chae, B. Kim, Y. G. Kim, J. Ind. Eng. Chem. 2012, 18, 174-177. – reference: D. Qu, Carbon 2007, 45, 1296-1301. – reference: Y. Kwon, S. C. S. Lai, P. Rodriguez, M. T. M. Koper, J. Am. Chem. Soc. 2011, 133, 6914-6917. – reference: R.-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev. 2013, 113, 1499-1597. – reference: R. Alamillo, M. Tucker, M. Chia, Y. Pagan-Torres, J. Dumesic, Green Chem. 2012, 14, 1413-1419. – reference: J. B. Binder, R. T. Raines, J. Am. Chem. Soc. 2009, 131, 1979-1985. – reference: V. Schiavo, G. Descotes, J. Mentech, Bull. Soc. Chim. Fr. 1991, 704-711. – reference: H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597-1600. – reference: P. Rodriguez, Y. Kwon, M. T. M. Koper, Nat. Chem. 2012, 4, 177-182. – reference: Y. Nakagawa, K. Tomishige, Catal. Commun. 2010, 128, 154-156. – reference: G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098. – reference: K. Park, P. N. Pintauro, M. M. Baizer, K. Nobe, J. Electrochem. Soc. 1985, 132, 1850-1855. – reference: R. M. Musau, R. M. Munavu, Biomass 1987, 13, 67-74. – reference: K. R. Vuyyuru, P. Strasser, Catal. Today 2012, 195, 144-154. – reference: Z. Yuan, C. Xu, S. Cheng, M. Leitch, Carbohydr. Res. 2011, 346, 2019-2023. – reference: Q. Cao, X. Guo, J. Guan, X. Mu, D. Zhang, Appl. Catal. A 2011, 403, 98-103. – reference: C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G. Avignon, Appl. Catal. A 1996, 145, 211-224. – reference: A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso, Green Chem. 2011, 13, 754-793. – reference: S. Fei, J. Chen, S. Yao, G. Deng, L. Nie, Y. Kuang, J. Solid State Electrochem. 2005, 9, 498-503. – reference: S. P. Simeonov, J. A. S. Coelho, C. A. M. Afonso, ChemSusChem 2013, 6, 997-1000. – reference: O. Brylev, M. Sarrazin, D. Belanger, L. Roue, Appl. Catal. B 2006, 64, 243-253. – reference: K. Seri, Y. Inoue, H. Ishida, Bull. Chem. Soc. Jpn. 2001, 74, 1145-1150. – reference: S. P. Simeonov, J. A. S. Coelho, C. A. M. Afonso, ChemSusChem 2012, 5, 1388-1391. – reference: D. Mercadier, L. Rigal, A. Gaset, J. P. Gorrichon, J. Chem. Technol. Biotechnol. 1981, 31, 489-496. – reference: Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-985. – reference: A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411-2502. – reference: S. C. S. Lai, M. T. M. Koper, Faraday Discuss. 2008, 140, 399-416. – reference: F. Salak Asghari, H. Yoshida, Ind. Eng. Chem. Res. 2006, 45, 2163-2173. – reference: Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M. T. M. Koper, ACS Catal. 2012, 2, 759-764. – reference: A. Gandini, Green Chem. 2011, 13, 1061-1083. – reference: A. Santasalo-Aarnio, Y. Kwon, E. Ahlberg, K. Kontturi, T. Kallio, M. T. M. Koper, Electrochem. Commun. 2011, 13, 466-469. – volume: 403 start-page: 98 year: 2011 end-page: 103 publication-title: Appl. Catal. A – volume: 4 start-page: 177 year: 2012 end-page: 182 publication-title: Nat. Chem. – volume: 27 start-page: 11 year: 2004 end-page: 30 publication-title: Top. Catal. – volume: 5 start-page: 1935 year: 2012 end-page: 1943 publication-title: ChemSusChem – volume: 447 start-page: 982 year: 2007 end-page: 985 publication-title: Nature – volume: 13 start-page: 466 year: 2011 end-page: 469 publication-title: Electrochem. Commun. – volume: 45 start-page: 2163 year: 2006 end-page: 2173 publication-title: Ind. Eng. Chem. Res. – volume: 31 start-page: 489 year: 1981 end-page: 496 publication-title: J. Chem. Technol. Biotechnol. – volume: 111 start-page: 397 year: 2011 end-page: 417 publication-title: Chem. Rev. – volume: 5 start-page: 1203 year: 2012 end-page: 1206 publication-title: ChemSusChem – volume: 128 start-page: 154 year: 2010 end-page: 156 publication-title: Catal. Commun. – volume: 82 start-page: 5420 year: 2010 end-page: 5424 publication-title: Anal. Chem. – volume: 133 start-page: 6914 year: 2011 end-page: 6917 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 498 year: 2005 end-page: 503 publication-title: J. Solid State Electrochem. – start-page: 66 year: 2008 end-page: 71 – start-page: 155 year: 1998 end-page: 196 – volume: 106 start-page: 4044 year: 2006 end-page: 4098 publication-title: Chem. Rev. – volume: 6 start-page: 997 year: 2013 end-page: 1000 publication-title: ChemSusChem – volume: 18 start-page: 174 year: 2012 end-page: 177 publication-title: J. Ind. Eng. Chem. – volume: 123 50 start-page: 7221 7083 year: 2011 2011 end-page: 7225 7087 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 316 start-page: 1597 year: 2007 end-page: 1600 publication-title: Science – volume: 14 start-page: 209 year: 1984 end-page: 220 publication-title: J. Appl. Electrochem. – volume: 2 start-page: 759 year: 2012 end-page: 764 publication-title: ACS Catal. – volume: 195 start-page: 144 year: 2012 end-page: 154 publication-title: Catal. Today – volume: 3 start-page: 1176 year: 2011 end-page: 1185 publication-title: ChemCatChem – volume: 107 start-page: 2411 year: 2007 end-page: 2502 publication-title: Chem. Rev. – volume: 145 start-page: 211 year: 1996 end-page: 224 publication-title: Appl. Catal. A – volume: 11 start-page: 261 year: 1981 end-page: 267 publication-title: J. Appl. Electrochem. – volume: 74 start-page: 1145 year: 2001 end-page: 1150 publication-title: Bull. Chem. Soc. Jpn. – volume: 6 start-page: 455 year: 2013 end-page: 462 publication-title: ChemSusChem – volume: 140 start-page: 399 year: 2008 end-page: 416 publication-title: Faraday Discuss. – volume: 13 start-page: 1061 year: 2011 end-page: 1083 publication-title: Green Chem. – volume: 13 start-page: 67 year: 1987 end-page: 74 publication-title: Biomass – start-page: 1 year: 2012 end-page: 13 – volume: 131 start-page: 1979 year: 2009 end-page: 1985 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 1850 year: 1985 end-page: 1855 publication-title: J. Electrochem. Soc. – start-page: 704 year: 1991 end-page: 711 publication-title: Bull. Soc. Chim. Fr. – volume: 64 start-page: 243 year: 2006 end-page: 253 publication-title: Appl. Catal. B – volume: 5 start-page: 1388 year: 2012 end-page: 1391 publication-title: ChemSusChem – volume: 113 start-page: 1499 year: 2013 end-page: 1597 publication-title: Chem. Rev. – volume: 13 start-page: 754 year: 2011 end-page: 793 publication-title: Green Chem. – volume: 49 start-page: 1307 year: 2004 end-page: 1314 publication-title: Electrochim. Acta – volume: 346 start-page: 2019 year: 2011 end-page: 2023 publication-title: Carbohydr. Res. – volume: 14 start-page: 1413 year: 2012 end-page: 1419 publication-title: Green Chem. – volume: 48 start-page: 10087 year: 2009 end-page: 10093 publication-title: Ind. Eng. Chem. Res. – volume: 45 start-page: 1296 year: 2007 end-page: 1301 publication-title: Carbon – ident: e_1_2_6_1_2 doi: 10.1021/cr068360d – ident: e_1_2_6_25_3 doi: 10.1002/anie.201102156 – ident: e_1_2_6_38_2 doi: 10.1016/j.carbon.2007.01.013 – ident: e_1_2_6_11_2 doi: 10.1021/ie051088y – ident: e_1_2_6_33_2 doi: 10.1016/j.elecom.2011.02.022 – ident: e_1_2_6_14_2 doi: 10.1126/science.1141199 – ident: e_1_2_6_34_2 doi: 10.1021/cs200599g – ident: e_1_2_6_39_2 doi: 10.1016/j.apcatb.2005.11.016 – ident: e_1_2_6_41_2 doi: 10.1149/1.2114229 – ident: e_1_2_6_2_2 doi: 10.1021/cr050989d – start-page: 66 volume-title: Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries year: 2008 ident: e_1_2_6_44_2 – ident: e_1_2_6_16_2 doi: 10.1002/cssc.201200065 – ident: e_1_2_6_46_2 doi: 10.1039/B803711F – ident: e_1_2_6_26_2 doi: 10.1038/nature05923 – ident: e_1_2_6_31_2 doi: 10.1021/ja200976j – ident: e_1_2_6_40_2 doi: 10.1007/s10008-004-0585-y – ident: e_1_2_6_20_2 doi: 10.1039/c0gc00789g – ident: e_1_2_6_23_2 doi: 10.1016/j.catcom.2010.09.003 – start-page: 704 year: 1991 ident: e_1_2_6_22_2 publication-title: Bull. Soc. Chim. Fr. – ident: e_1_2_6_25_2 doi: 10.1002/ange.201102156 – ident: e_1_2_6_42_2 doi: 10.1007/BF00610988 – ident: e_1_2_6_27_2 doi: 10.1021/ja808537j – ident: e_1_2_6_12_2 doi: 10.1002/jctb.503310165 – ident: e_1_2_6_10_2 doi: 10.1002/cssc.201200236 – ident: e_1_2_6_15_2 doi: 10.1039/c0gc00401d – ident: e_1_2_6_9_2 doi: 10.1016/j.apcata.2011.06.018 – ident: e_1_2_6_6_2 doi: 10.1016/0926-860X(96)00136-6 – ident: e_1_2_6_13_2 doi: 10.1246/bcsj.74.1145 – ident: e_1_2_6_28_2 doi: 10.1002/cssc.201200722 – ident: e_1_2_6_32_2 doi: 10.1002/cctc.201100023 – ident: e_1_2_6_24_2 doi: 10.1039/c2gc35039d – ident: e_1_2_6_5_2 doi: 10.1016/0144-4565(87)90072-2 – ident: e_1_2_6_45_2 doi: 10.1021/ie901012g – start-page: 155 volume-title: Electrocatalysis year: 1998 ident: e_1_2_6_36_2 – ident: e_1_2_6_43_2 doi: 10.1007/BF00618739 – ident: e_1_2_6_37_2 doi: 10.1016/j.electacta.2003.07.020 – ident: e_1_2_6_8_2 doi: 10.1016/j.carres.2011.06.007 – ident: e_1_2_6_18_2 doi: 10.1023/B:TOCA.0000013537.13540.0e – ident: e_1_2_6_21_2 doi: 10.1016/j.cattod.2012.05.008 – ident: e_1_2_6_17_2 doi: 10.1002/cssc.201300176 – ident: e_1_2_6_3_2 doi: 10.1016/j.jiec.2011.11.020 – ident: e_1_2_6_4_2 doi: 10.1021/cr300182k – ident: e_1_2_6_19_2 doi: 10.1021/bk-2012-1105.ch001 – ident: e_1_2_6_7_2 doi: 10.1021/cr100171a – ident: e_1_2_6_29_2 doi: 10.1002/cssc.201200250 – ident: e_1_2_6_30_2 doi: 10.1021/ac101058t – ident: e_1_2_6_35_2 doi: 10.1038/nchem.1221 |
| SSID | ssj0060966 |
| Score | 2.4394407 |
| Snippet | Electrocatalytic hydrogenation of 5‐hydroxymethylfurfural (HMF) to 2,5‐dihydroxymethylfuran (DHMF) or other species, such as 2,5‐dimethylfuran, on solid metal... Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1659 |
| SubjectTerms | biomass carbohydrates Catalysis electrocatalysis Electrochemistry Electrodes Furaldehyde - analogs & derivatives Furaldehyde - chemistry Furans - chemistry Glucose - chemistry Hydrogenation hydroxymethylfurfural Metals - chemistry |
| Title | Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural in the Absence and Presence of Glucose |
| URI | https://api.istex.fr/ark:/67375/WNG-N020J0C1-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201300443 https://www.ncbi.nlm.nih.gov/pubmed/23857762 https://www.proquest.com/docview/1437200918 https://www.proquest.com/docview/1438571163 |
| Volume | 6 |
| WOSCitedRecordID | wos000325090400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXSS4UN6ElspICE5REyd-5Fil3VYIrSpKxd4ix7GlqlUWJV3UvfET-I38EsbOo6wEQoKj47FjeWY83_gxA_AmSlKbpZkMtcnKMI11GZaUo88jlDEmRsQhtU82IeZzuVhkp7-84u_iQ4wbbk4z_HrtFFyV7f5t0FDdti4EoTuOSdNkC6YUhTedwPTw4-z8w7Aac4To_oWR5GnIeBIPgRsjur_Zw4Zhmro5vvkd6twEsd4Kzbb_f_wP4UGPQMlBJzKP4I6pH8O9fEj89gTKoy41jt_ZWSMVOVlXzRIlzXORLC1hP7599x9v1i4F9frKrhrrAniQi5ogpCQHZeuWDKLqipz6F05YwIbH3Q35p3A-O_qUn4R9KoZQo_-WhNRWVLMsYcLKWAhWpVWGpk-JkkeVEZobZVPNY1UxSVWiDausQAKLtZRbkzyDSb2szQsgmnPFDYs4doS-D5eIoaww6OeVEQpHFEA48KHQfZxyly7jqugiLNPCzVwxzlwA70b6L12Ejj9SvvVsHclUc-nutQlWfJ4fF3NEzu-jPC5EALsD34tepVv0kVxCH4RXMoDXYzWyxp2wqNosV55GMhEjxg3geScv48-oq0LTEwD1YvGXwRb52Vk-ll7-S6MduE998g53I24XJtfNyryCu_rr9UXb7MGWWMi9Xl1-Ao2sE48 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7BLlK5lN_SQAEjIThFTZzYTo5V6HaBJapoK3qzEseWKqosSrqoe-MReEaehLHzg1YCISGOjsdO4pmxv7HHMwAvgyg2aZwmvtJp6cehKv2ScrR5RKG1DhFxJMolmxB5npyfp8e9N6G9C9PFhxg33KxmuPnaKrjdkN7_FTVUta2NQWjPY-I4ugnTGGWJTWD65uPsbDFMxxwxurtilPDYZzwKh8iNAd3f7GFjZZraQb7-HezcRLFuGZrd-Q8_cBe2ewxKDjqhuQc3dH0ftrIh9dsDKA-75Dhub2eNVGS-rpolyprjI1kawn58--4eXq9tEur1pVk1xobwIBc1QVBJDsrWThqkqCty7O44YQEbHnU-8g_hbHZ4ms39PhmDr9CCi3xqKqpYGjFhklAIVsVViotfIUoeVFoorgsTKx4WFUtoESnNKiOQwGAt5UZHOzCpl7XeBaI4L7hmAceO0PrhCaIoIzRaemWA4hF44A-MkKqPVG4TZlzKLsYylXbk5DhyHrwe6b90MTr-SPnK8XUkK5rP1rNNMPkpP5I5Yud3QRZK4cHewHjZK3WLVpJN6YMAK_HgxViNrLFnLEWtlytHkzARIsr14FEnMOPLqK3CxccD6uTiLx8rs5OTbCw9_pdGz2FrfvphIRdv8_dP4DZ1qTysf9weTK6alX4Kt9TXq4u2edZrzU-SQhaX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BF0EvlJ9CUwoYCcEpauLEdnKs0m4LVNGKUtGblTi2VFFlq6SLujcegWfkSTp2fqqVQEiIo-Oxk3hm7G_s8QzA2yCKTRqnia90WvpxqEq_pBxtHlForUNEHIlyySZEnidnZ-ms9ya0d2G6-BDjhpvVDDdfWwXXl5XZvY0aqtrWxiC05zFxHN2FScxSjro52f88PT0epmOOGN1dMUp47DMehUPkxoDurvawsjJN7CBf_w52rqJYtwxNN_7DDzyChz0GJXud0DyGO7p-Ag-yIfXbUygPuuQ4bm9niVTkaFk1c5Q1x0cyN4T9-vHTPbxe2iTUywuzaIwN4UHOa4KgkuyVrZ00SFFXZObuOGEBGx52PvKbcDo9-JId-X0yBl-hBRf51FRUsTRiwiShEKyKqxQXv0KUPKi0UFwXJlY8LCqW0CJSmlVGIIHBWsqNjp7BWj2v9RYQxXnBNQs4doTWD08QRRmh0dIrAxSPwAN_YIRUfaRymzDjQnYxlqm0IyfHkfPg_Uh_2cXo-CPlO8fXkaxovlnPNsHk1_xQ5oidPwZZKIUHOwPjZa_ULVpJNqUPAqzEgzdjNbLGnrEUtZ4vHE3CRIgo14PnncCML6O2ChcfD6iTi798rMxOTrKxtP0vjV7D_dn-VB5_yD-9gHXqMnlY97gdWLtqFvol3FPfr87b5lWvNDf7JhYS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+Hydrogenation+of+5%E2%80%90Hydroxymethylfurfural+in+the+Absence+and+Presence+of+Glucose&rft.jtitle=ChemSusChem&rft.au=Kwon%2C+Youngkook&rft.au=de%E2%80%85Jong%2C+Ed&rft.au=Raoufmoghaddam%2C+Saeed&rft.au=Koper%2C+Marc+T.+M.&rft.date=2013-09-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=6&rft.issue=9&rft.spage=1659&rft.epage=1667&rft_id=info:doi/10.1002%2Fcssc.201300443&rft.externalDBID=10.1002%252Fcssc.201300443&rft.externalDocID=CSSC201300443 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |