End-of-Life Treatment of Poly(Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids
There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination...
Saved in:
| Published in: | ChemSusChem Vol. 7; no. 2; pp. 610 - 617 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
WILEY-VCH Verlag
01.02.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen‐bond‐accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm3) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by 13C cross‐polarization magic‐angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda–Grubbs second‐generation catalyst to yield α,ω‐dienes such as 1,5‐hexadiene and 1,6‐heptadiene.
Easy as PVC: Thermally stable phosphonium ionic liquids (ILs) are the solvent and catalyst for the dehydrochlorination of polymers such as poly(vinyl chloride) (PVC). The true dissolution of PVC by ILs can facilitate the complete HCl elimination from the polymer chains. The dehydrochlorinated materials are characterized in detail and some of them are successfully depolymerized in a catalytic reverse acyclic diene metathesis (ADMET) process. |
|---|---|
| AbstractList | There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen‐bond‐accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm3) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by 13C cross‐polarization magic‐angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda–Grubbs second‐generation catalyst to yield α,ω‐dienes such as 1,5‐hexadiene and 1,6‐heptadiene.
Easy as PVC: Thermally stable phosphonium ionic liquids (ILs) are the solvent and catalyst for the dehydrochlorination of polymers such as poly(vinyl chloride) (PVC). The true dissolution of PVC by ILs can facilitate the complete HCl elimination from the polymer chains. The dehydrochlorinated materials are characterized in detail and some of them are successfully depolymerized in a catalytic reverse acyclic diene metathesis (ADMET) process. There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen‐bond‐accepting ability ( β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P 4444 ][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm 3 ) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P 4444 ][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by 13 C cross‐polarization magic‐angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda–Grubbs second‐generation catalyst to yield α,ω‐dienes such as 1,5‐hexadiene and 1,6‐heptadiene. There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen-bond-accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444 ][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm(3) ) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444 ][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by (13) C cross-polarization magic-angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda-Grubbs second-generation catalyst to yield α,ω-dienes such as 1,5-hexadiene and 1,6-heptadiene.There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen-bond-accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444 ][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm(3) ) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444 ][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by (13) C cross-polarization magic-angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda-Grubbs second-generation catalyst to yield α,ω-dienes such as 1,5-hexadiene and 1,6-heptadiene. There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen-bond-accepting ability ([beta] value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80°C. PVC is dehydrochlorinated up to 98% after 60min in tetrabutylphosphonium chloride ([P4444][Cl]) at 180°C. PVC pieces stabilized by calcium stearate (4mm3) are dehydrochlorinated more slowly; conversions of 85 and 96% are reached after 1 and 8h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3g stabilized PVC in 0.5g IL, can be applied with only a minor loss of conversion. [P4444][Cl] proved to be stable during several consecutive reactions; after each run more than 99% of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by 13Ccross-polarization magic-angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda-Grubbs second-generation catalyst to yield [alpha],[omega]-dienes such as 1,5-hexadiene and 1,6-heptadiene. [PUBLICATION ABSTRACT] There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen-bond-accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444 ][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm(3) ) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444 ][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by (13) C cross-polarization magic-angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda-Grubbs second-generation catalyst to yield α,ω-dienes such as 1,5-hexadiene and 1,6-heptadiene. |
| Author | De Vos, Dirk E. Glas, Daan Dubois, Philippe Binnemans, Koen Hulsbosch, Joris |
| Author_xml | – sequence: 1 givenname: Daan surname: Glas fullname: Glas, Daan organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, box 2461, 3001 Leuven (Belgium) – sequence: 2 givenname: Joris surname: Hulsbosch fullname: Hulsbosch, Joris organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, box 2461, 3001 Leuven (Belgium) – sequence: 3 givenname: Philippe surname: Dubois fullname: Dubois, Philippe organization: Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers, University of Mons, Place du Parc 23, 7000 Mons (Belgium) – sequence: 4 givenname: Koen surname: Binnemans fullname: Binnemans, Koen organization: Division for Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven (Belgium) – sequence: 5 givenname: Dirk E. surname: De Vos fullname: De Vos, Dirk E. email: dirk.devos@biw.kuleuven.be organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, box 2461, 3001 Leuven (Belgium) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24420642$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctv1DAQhy1URB9w5YgscSmHLHbstZ0jSku3aHlILQVxsRx7onXJ2q2dCPLfs9t9CFVCnGZG-r7RaH7H6CDEAAi9pGRCCSnf2pztpCSUEVJJ8gQdUSV4MRX8-8G-Z_QQHed8S4gglRDP0GHJeUkEL49QOg-uiG0x9y3g6wSmX0LocWzxl9iNpzc-jB2uF11M3sEbbILbTsH04B4g6BdjBwFwM-IzWIwuRbtDfAzYB3wZg7d47u8H7_Jz9LQ1XYYX23qCvr4_v65nxfzzxWX9bl5YzhUpnGmZgIZAq6iihAtZKQUA0hnZMGKdsg0tZUmgso5MS-GsVNxYS1xjqkayE3S62XuX4v0AuddLny10nQkQh6wprzgjQqk1-voRehuHFFbXrSnGZVkxtaJebamhWYLTd8kvTRr17psrgG8Am2LOCVptff_whD4Z32lK9Do0vQ5N70NbaZNH2m7zP4VqI_zyHYz_oXV9dVX_7RYb1-cefu9dk35qIZmc6m-fLrT6MTu7-aBm-iP7AygHucc |
| CitedBy_id | crossref_primary_10_1016_j_molliq_2019_111793 crossref_primary_10_1039_C5CP00459D crossref_primary_10_1016_j_envint_2025_109708 crossref_primary_10_1007_s10965_015_0718_2 crossref_primary_10_1039_C4CS00278D crossref_primary_10_1039_C9RA09237D crossref_primary_10_1007_s11356_023_27488_y crossref_primary_10_1002_app_57526 crossref_primary_10_1126_science_adx5285 crossref_primary_10_1016_j_indcrop_2017_02_009 crossref_primary_10_1016_j_polymdegradstab_2016_04_001 crossref_primary_10_3389_fbioe_2022_832413 crossref_primary_10_1016_j_marpolbul_2021_112566 crossref_primary_10_1016_j_biortech_2022_126697 crossref_primary_10_1016_j_jece_2024_112323 crossref_primary_10_1039_D5PY00242G crossref_primary_10_1016_j_jhazmat_2021_125938 crossref_primary_10_1016_j_apcatb_2019_117757 crossref_primary_10_1016_j_marenvres_2020_104949 crossref_primary_10_1016_j_scitotenv_2023_167850 crossref_primary_10_1021_acs_iecr_5c01412 crossref_primary_10_1002_adsu_202000182 crossref_primary_10_1038_s43586_023_00227_w crossref_primary_10_1039_D4EY00082J crossref_primary_10_1021_acssuschemeng_5c04559 crossref_primary_10_1002_cplu_202300184 crossref_primary_10_1016_j_polymdegradstab_2025_111366 crossref_primary_10_1039_D4CY00774C crossref_primary_10_1016_j_chemosphere_2023_137944 crossref_primary_10_1021_jacs_4c16145 crossref_primary_10_1007_s10853_024_10471_4 crossref_primary_10_1038_s41893_023_01234_1 crossref_primary_10_1039_D3SC00945A crossref_primary_10_1039_D3SC06758K crossref_primary_10_1002_chem_202304005 crossref_primary_10_1002_pi_6621 crossref_primary_10_1002_ldr_4957 crossref_primary_10_3390_pr12020306 crossref_primary_10_1038_s41557_024_01462_8 crossref_primary_10_1039_D4SC00130C crossref_primary_10_1016_j_chempr_2020_12_006 crossref_primary_10_1109_ACCESS_2025_3556837 crossref_primary_10_1038_s41467_023_44604_1 crossref_primary_10_1016_j_pmatsci_2022_101035 crossref_primary_10_1007_s40831_023_00681_6 crossref_primary_10_1016_j_envres_2024_120046 crossref_primary_10_7841_ksbbj_2024_39_3_69 crossref_primary_10_1007_s10924_023_02982_z crossref_primary_10_1016_j_scitotenv_2025_178879 crossref_primary_10_1016_j_resconrec_2025_108471 crossref_primary_10_1016_j_cjche_2020_03_011 |
| Cites_doi | 10.1016/S0141-3910(98)00186-4 10.1016/j.elecom.2011.03.024 10.1002/(SICI)1099-0518(19990615)37:12<1857::AID-POLA15>3.0.CO;2-C 10.1016/S0079-6700(02)00036-9 10.1002/jctb.1757 10.1039/b610143g 10.1016/j.polymdegradstab.2010.12.001 10.1093/toxsci/58.2.339 10.1177/0734242X11413329 10.1016/0141-3910(95)00154-9 10.1134/S1070427208090383 10.1039/b714629a 10.1002/(SICI)1097-4628(19981219)70:12<2463::AID-APP19>3.0.CO;2-7 10.1016/0038-1098(83)91053-0 10.1039/b209734f 10.1002/1521-3919(20010901)10:7<729::AID-MATS729>3.0.CO;2-Q 10.1021/ac960947c 10.1016/S0079-6700(02)00063-1 10.1016/j.actbio.2011.10.034 10.1007/s10163-011-0031-z 10.1021/ma011188p 10.1039/b617536h 10.1016/j.molcata.2011.12.001 10.1016/S0079-6700(02)00037-0 10.1039/b516961p 10.1016/0141-3910(94)00086-N 10.1246/bcsj.64.735 10.1139/v78-385 10.1016/S0141-3910(02)00288-4 10.1039/b927106f 10.1007/s10163-010-0286-9 10.1016/j.polymdegradstab.2011.11.005 10.1016/0014-3057(91)90040-U 10.1002/1097-4628(20000912)77:11<2464::AID-APP15>3.0.CO;2-0 10.1002/vnl.10288 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.201300970 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 617 |
| ExternalDocumentID | 3200484101 24420642 10_1002_cssc_201300970 CSSC201300970 ark_67375_WNG_8ZHDVJ8H_M |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: IAP 7‐05 (Belspo) – fundername: KULeuven IOF – fundername: Flemish government – fundername: FWO Flanders – fundername: IWT |
| GroupedDBID | --- 05W 0R~ 1OC 29B 31~ 33P 4.4 5GY 5VS 66C 77Q 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADKYN ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MY~ O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR XV2 ZZTAW ~S- A00 AAHHS AAYOK ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE P4E WYJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4480-daf36eb0ef81810467988eee7da7b30cd8cb12720e9cd0526dc784acc0dba9b73 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336804000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Thu Oct 02 12:17:57 EDT 2025 Sat Nov 29 14:59:54 EST 2025 Wed Feb 19 01:56:25 EST 2025 Thu Oct 16 04:24:06 EDT 2025 Tue Nov 18 21:53:10 EST 2025 Wed Jan 22 17:06:06 EST 2025 Sun Sep 21 06:18:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | ionic liquids polymers waste prevention chlorine environmental chemistry |
| Language | English |
| License | Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4480-daf36eb0ef81810467988eee7da7b30cd8cb12720e9cd0526dc784acc0dba9b73 |
| Notes | KULeuven IOF IAP 7-05 (Belspo) IWT Flemish government ark:/67375/WNG-8ZHDVJ8H-M FWO Flanders ArticleID:CSSC201300970 istex:20CEC2749DFBECC42DC2EF11D46893690EB59B79 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 24420642 |
| PQID | 1493472938 |
| PQPubID | 986333 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1494306887 proquest_journals_1493472938 pubmed_primary_24420642 crossref_citationtrail_10_1002_cssc_201300970 crossref_primary_10_1002_cssc_201300970 wiley_primary_10_1002_cssc_201300970_CSSC201300970 istex_primary_ark_67375_WNG_8ZHDVJ8H_M |
| PublicationCentury | 2000 |
| PublicationDate | February 2014 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: February 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2014 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | D. Braun, Prog. Polym. Sci. 2002, 27, 2171-2195. C. J. Kibert, Sustainable Construction: Green Building Design and Delivery, Wiley-VCH, Weinheim, 2012, p. 377-378. A. M. A. Dias, S. Marceneiro, M. E. M. Braga, J. F. J. Coelho, A. G. M. Ferreira, P. N. Simoes, H. I. M. Veiga, L. C. Tome, I. M. Marrucho, J. Esperanca, A. A. Matias, C. M. M. Duarte, L. P. N. Rebelo, H. C. de Sousa, Acta Biomater. 2012, 8, 1366-1379. M. M. Hossain, S. N. Faisal, C. S. Kim, H. J. Cha, S. C. Nam, H. J. Lee, Electrochem. Commun. 2011, 13, 611-614. G. Grause, A. Buekens, Y. Sakata, A. Okuwaki, T. Yoshioka, J. Mater. Cycles Waste Manage. 2011, 13, 265-282. N. Mersiowsky, Prog. Polym. Sci. 2002, 27, 2227-2277. S. W. Craig, J. A. Manzer, E. B. Coughlin, Macromolecules 2001, 34, 7929-7931. M. D. Watson, K. B. Wagener, J. Polym. Sci. Part A 1999, 37, 1857-1861. T. Zhao, Q. Zhou, X.-L. He, S.-D. Wei, L. Wang, J. M. N. van Kasteren, Y.-Z. Wang, Green Chem. 2010, 12, 1062-1065. R. Lungwitz, S. Spange, New J. Chem. 2008, 32, 392-394. L. Guo, G. Q. Shi, X. Z. Du, C. Li, Y. Q. Liang, J. Appl. Polym. Sci. 1998, 70, 2463-2469. P. van der Gryp, S. Marx, H. C. M. Vosloo, J. Mol. Catal. A 2012, 355, 85-95. M. A. Tlenkopatchev, A. Barcenas, S. Fomine, Macromol. Theory Simul. 2001, 10, 729-735. C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson, Y. H. Zhou, Green Chem. 2003, 5, 143-152. D. Braun, J. Vinyl Addit. Technol. 2001, 7, 168-176. N. Winterton, J. Mater. Chem. 2006, 16, 4281-4293. F. C. Y. Wang, P. B. Smith, Anal. Chem. 1997, 69, 618-622. W. H. Starnes, Prog. Polym. Sci. 2002, 27, 2133-2170. S. M. D. Prestes, S. D. Mancini, A. Rodolfo, R. C. Keiroglo, Waste Manage. Res. 2012, 30, 115-121. X.-L. He, Q. Zhou, X.-Y. Li, P. Yang, J. M. N. van Kasteren, Y.-Z. Wang, Polym. Degrad. Stab. 2012, 97, 145-148. R. Miranda, J. Yang, C. Roy, C. Vasile, Polym. Degrad. Stab. 1999, 64, 127-144. J. P. Guthrie, Can. J. Chem. 1978, 56, 2342-2354. M. Sadat-Shojai, G.-R. Bakhshandeh, Polym. Degrad. Stab. 2011, 96, 404-415. M. A. Keane, J. Chem. Technol. Biotechnol. 2007, 82, 787-795. L. G. Parks, J. S. Ostby, C. R. Lambright, B. D. Abbott, G. R. Klinefelter, N. J. Barlow, L. E. Gray, Toxicol. Sci. 2000, 58, 339-349. Y. Uemichi, K. Takuma, M. Sugioka, T. Kanazuka, Bull. Chem. Soc. Jpn. 1991, 64, 735-737. C. Capello, U. Fischer, K. Hungerbuehler, Green Chem. 2007, 9, 927-934. A. Holländer, H. Zimmermann, J. Behnisch, Eur. Polym. J. 1991, 27, 959-963. D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, M. Forsyth, Chem. Commun. 2006, 1905-1917. R. D. Sun, H. Irie, T. Nishikawa, A. Nakajima, T. Watanabe, K. Hashimoto, Polym. Degrad. Stab. 2003, 79, 253-256. A. A. Fedorov, Y. S. Checkryshkin, O. V. Rudometova, Z. A. Vnutskikh, Russ. J. Appl. Chem. 2008, 81, 1673-1685. A. Buekens, A. Sevenster, J. Mater. Cycles Waste Manage. 2010, 12, 184-192. W. H. Cheng, Y. C. Liang, J. Appl. Polym. Sci. 2000, 77, 2464-2471. M. Mehring, H. Weber, W. Muller, G. Wegner, Solid State Commun. 1983, 45, 1079-1082. E. D. Owen, M. Shah, M. V. Twigg, Polym. Degrad. Stab. 1996, 51, 151-158. R. Bacaloglu, M. Fisch, Polym. Degrad. Stab. 1995, 47, 33-57. 2010; 12 2012 1978; 56 2006; 16 1997; 69 2003; 79 2011; 96 1996; 51 2006 1999; 64 2011; 13 2008; 32 2012; 97 2012; 30 2002; 27 1991; 27 2012; 355 2001; 7 2000; 58 1995; 47 2000; 77 1991; 64 1999; 37 2007; 9 2003; 5 2007; 82 1998; 70 2001; 34 2008; 81 2012; 8 1983; 45 2001; 10 e_1_2_6_31_2 e_1_2_6_30_2 Kibert C. J. (e_1_2_6_3_2) 2012 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
| References_xml | – reference: D. Braun, Prog. Polym. Sci. 2002, 27, 2171-2195. – reference: S. M. D. Prestes, S. D. Mancini, A. Rodolfo, R. C. Keiroglo, Waste Manage. Res. 2012, 30, 115-121. – reference: L. G. Parks, J. S. Ostby, C. R. Lambright, B. D. Abbott, G. R. Klinefelter, N. J. Barlow, L. E. Gray, Toxicol. Sci. 2000, 58, 339-349. – reference: P. van der Gryp, S. Marx, H. C. M. Vosloo, J. Mol. Catal. A 2012, 355, 85-95. – reference: C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson, Y. H. Zhou, Green Chem. 2003, 5, 143-152. – reference: G. Grause, A. Buekens, Y. Sakata, A. Okuwaki, T. Yoshioka, J. Mater. Cycles Waste Manage. 2011, 13, 265-282. – reference: M. A. Tlenkopatchev, A. Barcenas, S. Fomine, Macromol. Theory Simul. 2001, 10, 729-735. – reference: J. P. Guthrie, Can. J. Chem. 1978, 56, 2342-2354. – reference: R. Miranda, J. Yang, C. Roy, C. Vasile, Polym. Degrad. Stab. 1999, 64, 127-144. – reference: D. Braun, J. Vinyl Addit. Technol. 2001, 7, 168-176. – reference: T. Zhao, Q. Zhou, X.-L. He, S.-D. Wei, L. Wang, J. M. N. van Kasteren, Y.-Z. Wang, Green Chem. 2010, 12, 1062-1065. – reference: W. H. Cheng, Y. C. Liang, J. Appl. Polym. Sci. 2000, 77, 2464-2471. – reference: E. D. Owen, M. Shah, M. V. Twigg, Polym. Degrad. Stab. 1996, 51, 151-158. – reference: A. A. Fedorov, Y. S. Checkryshkin, O. V. Rudometova, Z. A. Vnutskikh, Russ. J. Appl. Chem. 2008, 81, 1673-1685. – reference: R. Lungwitz, S. Spange, New J. Chem. 2008, 32, 392-394. – reference: A. Holländer, H. Zimmermann, J. Behnisch, Eur. Polym. J. 1991, 27, 959-963. – reference: M. A. Keane, J. Chem. Technol. Biotechnol. 2007, 82, 787-795. – reference: A. M. A. Dias, S. Marceneiro, M. E. M. Braga, J. F. J. Coelho, A. G. M. Ferreira, P. N. Simoes, H. I. M. Veiga, L. C. Tome, I. M. Marrucho, J. Esperanca, A. A. Matias, C. M. M. Duarte, L. P. N. Rebelo, H. C. de Sousa, Acta Biomater. 2012, 8, 1366-1379. – reference: N. Mersiowsky, Prog. Polym. Sci. 2002, 27, 2227-2277. – reference: R. Bacaloglu, M. Fisch, Polym. Degrad. Stab. 1995, 47, 33-57. – reference: X.-L. He, Q. Zhou, X.-Y. Li, P. Yang, J. M. N. van Kasteren, Y.-Z. Wang, Polym. Degrad. Stab. 2012, 97, 145-148. – reference: A. Buekens, A. Sevenster, J. Mater. Cycles Waste Manage. 2010, 12, 184-192. – reference: C. Capello, U. Fischer, K. Hungerbuehler, Green Chem. 2007, 9, 927-934. – reference: M. M. Hossain, S. N. Faisal, C. S. Kim, H. J. Cha, S. C. Nam, H. J. Lee, Electrochem. Commun. 2011, 13, 611-614. – reference: M. Sadat-Shojai, G.-R. Bakhshandeh, Polym. Degrad. Stab. 2011, 96, 404-415. – reference: C. J. Kibert, Sustainable Construction: Green Building Design and Delivery, Wiley-VCH, Weinheim, 2012, p. 377-378. – reference: M. Mehring, H. Weber, W. Muller, G. Wegner, Solid State Commun. 1983, 45, 1079-1082. – reference: N. Winterton, J. Mater. Chem. 2006, 16, 4281-4293. – reference: W. H. Starnes, Prog. Polym. Sci. 2002, 27, 2133-2170. – reference: R. D. Sun, H. Irie, T. Nishikawa, A. Nakajima, T. Watanabe, K. Hashimoto, Polym. Degrad. Stab. 2003, 79, 253-256. – reference: F. C. Y. Wang, P. B. Smith, Anal. Chem. 1997, 69, 618-622. – reference: D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, M. Forsyth, Chem. Commun. 2006, 1905-1917. – reference: L. Guo, G. Q. Shi, X. Z. Du, C. Li, Y. Q. Liang, J. Appl. Polym. Sci. 1998, 70, 2463-2469. – reference: S. W. Craig, J. A. Manzer, E. B. Coughlin, Macromolecules 2001, 34, 7929-7931. – reference: Y. Uemichi, K. Takuma, M. Sugioka, T. Kanazuka, Bull. Chem. Soc. Jpn. 1991, 64, 735-737. – reference: M. D. Watson, K. B. Wagener, J. Polym. Sci. Part A 1999, 37, 1857-1861. – volume: 27 start-page: 959 year: 1991 end-page: 963 publication-title: Eur. Polym. J. – volume: 12 start-page: 1062 year: 2010 end-page: 1065 publication-title: Green Chem. – volume: 37 start-page: 1857 year: 1999 end-page: 1861 publication-title: J. Polym. Sci. Part A – volume: 12 start-page: 184 year: 2010 end-page: 192 publication-title: J. Mater. Cycles Waste Manage. – start-page: 1905 year: 2006 end-page: 1917 publication-title: Chem. Commun. – volume: 32 start-page: 392 year: 2008 end-page: 394 publication-title: New J. Chem. – volume: 82 start-page: 787 year: 2007 end-page: 795 publication-title: J. Chem. Technol. Biotechnol. – volume: 34 start-page: 7929 year: 2001 end-page: 7931 publication-title: Macromolecules – volume: 13 start-page: 611 year: 2011 end-page: 614 publication-title: Electrochem. Commun. – volume: 27 start-page: 2133 year: 2002 end-page: 2170 publication-title: Prog. Polym. Sci. – volume: 51 start-page: 151 year: 1996 end-page: 158 publication-title: Polym. Degrad. Stab. – volume: 9 start-page: 927 year: 2007 end-page: 934 publication-title: Green Chem. – volume: 64 start-page: 735 year: 1991 end-page: 737 publication-title: Bull. Chem. Soc. Jpn. – volume: 27 start-page: 2227 year: 2002 end-page: 2277 publication-title: Prog. Polym. Sci. – volume: 70 start-page: 2463 year: 1998 end-page: 2469 publication-title: J. Appl. Polym. Sci. – volume: 355 start-page: 85 year: 2012 end-page: 95 publication-title: J. Mol. Catal. A – volume: 45 start-page: 1079 year: 1983 end-page: 1082 publication-title: Solid State Commun. – volume: 8 start-page: 1366 year: 2012 end-page: 1379 publication-title: Acta Biomater. – volume: 77 start-page: 2464 year: 2000 end-page: 2471 publication-title: J. Appl. Polym. Sci. – volume: 96 start-page: 404 year: 2011 end-page: 415 publication-title: Polym. Degrad. Stab. – volume: 5 start-page: 143 year: 2003 end-page: 152 publication-title: Green Chem. – volume: 56 start-page: 2342 year: 1978 end-page: 2354 publication-title: Can. J. Chem. – volume: 69 start-page: 618 year: 1997 end-page: 622 publication-title: Anal. Chem. – volume: 81 start-page: 1673 year: 2008 end-page: 1685 publication-title: Russ. J. Appl. Chem. – volume: 30 start-page: 115 year: 2012 end-page: 121 publication-title: Waste Manage. Res. – start-page: 377 year: 2012 end-page: 378 – volume: 58 start-page: 339 year: 2000 end-page: 349 publication-title: Toxicol. Sci. – volume: 47 start-page: 33 year: 1995 end-page: 57 publication-title: Polym. Degrad. Stab. – volume: 16 start-page: 4281 year: 2006 end-page: 4293 publication-title: J. Mater. Chem. – volume: 64 start-page: 127 year: 1999 end-page: 144 publication-title: Polym. Degrad. Stab. – volume: 13 start-page: 265 year: 2011 end-page: 282 publication-title: J. Mater. Cycles Waste Manage. – volume: 97 start-page: 145 year: 2012 end-page: 148 publication-title: Polym. Degrad. Stab. – volume: 27 start-page: 2171 year: 2002 end-page: 2195 publication-title: Prog. Polym. Sci. – volume: 10 start-page: 729 year: 2001 end-page: 735 publication-title: Macromol. Theory Simul. – volume: 79 start-page: 253 year: 2003 end-page: 256 publication-title: Polym. Degrad. Stab. – volume: 7 start-page: 168 year: 2001 end-page: 176 publication-title: J. Vinyl Addit. Technol. – ident: e_1_2_6_13_2 doi: 10.1016/S0141-3910(98)00186-4 – ident: e_1_2_6_27_2 doi: 10.1016/j.elecom.2011.03.024 – ident: e_1_2_6_33_2 doi: 10.1002/(SICI)1099-0518(19990615)37:12<1857::AID-POLA15>3.0.CO;2-C – ident: e_1_2_6_2_2 doi: 10.1016/S0079-6700(02)00036-9 – ident: e_1_2_6_7_2 doi: 10.1002/jctb.1757 – ident: e_1_2_6_24_2 doi: 10.1039/b610143g – ident: e_1_2_6_4_2 doi: 10.1016/j.polymdegradstab.2010.12.001 – ident: e_1_2_6_9_2 doi: 10.1093/toxsci/58.2.339 – ident: e_1_2_6_10_2 doi: 10.1177/0734242X11413329 – ident: e_1_2_6_18_2 doi: 10.1016/0141-3910(95)00154-9 – ident: e_1_2_6_19_2 doi: 10.1134/S1070427208090383 – ident: e_1_2_6_29_2 doi: 10.1039/b714629a – ident: e_1_2_6_17_2 doi: 10.1002/(SICI)1097-4628(19981219)70:12<2463::AID-APP19>3.0.CO;2-7 – ident: e_1_2_6_31_2 doi: 10.1016/0038-1098(83)91053-0 – start-page: 377 volume-title: Sustainable Construction: Green Building Design and Delivery year: 2012 ident: e_1_2_6_3_2 – ident: e_1_2_6_30_2 doi: 10.1039/b209734f – ident: e_1_2_6_35_2 doi: 10.1002/1521-3919(20010901)10:7<729::AID-MATS729>3.0.CO;2-Q – ident: e_1_2_6_25_2 doi: 10.1021/ac960947c – ident: e_1_2_6_5_2 doi: 10.1016/S0079-6700(02)00063-1 – ident: e_1_2_6_6_2 doi: 10.1016/j.actbio.2011.10.034 – ident: e_1_2_6_14_2 doi: 10.1007/s10163-011-0031-z – ident: e_1_2_6_34_2 doi: 10.1021/ma011188p – ident: e_1_2_6_11_2 doi: 10.1039/b617536h – ident: e_1_2_6_36_2 doi: 10.1016/j.molcata.2011.12.001 – ident: e_1_2_6_12_2 doi: 10.1016/S0079-6700(02)00037-0 – ident: e_1_2_6_26_2 doi: 10.1039/b516961p – ident: e_1_2_6_32_2 doi: 10.1016/0141-3910(94)00086-N – ident: e_1_2_6_20_2 doi: 10.1246/bcsj.64.735 – ident: e_1_2_6_28_2 doi: 10.1139/v78-385 – ident: e_1_2_6_23_2 doi: 10.1016/S0141-3910(02)00288-4 – ident: e_1_2_6_21_2 doi: 10.1039/b927106f – ident: e_1_2_6_8_2 doi: 10.1007/s10163-010-0286-9 – ident: e_1_2_6_22_2 doi: 10.1016/j.polymdegradstab.2011.11.005 – ident: e_1_2_6_16_2 doi: 10.1016/0014-3057(91)90040-U – ident: e_1_2_6_15_2 doi: 10.1002/1097-4628(20000912)77:11<2464::AID-APP15>3.0.CO;2-0 – ident: e_1_2_6_1_2 doi: 10.1002/vnl.10288 |
| SSID | ssj0060966 |
| Score | 2.3603349 |
| Snippet | There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 610 |
| SubjectTerms | chlorine environmental chemistry Halogenation Imidazoles - chemistry ionic liquids Ionic Liquids - chemistry Kinetics Polyethylene - chemistry polymers Polyvinyl Chloride - chemistry waste prevention |
| Title | End-of-Life Treatment of Poly(Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids |
| URI | https://api.istex.fr/ark:/67375/WNG-8ZHDVJ8H-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201300970 https://www.ncbi.nlm.nih.gov/pubmed/24420642 https://www.proquest.com/docview/1493472938 https://www.proquest.com/docview/1494306887 |
| Volume | 7 |
| WOSCitedRecordID | wos000336804000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9NADLagRYIX7iOwrAYJcTxEmybpTPKI2i0FlWrFHlT7Es0VbUSVQLNd0Td-Ar-RX4KdCyqBkOAlShQnGY3tsR17PgM85cjnNFCeqw3nLgpF6MqBxsXQ6NSEA-1ZT1bNJsR8Hi0W8cEvu_hrfIjuhxtpRrVek4JLVe79BA3VZUkQhJSOiQUG7X0fhXfYg_74_eR41q7GHF30aodRxEN3yINBC9zo-Xvbb9gyTH2a4y-_8zq3ndjKCk1u_P_4b8L1xgNlr2qRuQWXbH4bro7axm934GI_N9-_fitSPMyy1LKjthidFSk7KJabFydZvlmy0RmV7xn7ksncNFc5-q6mIrIoAmjSLFMbNrZnG0PNuRoSFAaW5ewN4fKyWfZ5nZnyLhxP9o9GU7dpz-BqjOk818g04FZ5NkWjT6ligj6z1gojhQo8Ah1QA0rz2lgbgpUxWkSh1NozSsZKBPeglxe5fQDMMxgoK05IoTyUVikjhjzyUvS-uBY6dMBteZPoBrucWmgskxp12U9oNpNuNh143tF_qlE7_kj5rGJ1RyZXH6nWTQyTD_PXSXQ6HZ-8jabJOwd2WllIGjUvMW6KgxDDkyBy4El3G9lFWReZ22Jd0YQBtfYRDtyvZaj7GPpWPkWADviVqPxlsMno8HDUXT38l4cewTU8D-u68x3ona_W9jFc0RfnWbnahctiEe02KvQDjfQc1g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQijReuF8CA4yEuDxESxvXTh5RutJBVk2sG9NeLN-iRVQJtOtE3_gJ_EZ-CefkhiqBkBAvkZyc3OzPPufYx98h5DmHds5CHfjGcu4DKJiv-gYGQ2syy_omcIGqkk2I6TQ6PY0Pm2hC3AtT80N0E27YM6rxGjs4Tkjv_mINNcslchDiekwswGvvMcASgLw3-jA-TtvhmIONXm0xijjzhzzst8yNwWB38wkbmqmHlfz1d2bnphVbqaHxjf_wAzfJ9cYGpW9q0NwiV1xxm2wnbeq3O-Ryr7A_vn0vMzikeeborA1Hp2VGD8v5-tVJXqznNDnHAD7rXlNV2KZUgPVqKyEHIACl5qhe05E7X1tMz9WIABxoXtB9ZOalaf5lldvlXXI83pslE79J0OAb8OoC36os5E4HLgO1j4vFSH7mnBNWCR0GSDug-7jQ62JjkVjGGhExZUxgtYq1CO-RraIs3ANCAwuusubIFcqZclpbMeRRkIH9xY0wzCN-2zjSNOzlmERjLmve5YHE2pRdbXrkZSf_uebt-KPki6qtOzG1-ITRbmIoP07fyuhsMjp5F03kgUd2WjDIpqMvwXOKQwYOShh55Fl3GZoL111U4cpVJcNCTO4jPHK_BlH3MrCuBugDemRQYeUvHyuTo6OkKz38l5ueku3J7CCV6f70_SNyDc6zOgp9h2xdLFbuMblqLi_y5eJJ05N-At8RH94 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9NADLZQi2BfuGEDCwwS4niIdtpMJ8kjSrd0oVQVe4qX0VzRRlTJ0m5X9I2fwG_klzDOhSqBkBAvkZI419ge27HnM8Bz7vicBor62nDuO6FgvuxpNxkanRrW09RSWTabCKfT6PQ0ntXVhLgWpsKHaH-4oWaU8zUquD036e4v1FC9XCIGIeZj4tBF7V2GnWQ60B1-HB1NmumYOx-9XGIUceYPeNBrkBtpf3fzDhuWqYuD_PV3buemF1uaodHN__ABt-BG7YOSN5XQ3IYrNr8D15Om9dtduNzLzY9v34vUbSZZaslhU45OipTMivn61XGWr-ckOcMCPmNfE5mbei933qspiawTAmfULFFrMrRna4PtuWoSJw4ky8k-IvOSSfZllZnlPTga7R0mY79u0OBrF9VR38g04FZRmzqzj8liBD-z1oZGhiqgCDugepjotbE2CCxjdBgxqTU1SsYqDO5DJy9yuw2EGhcqK45YoZxJq5QJBzyiqfO_uA4188BvmCN0jV6OTTTmosJd7gscTdGOpgcvW_rzCrfjj5QvSl63ZHLxGavdwoE4mb4V0afx8PhdNBYfPNhphEHUir50kVMcMBegBJEHz9rTjl2Yd5G5LVYlDQuwuU_owYNKiNqHOe-qjzGgB_1SVv7ysiI5OEjavYf_ctFTuDYbjsRkf_r-EWy5w6wqQt-BzsViZR_DVX15kS0XT2pF-gk7gx9Z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End%E2%80%90of%E2%80%90Life+Treatment+of+Poly%28Vinyl+Chloride%29+and+Chlorinated+Polyethylene+by+Dehydrochlorination+in+Ionic+Liquids&rft.jtitle=ChemSusChem&rft.au=Glas%2C+Daan&rft.au=Hulsbosch%2C+Joris&rft.au=Dubois%2C+Philippe&rft.au=Binnemans%2C+Koen&rft.date=2014-02-01&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=7&rft.issue=2&rft.spage=610&rft.epage=617&rft_id=info:doi/10.1002%2Fcssc.201300970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_201300970 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |