End-of-Life Treatment of Poly(Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids

There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ChemSusChem Ročník 7; číslo 2; s. 610 - 617
Hlavní autori: Glas, Daan, Hulsbosch, Joris, Dubois, Philippe, Binnemans, Koen, De Vos, Dirk E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim WILEY-VCH Verlag 01.02.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Predmet:
ISSN:1864-5631, 1864-564X, 1864-564X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen‐bond‐accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm3) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by 13C cross‐polarization magic‐angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda–Grubbs second‐generation catalyst to yield α,ω‐dienes such as 1,5‐hexadiene and 1,6‐heptadiene. Easy as PVC: Thermally stable phosphonium ionic liquids (ILs) are the solvent and catalyst for the dehydrochlorination of polymers such as poly(vinyl chloride) (PVC). The true dissolution of PVC by ILs can facilitate the complete HCl elimination from the polymer chains. The dehydrochlorinated materials are characterized in detail and some of them are successfully depolymerized in a catalytic reverse acyclic diene metathesis (ADMET) process.
AbstractList There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen‐bond‐accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm3) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by 13C cross‐polarization magic‐angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda–Grubbs second‐generation catalyst to yield α,ω‐dienes such as 1,5‐hexadiene and 1,6‐heptadiene. Easy as PVC: Thermally stable phosphonium ionic liquids (ILs) are the solvent and catalyst for the dehydrochlorination of polymers such as poly(vinyl chloride) (PVC). The true dissolution of PVC by ILs can facilitate the complete HCl elimination from the polymer chains. The dehydrochlorinated materials are characterized in detail and some of them are successfully depolymerized in a catalytic reverse acyclic diene metathesis (ADMET) process.
There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen‐bond‐accepting ability ( β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P 4444 ][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm 3 ) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P 4444 ][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by 13 C cross‐polarization magic‐angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda–Grubbs second‐generation catalyst to yield α,ω‐dienes such as 1,5‐hexadiene and 1,6‐heptadiene.
There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen-bond-accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444 ][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm(3) ) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444 ][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by (13) C cross-polarization magic-angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda-Grubbs second-generation catalyst to yield α,ω-dienes such as 1,5-hexadiene and 1,6-heptadiene.There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen-bond-accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444 ][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm(3) ) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444 ][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by (13) C cross-polarization magic-angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda-Grubbs second-generation catalyst to yield α,ω-dienes such as 1,5-hexadiene and 1,6-heptadiene.
There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen-bond-accepting ability ([beta] value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80°C. PVC is dehydrochlorinated up to 98% after 60min in tetrabutylphosphonium chloride ([P4444][Cl]) at 180°C. PVC pieces stabilized by calcium stearate (4mm3) are dehydrochlorinated more slowly; conversions of 85 and 96% are reached after 1 and 8h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3g stabilized PVC in 0.5g IL, can be applied with only a minor loss of conversion. [P4444][Cl] proved to be stable during several consecutive reactions; after each run more than 99% of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by 13Ccross-polarization magic-angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda-Grubbs second-generation catalyst to yield [alpha],[omega]-dienes such as 1,5-hexadiene and 1,6-heptadiene. [PUBLICATION ABSTRACT]
There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to dehydrochlorinate and/or dissolve the chlorinated polymers poly(vinyl chloride) (PVC) and chlorinated polyethylene (CPE). The dehydrochlorination activity of an IL depends mainly on its anion and is related to the high hydrogen-bond-accepting ability (β value) of the anion. Different phosphonium ILs successfully dissolve and dehydrochlorinate PVC and CPE at temperatures from 80 °C. PVC is dehydrochlorinated up to 98 % after 60 min in tetrabutylphosphonium chloride ([P4444 ][Cl]) at 180 °C. PVC pieces stabilized by calcium stearate (4 mm(3) ) are dehydrochlorinated more slowly; conversions of 85 and 96 % are reached after 1 and 8 h, respectively. Smaller pieces are dehydrochlorinated faster. High loadings, for example, 0.3 g stabilized PVC in 0.5 g IL, can be applied with only a minor loss of conversion. [P4444 ][Cl] proved to be stable during several consecutive reactions; after each run more than 99 % of the IL can be recovered. The structure of the dehydrochlorinated PVC was studied by (13) C cross-polarization magic-angle spinning NMR and FTIR spectroscopy; the removal of Cl and the formation of double bonds were confirmed. Carefully dehydrochlorinated CPE was processed further by acyclic diene metathesis depolymerization with ethylene and the Hoveyda-Grubbs second-generation catalyst to yield α,ω-dienes such as 1,5-hexadiene and 1,6-heptadiene.
Author De Vos, Dirk E.
Glas, Daan
Dubois, Philippe
Binnemans, Koen
Hulsbosch, Joris
Author_xml – sequence: 1
  givenname: Daan
  surname: Glas
  fullname: Glas, Daan
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, box 2461, 3001 Leuven (Belgium)
– sequence: 2
  givenname: Joris
  surname: Hulsbosch
  fullname: Hulsbosch, Joris
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, box 2461, 3001 Leuven (Belgium)
– sequence: 3
  givenname: Philippe
  surname: Dubois
  fullname: Dubois, Philippe
  organization: Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers, University of Mons, Place du Parc 23, 7000 Mons (Belgium)
– sequence: 4
  givenname: Koen
  surname: Binnemans
  fullname: Binnemans, Koen
  organization: Division for Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven (Belgium)
– sequence: 5
  givenname: Dirk E.
  surname: De Vos
  fullname: De Vos, Dirk E.
  email: dirk.devos@biw.kuleuven.be
  organization: Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, box 2461, 3001 Leuven (Belgium)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24420642$$D View this record in MEDLINE/PubMed
BookMark eNqFkctv1DAQhy1URB9w5YgscSmHLHbstZ0jSku3aHlILQVxsRx7onXJ2q2dCPLfs9t9CFVCnGZG-r7RaH7H6CDEAAi9pGRCCSnf2pztpCSUEVJJ8gQdUSV4MRX8-8G-Z_QQHed8S4gglRDP0GHJeUkEL49QOg-uiG0x9y3g6wSmX0LocWzxl9iNpzc-jB2uF11M3sEbbILbTsH04B4g6BdjBwFwM-IzWIwuRbtDfAzYB3wZg7d47u8H7_Jz9LQ1XYYX23qCvr4_v65nxfzzxWX9bl5YzhUpnGmZgIZAq6iihAtZKQUA0hnZMGKdsg0tZUmgso5MS-GsVNxYS1xjqkayE3S62XuX4v0AuddLny10nQkQh6wprzgjQqk1-voRehuHFFbXrSnGZVkxtaJebamhWYLTd8kvTRr17psrgG8Am2LOCVptff_whD4Z32lK9Do0vQ5N70NbaZNH2m7zP4VqI_zyHYz_oXV9dVX_7RYb1-cefu9dk35qIZmc6m-fLrT6MTu7-aBm-iP7AygHucc
CitedBy_id crossref_primary_10_1016_j_molliq_2019_111793
crossref_primary_10_1039_C5CP00459D
crossref_primary_10_1016_j_envint_2025_109708
crossref_primary_10_1007_s10965_015_0718_2
crossref_primary_10_1039_C4CS00278D
crossref_primary_10_1039_C9RA09237D
crossref_primary_10_1007_s11356_023_27488_y
crossref_primary_10_1002_app_57526
crossref_primary_10_1126_science_adx5285
crossref_primary_10_1016_j_indcrop_2017_02_009
crossref_primary_10_1016_j_polymdegradstab_2016_04_001
crossref_primary_10_3389_fbioe_2022_832413
crossref_primary_10_1016_j_marpolbul_2021_112566
crossref_primary_10_1016_j_biortech_2022_126697
crossref_primary_10_1016_j_jece_2024_112323
crossref_primary_10_1039_D5PY00242G
crossref_primary_10_1016_j_jhazmat_2021_125938
crossref_primary_10_1016_j_apcatb_2019_117757
crossref_primary_10_1016_j_marenvres_2020_104949
crossref_primary_10_1016_j_scitotenv_2023_167850
crossref_primary_10_1021_acs_iecr_5c01412
crossref_primary_10_1002_adsu_202000182
crossref_primary_10_1038_s43586_023_00227_w
crossref_primary_10_1039_D4EY00082J
crossref_primary_10_1021_acssuschemeng_5c04559
crossref_primary_10_1002_cplu_202300184
crossref_primary_10_1016_j_polymdegradstab_2025_111366
crossref_primary_10_1039_D4CY00774C
crossref_primary_10_1016_j_chemosphere_2023_137944
crossref_primary_10_1021_jacs_4c16145
crossref_primary_10_1007_s10853_024_10471_4
crossref_primary_10_1038_s41893_023_01234_1
crossref_primary_10_1039_D3SC00945A
crossref_primary_10_1039_D3SC06758K
crossref_primary_10_1002_chem_202304005
crossref_primary_10_1002_pi_6621
crossref_primary_10_1002_ldr_4957
crossref_primary_10_3390_pr12020306
crossref_primary_10_1038_s41557_024_01462_8
crossref_primary_10_1039_D4SC00130C
crossref_primary_10_1016_j_chempr_2020_12_006
crossref_primary_10_1109_ACCESS_2025_3556837
crossref_primary_10_1038_s41467_023_44604_1
crossref_primary_10_1016_j_pmatsci_2022_101035
crossref_primary_10_1007_s40831_023_00681_6
crossref_primary_10_1016_j_envres_2024_120046
crossref_primary_10_7841_ksbbj_2024_39_3_69
crossref_primary_10_1007_s10924_023_02982_z
crossref_primary_10_1016_j_scitotenv_2025_178879
crossref_primary_10_1016_j_resconrec_2025_108471
crossref_primary_10_1016_j_cjche_2020_03_011
Cites_doi 10.1016/S0141-3910(98)00186-4
10.1016/j.elecom.2011.03.024
10.1002/(SICI)1099-0518(19990615)37:12<1857::AID-POLA15>3.0.CO;2-C
10.1016/S0079-6700(02)00036-9
10.1002/jctb.1757
10.1039/b610143g
10.1016/j.polymdegradstab.2010.12.001
10.1093/toxsci/58.2.339
10.1177/0734242X11413329
10.1016/0141-3910(95)00154-9
10.1134/S1070427208090383
10.1039/b714629a
10.1002/(SICI)1097-4628(19981219)70:12<2463::AID-APP19>3.0.CO;2-7
10.1016/0038-1098(83)91053-0
10.1039/b209734f
10.1002/1521-3919(20010901)10:7<729::AID-MATS729>3.0.CO;2-Q
10.1021/ac960947c
10.1016/S0079-6700(02)00063-1
10.1016/j.actbio.2011.10.034
10.1007/s10163-011-0031-z
10.1021/ma011188p
10.1039/b617536h
10.1016/j.molcata.2011.12.001
10.1016/S0079-6700(02)00037-0
10.1039/b516961p
10.1016/0141-3910(94)00086-N
10.1246/bcsj.64.735
10.1139/v78-385
10.1016/S0141-3910(02)00288-4
10.1039/b927106f
10.1007/s10163-010-0286-9
10.1016/j.polymdegradstab.2011.11.005
10.1016/0014-3057(91)90040-U
10.1002/1097-4628(20000912)77:11<2464::AID-APP15>3.0.CO;2-0
10.1002/vnl.10288
ContentType Journal Article
Copyright Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201300970
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 617
ExternalDocumentID 3200484101
24420642
10_1002_cssc_201300970
CSSC201300970
ark_67375_WNG_8ZHDVJ8H_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: IAP 7‐05 (Belspo)
– fundername: KULeuven IOF
– fundername: Flemish government
– fundername: FWO Flanders
– fundername: IWT
GroupedDBID ---
05W
0R~
1OC
29B
31~
33P
4.4
5GY
5VS
66C
77Q
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADKYN
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY~
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
XV2
ZZTAW
~S-
A00
AAHHS
AAYOK
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
P4E
WYJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4480-daf36eb0ef81810467988eee7da7b30cd8cb12720e9cd0526dc784acc0dba9b73
IEDL.DBID DRFUL
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336804000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Thu Oct 02 12:17:57 EDT 2025
Sat Nov 29 14:59:54 EST 2025
Wed Feb 19 01:56:25 EST 2025
Thu Oct 16 04:24:06 EDT 2025
Tue Nov 18 21:53:10 EST 2025
Wed Jan 22 17:06:06 EST 2025
Sun Sep 21 06:18:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ionic liquids
polymers
waste prevention
chlorine
environmental chemistry
Language English
License Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4480-daf36eb0ef81810467988eee7da7b30cd8cb12720e9cd0526dc784acc0dba9b73
Notes KULeuven IOF
IAP 7-05 (Belspo)
IWT
Flemish government
ark:/67375/WNG-8ZHDVJ8H-M
FWO Flanders
ArticleID:CSSC201300970
istex:20CEC2749DFBECC42DC2EF11D46893690EB59B79
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24420642
PQID 1493472938
PQPubID 986333
PageCount 8
ParticipantIDs proquest_miscellaneous_1494306887
proquest_journals_1493472938
pubmed_primary_24420642
crossref_citationtrail_10_1002_cssc_201300970
crossref_primary_10_1002_cssc_201300970
wiley_primary_10_1002_cssc_201300970_CSSC201300970
istex_primary_ark_67375_WNG_8ZHDVJ8H_M
PublicationCentury 2000
PublicationDate February 2014
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References D. Braun, Prog. Polym. Sci. 2002, 27, 2171-2195.
C. J. Kibert, Sustainable Construction: Green Building Design and Delivery, Wiley-VCH, Weinheim, 2012, p. 377-378.
A. M. A. Dias, S. Marceneiro, M. E. M. Braga, J. F. J. Coelho, A. G. M. Ferreira, P. N. Simoes, H. I. M. Veiga, L. C. Tome, I. M. Marrucho, J. Esperanca, A. A. Matias, C. M. M. Duarte, L. P. N. Rebelo, H. C. de Sousa, Acta Biomater. 2012, 8, 1366-1379.
M. M. Hossain, S. N. Faisal, C. S. Kim, H. J. Cha, S. C. Nam, H. J. Lee, Electrochem. Commun. 2011, 13, 611-614.
G. Grause, A. Buekens, Y. Sakata, A. Okuwaki, T. Yoshioka, J. Mater. Cycles Waste Manage. 2011, 13, 265-282.
N. Mersiowsky, Prog. Polym. Sci. 2002, 27, 2227-2277.
S. W. Craig, J. A. Manzer, E. B. Coughlin, Macromolecules 2001, 34, 7929-7931.
M. D. Watson, K. B. Wagener, J. Polym. Sci. Part A 1999, 37, 1857-1861.
T. Zhao, Q. Zhou, X.-L. He, S.-D. Wei, L. Wang, J. M. N. van Kasteren, Y.-Z. Wang, Green Chem. 2010, 12, 1062-1065.
R. Lungwitz, S. Spange, New J. Chem. 2008, 32, 392-394.
L. Guo, G. Q. Shi, X. Z. Du, C. Li, Y. Q. Liang, J. Appl. Polym. Sci. 1998, 70, 2463-2469.
P. van der Gryp, S. Marx, H. C. M. Vosloo, J. Mol. Catal. A 2012, 355, 85-95.
M. A. Tlenkopatchev, A. Barcenas, S. Fomine, Macromol. Theory Simul. 2001, 10, 729-735.
C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson, Y. H. Zhou, Green Chem. 2003, 5, 143-152.
D. Braun, J. Vinyl Addit. Technol. 2001, 7, 168-176.
N. Winterton, J. Mater. Chem. 2006, 16, 4281-4293.
F. C. Y. Wang, P. B. Smith, Anal. Chem. 1997, 69, 618-622.
W. H. Starnes, Prog. Polym. Sci. 2002, 27, 2133-2170.
S. M. D. Prestes, S. D. Mancini, A. Rodolfo, R. C. Keiroglo, Waste Manage. Res. 2012, 30, 115-121.
X.-L. He, Q. Zhou, X.-Y. Li, P. Yang, J. M. N. van Kasteren, Y.-Z. Wang, Polym. Degrad. Stab. 2012, 97, 145-148.
R. Miranda, J. Yang, C. Roy, C. Vasile, Polym. Degrad. Stab. 1999, 64, 127-144.
J. P. Guthrie, Can. J. Chem. 1978, 56, 2342-2354.
M. Sadat-Shojai, G.-R. Bakhshandeh, Polym. Degrad. Stab. 2011, 96, 404-415.
M. A. Keane, J. Chem. Technol. Biotechnol. 2007, 82, 787-795.
L. G. Parks, J. S. Ostby, C. R. Lambright, B. D. Abbott, G. R. Klinefelter, N. J. Barlow, L. E. Gray, Toxicol. Sci. 2000, 58, 339-349.
Y. Uemichi, K. Takuma, M. Sugioka, T. Kanazuka, Bull. Chem. Soc. Jpn. 1991, 64, 735-737.
C. Capello, U. Fischer, K. Hungerbuehler, Green Chem. 2007, 9, 927-934.
A. Holländer, H. Zimmermann, J. Behnisch, Eur. Polym. J. 1991, 27, 959-963.
D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, M. Forsyth, Chem. Commun. 2006, 1905-1917.
R. D. Sun, H. Irie, T. Nishikawa, A. Nakajima, T. Watanabe, K. Hashimoto, Polym. Degrad. Stab. 2003, 79, 253-256.
A. A. Fedorov, Y. S. Checkryshkin, O. V. Rudometova, Z. A. Vnutskikh, Russ. J. Appl. Chem. 2008, 81, 1673-1685.
A. Buekens, A. Sevenster, J. Mater. Cycles Waste Manage. 2010, 12, 184-192.
W. H. Cheng, Y. C. Liang, J. Appl. Polym. Sci. 2000, 77, 2464-2471.
M. Mehring, H. Weber, W. Muller, G. Wegner, Solid State Commun. 1983, 45, 1079-1082.
E. D. Owen, M. Shah, M. V. Twigg, Polym. Degrad. Stab. 1996, 51, 151-158.
R. Bacaloglu, M. Fisch, Polym. Degrad. Stab. 1995, 47, 33-57.
2010; 12
2012
1978; 56
2006; 16
1997; 69
2003; 79
2011; 96
1996; 51
2006
1999; 64
2011; 13
2008; 32
2012; 97
2012; 30
2002; 27
1991; 27
2012; 355
2001; 7
2000; 58
1995; 47
2000; 77
1991; 64
1999; 37
2007; 9
2003; 5
2007; 82
1998; 70
2001; 34
2008; 81
2012; 8
1983; 45
2001; 10
e_1_2_6_31_2
e_1_2_6_30_2
Kibert C. J. (e_1_2_6_3_2) 2012
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: D. Braun, Prog. Polym. Sci. 2002, 27, 2171-2195.
– reference: S. M. D. Prestes, S. D. Mancini, A. Rodolfo, R. C. Keiroglo, Waste Manage. Res. 2012, 30, 115-121.
– reference: L. G. Parks, J. S. Ostby, C. R. Lambright, B. D. Abbott, G. R. Klinefelter, N. J. Barlow, L. E. Gray, Toxicol. Sci. 2000, 58, 339-349.
– reference: P. van der Gryp, S. Marx, H. C. M. Vosloo, J. Mol. Catal. A 2012, 355, 85-95.
– reference: C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson, Y. H. Zhou, Green Chem. 2003, 5, 143-152.
– reference: G. Grause, A. Buekens, Y. Sakata, A. Okuwaki, T. Yoshioka, J. Mater. Cycles Waste Manage. 2011, 13, 265-282.
– reference: M. A. Tlenkopatchev, A. Barcenas, S. Fomine, Macromol. Theory Simul. 2001, 10, 729-735.
– reference: J. P. Guthrie, Can. J. Chem. 1978, 56, 2342-2354.
– reference: R. Miranda, J. Yang, C. Roy, C. Vasile, Polym. Degrad. Stab. 1999, 64, 127-144.
– reference: D. Braun, J. Vinyl Addit. Technol. 2001, 7, 168-176.
– reference: T. Zhao, Q. Zhou, X.-L. He, S.-D. Wei, L. Wang, J. M. N. van Kasteren, Y.-Z. Wang, Green Chem. 2010, 12, 1062-1065.
– reference: W. H. Cheng, Y. C. Liang, J. Appl. Polym. Sci. 2000, 77, 2464-2471.
– reference: E. D. Owen, M. Shah, M. V. Twigg, Polym. Degrad. Stab. 1996, 51, 151-158.
– reference: A. A. Fedorov, Y. S. Checkryshkin, O. V. Rudometova, Z. A. Vnutskikh, Russ. J. Appl. Chem. 2008, 81, 1673-1685.
– reference: R. Lungwitz, S. Spange, New J. Chem. 2008, 32, 392-394.
– reference: A. Holländer, H. Zimmermann, J. Behnisch, Eur. Polym. J. 1991, 27, 959-963.
– reference: M. A. Keane, J. Chem. Technol. Biotechnol. 2007, 82, 787-795.
– reference: A. M. A. Dias, S. Marceneiro, M. E. M. Braga, J. F. J. Coelho, A. G. M. Ferreira, P. N. Simoes, H. I. M. Veiga, L. C. Tome, I. M. Marrucho, J. Esperanca, A. A. Matias, C. M. M. Duarte, L. P. N. Rebelo, H. C. de Sousa, Acta Biomater. 2012, 8, 1366-1379.
– reference: N. Mersiowsky, Prog. Polym. Sci. 2002, 27, 2227-2277.
– reference: R. Bacaloglu, M. Fisch, Polym. Degrad. Stab. 1995, 47, 33-57.
– reference: X.-L. He, Q. Zhou, X.-Y. Li, P. Yang, J. M. N. van Kasteren, Y.-Z. Wang, Polym. Degrad. Stab. 2012, 97, 145-148.
– reference: A. Buekens, A. Sevenster, J. Mater. Cycles Waste Manage. 2010, 12, 184-192.
– reference: C. Capello, U. Fischer, K. Hungerbuehler, Green Chem. 2007, 9, 927-934.
– reference: M. M. Hossain, S. N. Faisal, C. S. Kim, H. J. Cha, S. C. Nam, H. J. Lee, Electrochem. Commun. 2011, 13, 611-614.
– reference: M. Sadat-Shojai, G.-R. Bakhshandeh, Polym. Degrad. Stab. 2011, 96, 404-415.
– reference: C. J. Kibert, Sustainable Construction: Green Building Design and Delivery, Wiley-VCH, Weinheim, 2012, p. 377-378.
– reference: M. Mehring, H. Weber, W. Muller, G. Wegner, Solid State Commun. 1983, 45, 1079-1082.
– reference: N. Winterton, J. Mater. Chem. 2006, 16, 4281-4293.
– reference: W. H. Starnes, Prog. Polym. Sci. 2002, 27, 2133-2170.
– reference: R. D. Sun, H. Irie, T. Nishikawa, A. Nakajima, T. Watanabe, K. Hashimoto, Polym. Degrad. Stab. 2003, 79, 253-256.
– reference: F. C. Y. Wang, P. B. Smith, Anal. Chem. 1997, 69, 618-622.
– reference: D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, M. Forsyth, Chem. Commun. 2006, 1905-1917.
– reference: L. Guo, G. Q. Shi, X. Z. Du, C. Li, Y. Q. Liang, J. Appl. Polym. Sci. 1998, 70, 2463-2469.
– reference: S. W. Craig, J. A. Manzer, E. B. Coughlin, Macromolecules 2001, 34, 7929-7931.
– reference: Y. Uemichi, K. Takuma, M. Sugioka, T. Kanazuka, Bull. Chem. Soc. Jpn. 1991, 64, 735-737.
– reference: M. D. Watson, K. B. Wagener, J. Polym. Sci. Part A 1999, 37, 1857-1861.
– volume: 27
  start-page: 959
  year: 1991
  end-page: 963
  publication-title: Eur. Polym. J.
– volume: 12
  start-page: 1062
  year: 2010
  end-page: 1065
  publication-title: Green Chem.
– volume: 37
  start-page: 1857
  year: 1999
  end-page: 1861
  publication-title: J. Polym. Sci. Part A
– volume: 12
  start-page: 184
  year: 2010
  end-page: 192
  publication-title: J. Mater. Cycles Waste Manage.
– start-page: 1905
  year: 2006
  end-page: 1917
  publication-title: Chem. Commun.
– volume: 32
  start-page: 392
  year: 2008
  end-page: 394
  publication-title: New J. Chem.
– volume: 82
  start-page: 787
  year: 2007
  end-page: 795
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 34
  start-page: 7929
  year: 2001
  end-page: 7931
  publication-title: Macromolecules
– volume: 13
  start-page: 611
  year: 2011
  end-page: 614
  publication-title: Electrochem. Commun.
– volume: 27
  start-page: 2133
  year: 2002
  end-page: 2170
  publication-title: Prog. Polym. Sci.
– volume: 51
  start-page: 151
  year: 1996
  end-page: 158
  publication-title: Polym. Degrad. Stab.
– volume: 9
  start-page: 927
  year: 2007
  end-page: 934
  publication-title: Green Chem.
– volume: 64
  start-page: 735
  year: 1991
  end-page: 737
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 27
  start-page: 2227
  year: 2002
  end-page: 2277
  publication-title: Prog. Polym. Sci.
– volume: 70
  start-page: 2463
  year: 1998
  end-page: 2469
  publication-title: J. Appl. Polym. Sci.
– volume: 355
  start-page: 85
  year: 2012
  end-page: 95
  publication-title: J. Mol. Catal. A
– volume: 45
  start-page: 1079
  year: 1983
  end-page: 1082
  publication-title: Solid State Commun.
– volume: 8
  start-page: 1366
  year: 2012
  end-page: 1379
  publication-title: Acta Biomater.
– volume: 77
  start-page: 2464
  year: 2000
  end-page: 2471
  publication-title: J. Appl. Polym. Sci.
– volume: 96
  start-page: 404
  year: 2011
  end-page: 415
  publication-title: Polym. Degrad. Stab.
– volume: 5
  start-page: 143
  year: 2003
  end-page: 152
  publication-title: Green Chem.
– volume: 56
  start-page: 2342
  year: 1978
  end-page: 2354
  publication-title: Can. J. Chem.
– volume: 69
  start-page: 618
  year: 1997
  end-page: 622
  publication-title: Anal. Chem.
– volume: 81
  start-page: 1673
  year: 2008
  end-page: 1685
  publication-title: Russ. J. Appl. Chem.
– volume: 30
  start-page: 115
  year: 2012
  end-page: 121
  publication-title: Waste Manage. Res.
– start-page: 377
  year: 2012
  end-page: 378
– volume: 58
  start-page: 339
  year: 2000
  end-page: 349
  publication-title: Toxicol. Sci.
– volume: 47
  start-page: 33
  year: 1995
  end-page: 57
  publication-title: Polym. Degrad. Stab.
– volume: 16
  start-page: 4281
  year: 2006
  end-page: 4293
  publication-title: J. Mater. Chem.
– volume: 64
  start-page: 127
  year: 1999
  end-page: 144
  publication-title: Polym. Degrad. Stab.
– volume: 13
  start-page: 265
  year: 2011
  end-page: 282
  publication-title: J. Mater. Cycles Waste Manage.
– volume: 97
  start-page: 145
  year: 2012
  end-page: 148
  publication-title: Polym. Degrad. Stab.
– volume: 27
  start-page: 2171
  year: 2002
  end-page: 2195
  publication-title: Prog. Polym. Sci.
– volume: 10
  start-page: 729
  year: 2001
  end-page: 735
  publication-title: Macromol. Theory Simul.
– volume: 79
  start-page: 253
  year: 2003
  end-page: 256
  publication-title: Polym. Degrad. Stab.
– volume: 7
  start-page: 168
  year: 2001
  end-page: 176
  publication-title: J. Vinyl Addit. Technol.
– ident: e_1_2_6_13_2
  doi: 10.1016/S0141-3910(98)00186-4
– ident: e_1_2_6_27_2
  doi: 10.1016/j.elecom.2011.03.024
– ident: e_1_2_6_33_2
  doi: 10.1002/(SICI)1099-0518(19990615)37:12<1857::AID-POLA15>3.0.CO;2-C
– ident: e_1_2_6_2_2
  doi: 10.1016/S0079-6700(02)00036-9
– ident: e_1_2_6_7_2
  doi: 10.1002/jctb.1757
– ident: e_1_2_6_24_2
  doi: 10.1039/b610143g
– ident: e_1_2_6_4_2
  doi: 10.1016/j.polymdegradstab.2010.12.001
– ident: e_1_2_6_9_2
  doi: 10.1093/toxsci/58.2.339
– ident: e_1_2_6_10_2
  doi: 10.1177/0734242X11413329
– ident: e_1_2_6_18_2
  doi: 10.1016/0141-3910(95)00154-9
– ident: e_1_2_6_19_2
  doi: 10.1134/S1070427208090383
– ident: e_1_2_6_29_2
  doi: 10.1039/b714629a
– ident: e_1_2_6_17_2
  doi: 10.1002/(SICI)1097-4628(19981219)70:12<2463::AID-APP19>3.0.CO;2-7
– ident: e_1_2_6_31_2
  doi: 10.1016/0038-1098(83)91053-0
– start-page: 377
  volume-title: Sustainable Construction: Green Building Design and Delivery
  year: 2012
  ident: e_1_2_6_3_2
– ident: e_1_2_6_30_2
  doi: 10.1039/b209734f
– ident: e_1_2_6_35_2
  doi: 10.1002/1521-3919(20010901)10:7<729::AID-MATS729>3.0.CO;2-Q
– ident: e_1_2_6_25_2
  doi: 10.1021/ac960947c
– ident: e_1_2_6_5_2
  doi: 10.1016/S0079-6700(02)00063-1
– ident: e_1_2_6_6_2
  doi: 10.1016/j.actbio.2011.10.034
– ident: e_1_2_6_14_2
  doi: 10.1007/s10163-011-0031-z
– ident: e_1_2_6_34_2
  doi: 10.1021/ma011188p
– ident: e_1_2_6_11_2
  doi: 10.1039/b617536h
– ident: e_1_2_6_36_2
  doi: 10.1016/j.molcata.2011.12.001
– ident: e_1_2_6_12_2
  doi: 10.1016/S0079-6700(02)00037-0
– ident: e_1_2_6_26_2
  doi: 10.1039/b516961p
– ident: e_1_2_6_32_2
  doi: 10.1016/0141-3910(94)00086-N
– ident: e_1_2_6_20_2
  doi: 10.1246/bcsj.64.735
– ident: e_1_2_6_28_2
  doi: 10.1139/v78-385
– ident: e_1_2_6_23_2
  doi: 10.1016/S0141-3910(02)00288-4
– ident: e_1_2_6_21_2
  doi: 10.1039/b927106f
– ident: e_1_2_6_8_2
  doi: 10.1007/s10163-010-0286-9
– ident: e_1_2_6_22_2
  doi: 10.1016/j.polymdegradstab.2011.11.005
– ident: e_1_2_6_16_2
  doi: 10.1016/0014-3057(91)90040-U
– ident: e_1_2_6_15_2
  doi: 10.1002/1097-4628(20000912)77:11<2464::AID-APP15>3.0.CO;2-0
– ident: e_1_2_6_1_2
  doi: 10.1002/vnl.10288
SSID ssj0060966
Score 2.3603349
Snippet There is an urgent need for green technologies to remove halogens from halogenated polymers at the end of their lifetime. Ionic liquids (ILs) were used to...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 610
SubjectTerms chlorine
environmental chemistry
Halogenation
Imidazoles - chemistry
ionic liquids
Ionic Liquids - chemistry
Kinetics
Polyethylene - chemistry
polymers
Polyvinyl Chloride - chemistry
waste prevention
Title End-of-Life Treatment of Poly(Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids
URI https://api.istex.fr/ark:/67375/WNG-8ZHDVJ8H-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201300970
https://www.ncbi.nlm.nih.gov/pubmed/24420642
https://www.proquest.com/docview/1493472938
https://www.proquest.com/docview/1494306887
Volume 7
WOSCitedRecordID wos000336804000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwEB5BiwQv3EdgWRkJcTxEm-ay84jSLQWVasUeVPsSObGtjagSaLYr-sZP4DfyS5jJBZVASPASxckksTxjz0xm_A3AU1QCLtoN6KkqV6ODEkpbGGyaKBQmzUQouKyLTfD5XCwW0cEvu_gbfIj-hxvNjHq9pgku02rvJ2hoVlUEQUjhmIij0z50UXiDAQzH7yfHs241DtFEr3cYidC3g9AbdcCNjru3_YYtxTSkMf7yO6tz24ittdDkxv_3_yZcby1Q9qoRmVtwSRe34WrcFX67Axf7hfr-9Vtp8DDLjWZHXTI6Kw07KJebFyd5sVmy-IzS95R-yWSh2laBtquqiTSKAKo0zdING-uzjaLiXC0JCgPLC_aGcHnZLP-8zlV1F44n-0fx1G7LM9gZ-nSOrSQyVaeONqj0KVRM0Gdaa64kTz2HQAfSEYV5dZQpgpVRGRe-zDJHpTJKuXcPBkVZ6AfAhAwCY_A6Lgg-d00a6hF3fK1CCvSK0AK7402StdjlVEJjmTSoy25Co5n0o2nB857-U4Pa8UfKZzWrezK5-ki5bjxIPsxfJ-J0Oj55K6bJOwt2OllI2mleod8UedjfyBMWPOlvI7so6iILXa5rGt-j0j7cgvuNDPUfQ9vKJQ_QArcWlb90NokPD-O-9fBfHnoE1_Dcb_LOd2Bwvlrrx3AluzjPq9UuXOYLsdtOoR9yqxxJ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQF6lceD8CBYyEeByiZpNs7BxRtssW0lVFt6XqxXL8UCNWCWy6FXvjJ_Ab-SXM5IVWAiEhLpHsTBLHHntmPONvCHkOQsAHvQEsVe0bMFAi6XILRRtH3GaKR5zJOtkEm8346Wl82EYT4lmYBh-i33DDmVGv1zjBcUN69xdqqKoqxCBEf0zMwGofhMBLwOSD8YfJcdotxxHo6PURIx6F7igKhh1yo-fvbr5hQzINsJO__k7t3NRiazE0ufEffuAmud7qoPRNwzS3yBVT3CbbSZf67Q653Cv0j2_fSwuXNLeGzrtwdFpaelgu1q9O8mK9oMk5BvBp85rKQrelArRXXRMZYAIQaoZmazo252uN6blaEmAHmhd0H5F5aZp_WeW6ukuOJ3vzZOq2CRpcBVad52oJw2oyz1gQ--gsRvAzYwzTkmWBh7AD2RAdvSZWGoFltGI8lEp5OpNxxoJ7ZKsoC_OAUC5HI2uhHpaEkPk2i8yQeaHREbp6eeQQtxscoVr0ckyisRAN7rIvsDdF35sOednTf25wO_5I-aIe655MLj9htBsbiY-zt4KfTccn7_hUHDhkp2MG0U70CiynOID2xgF3yLP-NgwX-l1kYcpVTRMGmNyHOeR-w0T9x0C78tEGdIhf88pfGiuSo6OkLz38l4eeku3p_CAV6f7s_SNyDerDJgp9h2xdLFfmMbmqLi_yavmknUk_Ab9MH1E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hFsFeeMMGFjAS4nGINk3S2DmidEsXSlWxT3GJnNjWRlTJ0mxX9MZP4DfyS5jJC1UCISEukZxMEscz9sxkxt8APEcl4KLdgJ6qcjU6KIG0hcGmCQNhklQEgsuq2ASfzcTpaThvsglpL0yND9H9cKOZUa3XNMH1uTK7v1BD07IkDEKKx4Qcvfa-T5VketAffRwfTdvlOEAbvdpiJALfHgbeoEVudNzdzSdsaKY-DfLX35mdm1ZspYbGN__DB9yCG40Nyt7UQnMbruj8DlyP2tJvd-FyL1c_vn0vDB6mmdHssE1HZ4Vh82KxfnWc5esFi84ogU_p10zmqmnlaL2qikijEKBS0yxZs5E-Wysqz9WQoDiwLGf7hMzLptmXVabKe3A03juMJnZToMFO0atzbCWRrTpxtEG1T8FiAj_TWnMleeI5BDuQDCjQq8NUEbCMSrnwZZo6KpFhwr370MuLXG8DE3I4NAbP45Lgc9ckgR5wx9cqoFCvCCywW-bEaYNeTkU0FnGNu-zGNJpxN5oWvOzoz2vcjj9Svqh43ZHJ5WfKduPD-GT2NhafJqPjd2ISf7BgpxWGuJnoJXpOoYf9DT1hwbPuMrKL4i4y18WqovE9Ku7DLXhQC1H3MrSuXPIBLXArWflLZ-Po4CDqWg__5aancG0-GsfT_dn7R7CFp_06CX0HehfLlX4MV9PLi6xcPmkm0k8cSx7M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-of-Life+Treatment+of+Poly%28Vinyl+Chloride%29+and+Chlorinated+Polyethylene+by+Dehydrochlorination+in+Ionic+Liquids&rft.jtitle=ChemSusChem&rft.au=Glas%2C+Daan&rft.au=Hulsbosch%2C+Joris&rft.au=Dubois%2C+Philippe&rft.au=Binnemans%2C+Koen&rft.date=2014-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=7&rft.issue=2&rft.spage=610&rft_id=info:doi/10.1002%2Fcssc.201300970&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3200484101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon