Reversed Crystal Growth: Implications for Crystal Engineering

The discovery of reversed crystal growth routes in zeolite analcime and zeolite A implies that crystal growth does not always follow the classic theory established 100 years ago. Aggregation of nanoparticles may dominate in the early stages of crystal growth, followed by surface crystallization, and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 22; číslo 28; s. 3086 - 3092
Hlavný autor: Zhou, Wuzong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim WILEY-VCH Verlag 27.07.2010
WILEY‐VCH Verlag
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The discovery of reversed crystal growth routes in zeolite analcime and zeolite A implies that crystal growth does not always follow the classic theory established 100 years ago. Aggregation of nanoparticles may dominate in the early stages of crystal growth, followed by surface crystallization, and then extension from surface to core of the disordered aggregates. A perfect polyhedral morphology can be developed in a thin surface crystalline layer of a particle with a disordered core. Evidence of such a novel crystal growth phenomenon can be also found in many other materials. This article highlights the recent achievements in this topic, which might have a significant impact on crystal engineering, materials science, and mineralogy. The discovery of a reversed crystal growth route in zeolite analcime implies that crystal growth does not always follow classic theory. Aggregation of nanoparticles may dominate in early‐stage crystal growth, followed by surface crystallization, and then extension from surface to core. Recent developments and evidence of such a novel phenomenon in other materials are discussed.
AbstractList The discovery of reversed crystal growth routes in zeolite analcime and zeolite A implies that crystal growth does not always follow the classic theory established 100 years ago. Aggregation of nanoparticles may dominate in the early stages of crystal growth, followed by surface crystallization, and then extension from surface to core of the disordered aggregates. A perfect polyhedral morphology can be developed in a thin surface crystalline layer of a particle with a disordered core. Evidence of such a novel crystal growth phenomenon can be also found in many other materials. This article highlights the recent achievements in this topic, which might have a significant impact on crystal engineering, materials science, and mineralogy.
The discovery of reversed crystal growth routes in zeolite analcime and zeolite A implies that crystal growth does not always follow the classic theory established 100 years ago. Aggregation of nanoparticles may dominate in the early stages of crystal growth, followed by surface crystallization, and then extension from surface to core of the disordered aggregates. A perfect polyhedral morphology can be developed in a thin surface crystalline layer of a particle with a disordered core. Evidence of such a novel crystal growth phenomenon can be also found in many other materials. This article highlights the recent achievements in this topic, which might have a significant impact on crystal engineering, materials science, and mineralogy. The discovery of a reversed crystal growth route in zeolite analcime implies that crystal growth does not always follow classic theory. Aggregation of nanoparticles may dominate in early‐stage crystal growth, followed by surface crystallization, and then extension from surface to core. Recent developments and evidence of such a novel phenomenon in other materials are discussed.
The discovery of reversed crystal growth routes in zeolite analcime and zeolite A implies that crystal growth does not always follow the classic theory established 100 years ago. Aggregation of nanoparticles may dominate in the early stages of crystal growth, followed by surface crystallization, and then extension from surface to core of the disordered aggregates. A perfect polyhedral morphology can be developed in a thin surface crystalline layer of a particle with a disordered core. Evidence of such a novel crystal growth phenomenon can be also found in many other materials. This article highlights the recent achievements in this topic, which might have a significant impact on crystal engineering, materials science, and mineralogy.The discovery of reversed crystal growth routes in zeolite analcime and zeolite A implies that crystal growth does not always follow the classic theory established 100 years ago. Aggregation of nanoparticles may dominate in the early stages of crystal growth, followed by surface crystallization, and then extension from surface to core of the disordered aggregates. A perfect polyhedral morphology can be developed in a thin surface crystalline layer of a particle with a disordered core. Evidence of such a novel crystal growth phenomenon can be also found in many other materials. This article highlights the recent achievements in this topic, which might have a significant impact on crystal engineering, materials science, and mineralogy.
Author Zhou, Wuzong
Author_xml – sequence: 1
  givenname: Wuzong
  surname: Zhou
  fullname: Zhou, Wuzong
  email: wzhou@st-andrews.ac.uk
  organization: School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST (UK)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20408135$$D View this record in MEDLINE/PubMed
BookMark eNqFkMlKA0EQQBtRNC5Xj5Kbp4k1vWYEDzHRKMQFccNL0-mp0dZZYvdEzd8bjQYRxFNd3qui3ipZLKsSCdmMoRUD0B2TFqZFARLgjMICacSCxhGHRCySBiRMRInk7RWyGsIjTDEJcpmsUODQjplokL0LfEEfMG12_STUJm_2ffVaP-w2j4tR7qypXVWGZlb5OXBQ3rsS0bvyfp0sZSYPuPE118jV4cFl9yganPWPu51BZDlvQ2QwESkgFcLKhBkpDTVDmsiMibZVILlCKzMDjFmhlBQUjUjTTEnLDA4lsDWyPds78tXzGEOtCxcs5rkpsRoHrRiHGBQXU3LrixwPC0z1yLvC-In-_ngKtGaA9VUIHrM5EoP-SKo_kup50qnAfwnW1Z9Zam9c_reWzLRXl-PknyO60zvp_HSjmetCjW9z1_gnLRVTQt-c9nXv_OR2cL1_p8_ZO9f7mYA
CitedBy_id crossref_primary_10_1002_anie_202207817
crossref_primary_10_1016_j_mtsust_2024_100687
crossref_primary_10_1002_ange_202003390
crossref_primary_10_1016_j_est_2019_01_001
crossref_primary_10_1016_j_molstruc_2024_137625
crossref_primary_10_1039_c0jm01948h
crossref_primary_10_1038_srep06886
crossref_primary_10_1007_s11426_011_4441_5
crossref_primary_10_1002_adfm_201802088
crossref_primary_10_1002_smll_202206718
crossref_primary_10_1016_j_matlet_2020_129052
crossref_primary_10_1021_acs_cgd_5c00376
crossref_primary_10_1021_ja211141p
crossref_primary_10_1016_j_molstruc_2012_12_059
crossref_primary_10_1016_j_jcis_2012_05_027
crossref_primary_10_1002_pip_2290
crossref_primary_10_1111_j_1551_2916_2012_05458_x
crossref_primary_10_1002_slct_202500166
crossref_primary_10_1016_j_micromeso_2012_05_002
crossref_primary_10_1016_j_solidstatesciences_2020_106118
crossref_primary_10_1208_s12249_016_0592_1
crossref_primary_10_1186_s11671_015_1033_x
crossref_primary_10_1007_s11051_012_0750_7
crossref_primary_10_1039_c3ta13783j
crossref_primary_10_1016_j_partic_2018_07_005
crossref_primary_10_1007_s10853_017_1092_8
crossref_primary_10_1016_j_mtsust_2023_100458
crossref_primary_10_1179_1743284713Y_0000000433
crossref_primary_10_1007_s11696_024_03780_0
crossref_primary_10_1016_j_micromeso_2017_11_041
crossref_primary_10_3390_cryst7100319
crossref_primary_10_1016_j_micromeso_2011_02_028
crossref_primary_10_1039_c2cc33032f
crossref_primary_10_1039_D4RE00115J
crossref_primary_10_1039_D1RA04996H
crossref_primary_10_1016_j_cplett_2011_08_045
crossref_primary_10_3390_cryst7020036
crossref_primary_10_1007_s00269_014_0686_9
crossref_primary_10_1002_smll_202308166
crossref_primary_10_1039_c3cc41208c
crossref_primary_10_1002_chem_201202592
crossref_primary_10_1016_j_apsusc_2020_148823
crossref_primary_10_1002_ejic_201301381
crossref_primary_10_1021_ja309194z
crossref_primary_10_1002_cnma_201900186
crossref_primary_10_1007_s13203_012_0013_7
crossref_primary_10_1016_j_pnsc_2013_04_009
crossref_primary_10_1039_c1ce05361b
crossref_primary_10_1039_C9NR01497G
crossref_primary_10_1016_j_jlumin_2016_07_023
crossref_primary_10_1002_chem_201503437
crossref_primary_10_3390_cryst9010007
crossref_primary_10_1002_anie_202003390
crossref_primary_10_1002_ange_202207817
crossref_primary_10_1016_j_cej_2016_04_009
crossref_primary_10_1039_C1CE05958K
crossref_primary_10_1007_s11051_015_3090_6
crossref_primary_10_1002_chem_202200590
crossref_primary_10_1021_ja106461u
crossref_primary_10_1039_c2jm35653h
crossref_primary_10_1007_s40145_020_0373_x
crossref_primary_10_1080_17436753_2016_1157131
Cites_doi 10.1002/anie.200802823
10.1002/adma.200304600
10.1039/b717273g
10.2138/am-2003-0418
10.1021/cg800555x
10.1002/adfm.200500716
10.1002/chem.200390150
10.1016/0022-0248(80)90099-8
10.1039/b808396g
10.1021/cg800288x
10.1107/S0365110X55001679
10.1016/j.jcrysgro.2009.06.020
10.1016/j.micromeso.2008.11.004
10.1021/ja907475z
10.1021/jp905145y
10.1088/0022-3727/24/2/001
10.1524/zkri.1901.34.1.449
10.1021/ja074834u
10.1016/j.jcrysgro.2006.05.075
10.1039/b108259k
10.1021/jp049663j
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/adma.200904320
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 3092
ExternalDocumentID 20408135
10_1002_adma_200904320
ADMA200904320
ark_67375_WNG_DPMXLVBZ_P
Genre news
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RWI
RWM
WRC
7X8
ID FETCH-LOGICAL-c4480-ae95d0e255c693a66a2ab296f358c70647ec6fa033c577652ea5ddf76c3aeb603
IEDL.DBID DRFUL
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000280891200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Oct 02 07:40:15 EDT 2025
Wed Feb 19 01:53:16 EST 2025
Sat Nov 29 07:20:55 EST 2025
Tue Nov 18 20:41:43 EST 2025
Sun Sep 21 06:18:32 EDT 2025
Tue Nov 11 03:31:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4480-ae95d0e255c693a66a2ab296f358c70647ec6fa033c577652ea5ddf76c3aeb603
Notes ark:/67375/WNG-DPMXLVBZ-P
ArticleID:ADMA200904320
istex:6BABB704FA5B725901CD72A451B91DE4B7CB6AF3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 20408135
PQID 734010745
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_734010745
pubmed_primary_20408135
crossref_primary_10_1002_adma_200904320
crossref_citationtrail_10_1002_adma_200904320
wiley_primary_10_1002_adma_200904320_ADMA200904320
istex_primary_ark_67375_WNG_DPMXLVBZ_P
PublicationCentury 2000
PublicationDate July 27, 2010
PublicationDateYYYYMMDD 2010-07-27
PublicationDate_xml – month: 07
  year: 2010
  text: July 27, 2010
  day: 27
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References b) M. G. Friedel, Bull. Soc. Fr. Mineral. Cristallogr. 1907, 30, 326
a) A. W. Xu, M. Antonietti, H. Cölfen, Y. P. Fang, Adv. Funct. Mater. 2006, 16, 903
b) G. Z. Wulff, Kristallogr. 1901, 34, 449.
B. Subotic, D. Skrtic, I. Smit, L. Sekovanic, J. Cryst. Growth 1980, 50, 498.
b) J. H. Zhan, H. P. Lin, C. Y. Mou, Adv. Mater. 2003, 15, 621
J. F. Yao, D. Li, X. Y. Zhang, C. H. Kong, W. B. Yue, W. Z. Zhou, H. T. Wang, Angew. Chem. Int. Ed. 2008, 47, 8397.
Verified Synthesis of Zeolitic Materials (Eds: H. Robson, K. P. Lillerud), Elsevier, Amsterdam 2001.
X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. Konishi, Y. X. Pan, C. L. Liang, M. M. Wu, J. Mater. Chem. 2008, 18, 3543.
H. Greer, P. S. Wheatley, S. E. Ashbrook, R. E. Morris, W. Z. Zhou, J. Am. Chem. Soc. 2009, 131, 17986.
R. Docherty, G. Clydesdale, K. J. Roberts, P. Bennema, J. Phys. D: Appl. Phys. 1991, 24, 89.
P. Hartman, W. G. Perdok, Acta Crystallogr. 1955, 8, 521.
S. H. Xie, W. Z. Zhou, Y. Q. Zhu, J. Phys. Chem. B 2004, 108, 11561.
H. M. A. Hunter, A. E. Garcia-Bennett, W. Z. Zhou, P. A. Wright, J. Mater. Chem. 2002, 12, 20.
X. Y. Chen, M. H. Qiao, S. H. Xie, K. N. Fan, W. Z. Zhou, H. Y. He, J. Am. Chem. Soc. 2007, 129. 13305.
a) O. Grassmann, P. Löbmann, Chem. Eur. J. 2003, 9, 1310
G. Z. Chen, C. X. Xu, X. Y. Song, S. L. Xu, Y. Ding, S. X. Sun, Cryst. Growth Des. 2008, 8, 4449.
Q. Wang, G. Chen, S. Xu, Microporous Mesoporous Mater. 2009, 119, 315.
c) Y. H. Tseng, H. Y. Lin, M. H. Liu, Y. F. Chen, C. Y. Mou, J. Phys. Chem. C 2009, 113, 18053.
b) O. Grassmann, R. B. Neder, A. Putnis, P. Löbmann, Am. Mineralogist 2003, 88, 647.
N. Alam, R. Mokaya, J. Mater. Chem. 2008, 18, 1383.
M. T. Buscaglia, V. Buscaglia, C. Bottino, M. Viviani, R. Fournier, M. Sennour, S. Presto, R. Marazza, P. Nanni, Cryst. Growth Des. 2008, 8, 3847.
D. B. Wang, Y. H. Zhou, C. X. Song, M. Q. Shao, J. Cryst. Growth 2009, 311, 3948.
J. R. Agger, M. Shöâeè, M. Mistry, B. Slater, J. Cryst. Growth 2006, 294, 78.
a) A. Bravais, Études Cristallographic, Gauthier-Villars, Paris 1866
c) J. D. H. Donnay, D. Harker, Am. Mineral. 1937, 22, 446.
a) P. Curie, Bull. Soc. Fr. Mineral. Cristallogr. 1885, 8, 145
2006 2003 2009; 16 15 113
2007; 129
2003 2003; 9 88
2001
1991; 24
1980; 50
2008; 18
2002; 12
2008; 47
2006; 294
1955; 8
1866 1907 1937; 30 22
2008; 8
2009; 311
2009; 131
1885 1901; 8 34
2009; 119
2004; 108
Donnay J. D. H. (e_1_2_6_2_4) 1937; 22
Friedel M. G. (e_1_2_6_2_3) 1907; 30
Curie P. (e_1_2_6_5_2) 1885; 8
e_1_2_6_19_3
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
Robson H. (e_1_2_6_7_2) 2001
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_5_3
e_1_2_6_6_2
Bravais A. (e_1_2_6_2_2) 1866
e_1_2_6_20_4
e_1_2_6_1_2
e_1_2_6_20_3
References_xml – reference: N. Alam, R. Mokaya, J. Mater. Chem. 2008, 18, 1383.
– reference: c) J. D. H. Donnay, D. Harker, Am. Mineral. 1937, 22, 446.
– reference: Q. Wang, G. Chen, S. Xu, Microporous Mesoporous Mater. 2009, 119, 315.
– reference: c) Y. H. Tseng, H. Y. Lin, M. H. Liu, Y. F. Chen, C. Y. Mou, J. Phys. Chem. C 2009, 113, 18053.
– reference: b) M. G. Friedel, Bull. Soc. Fr. Mineral. Cristallogr. 1907, 30, 326;
– reference: J. F. Yao, D. Li, X. Y. Zhang, C. H. Kong, W. B. Yue, W. Z. Zhou, H. T. Wang, Angew. Chem. Int. Ed. 2008, 47, 8397.
– reference: J. R. Agger, M. Shöâeè, M. Mistry, B. Slater, J. Cryst. Growth 2006, 294, 78.
– reference: G. Z. Chen, C. X. Xu, X. Y. Song, S. L. Xu, Y. Ding, S. X. Sun, Cryst. Growth Des. 2008, 8, 4449.
– reference: S. H. Xie, W. Z. Zhou, Y. Q. Zhu, J. Phys. Chem. B 2004, 108, 11561.
– reference: a) A. W. Xu, M. Antonietti, H. Cölfen, Y. P. Fang, Adv. Funct. Mater. 2006, 16, 903;
– reference: a) P. Curie, Bull. Soc. Fr. Mineral. Cristallogr. 1885, 8, 145;
– reference: X. Y. Chen, M. H. Qiao, S. H. Xie, K. N. Fan, W. Z. Zhou, H. Y. He, J. Am. Chem. Soc. 2007, 129. 13305.
– reference: Verified Synthesis of Zeolitic Materials (Eds: H. Robson, K. P. Lillerud), Elsevier, Amsterdam 2001.
– reference: M. T. Buscaglia, V. Buscaglia, C. Bottino, M. Viviani, R. Fournier, M. Sennour, S. Presto, R. Marazza, P. Nanni, Cryst. Growth Des. 2008, 8, 3847.
– reference: D. B. Wang, Y. H. Zhou, C. X. Song, M. Q. Shao, J. Cryst. Growth 2009, 311, 3948.
– reference: b) O. Grassmann, R. B. Neder, A. Putnis, P. Löbmann, Am. Mineralogist 2003, 88, 647.
– reference: a) O. Grassmann, P. Löbmann, Chem. Eur. J. 2003, 9, 1310;
– reference: b) G. Z. Wulff, Kristallogr. 1901, 34, 449.
– reference: a) A. Bravais, Études Cristallographic, Gauthier-Villars, Paris 1866;
– reference: B. Subotic, D. Skrtic, I. Smit, L. Sekovanic, J. Cryst. Growth 1980, 50, 498.
– reference: H. M. A. Hunter, A. E. Garcia-Bennett, W. Z. Zhou, P. A. Wright, J. Mater. Chem. 2002, 12, 20.
– reference: H. Greer, P. S. Wheatley, S. E. Ashbrook, R. E. Morris, W. Z. Zhou, J. Am. Chem. Soc. 2009, 131, 17986.
– reference: P. Hartman, W. G. Perdok, Acta Crystallogr. 1955, 8, 521.
– reference: X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. Konishi, Y. X. Pan, C. L. Liang, M. M. Wu, J. Mater. Chem. 2008, 18, 3543.
– reference: R. Docherty, G. Clydesdale, K. J. Roberts, P. Bennema, J. Phys. D: Appl. Phys. 1991, 24, 89.
– reference: b) J. H. Zhan, H. P. Lin, C. Y. Mou, Adv. Mater. 2003, 15, 621;
– volume: 119
  start-page: 315
  year: 2009
  publication-title: Microporous Mesoporous Mater.
– volume: 30 22
  start-page: 326 446
  year: 1866 1907 1937
  publication-title: Bull. Soc. Fr. Mineral. Cristallogr. Am. Mineral.
– volume: 18
  start-page: 3543
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 9 88
  start-page: 1310 647
  year: 2003 2003
  publication-title: Chem. Eur. J. Am. Mineralogist
– volume: 24
  start-page: 89
  year: 1991
  publication-title: J. Phys. D: Appl. Phys.
– volume: 8 34
  start-page: 145 449
  year: 1885 1901
  publication-title: Bull. Soc. Fr. Mineral. Cristallogr. Kristallogr.
– volume: 8
  start-page: 521
  year: 1955
  publication-title: Acta Crystallogr.
– volume: 50
  start-page: 498
  year: 1980
  publication-title: J. Cryst. Growth
– volume: 131
  start-page: 17986
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 16 15 113
  start-page: 903 621 18053
  year: 2006 2003 2009
  publication-title: Adv. Funct. Mater. Adv. Mater. J. Phys. Chem. C
– year: 2001
– volume: 8
  start-page: 4449
  year: 2008
  publication-title: Cryst. Growth Des.
– volume: 18
  start-page: 1383
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 108
  start-page: 11561
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 20
  year: 2002
  publication-title: J. Mater. Chem.
– volume: 311
  start-page: 3948
  year: 2009
  publication-title: J. Cryst. Growth
– volume: 8
  start-page: 3847
  year: 2008
  publication-title: Cryst. Growth Des.
– volume: 47
  start-page: 8397
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 294
  start-page: 78
  year: 2006
  publication-title: J. Cryst. Growth
– volume: 129
  start-page: 13305
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 326
  year: 1907
  ident: e_1_2_6_2_3
  publication-title: Bull. Soc. Fr. Mineral. Cristallogr.
– ident: e_1_2_6_8_2
  doi: 10.1002/anie.200802823
– ident: e_1_2_6_20_3
  doi: 10.1002/adma.200304600
– volume: 22
  start-page: 446
  year: 1937
  ident: e_1_2_6_2_4
  publication-title: Am. Mineral.
– volume-title: Études Cristallographic
  year: 1866
  ident: e_1_2_6_2_2
– ident: e_1_2_6_16_2
  doi: 10.1039/b717273g
– ident: e_1_2_6_19_3
  doi: 10.2138/am-2003-0418
– ident: e_1_2_6_12_2
  doi: 10.1021/cg800555x
– ident: e_1_2_6_20_2
  doi: 10.1002/adfm.200500716
– ident: e_1_2_6_19_2
  doi: 10.1002/chem.200390150
– ident: e_1_2_6_10_2
  doi: 10.1016/0022-0248(80)90099-8
– ident: e_1_2_6_13_2
  doi: 10.1039/b808396g
– ident: e_1_2_6_18_2
  doi: 10.1021/cg800288x
– ident: e_1_2_6_3_2
  doi: 10.1107/S0365110X55001679
– volume: 8
  start-page: 145
  year: 1885
  ident: e_1_2_6_5_2
  publication-title: Bull. Soc. Fr. Mineral. Cristallogr.
– ident: e_1_2_6_17_2
  doi: 10.1016/j.jcrysgro.2009.06.020
– ident: e_1_2_6_11_2
  doi: 10.1016/j.micromeso.2008.11.004
– ident: e_1_2_6_9_2
  doi: 10.1021/ja907475z
– ident: e_1_2_6_20_4
  doi: 10.1021/jp905145y
– volume-title: Verified Synthesis of Zeolitic Materials
  year: 2001
  ident: e_1_2_6_7_2
– ident: e_1_2_6_1_2
  doi: 10.1088/0022-3727/24/2/001
– ident: e_1_2_6_5_3
  doi: 10.1524/zkri.1901.34.1.449
– ident: e_1_2_6_6_2
  doi: 10.1021/ja074834u
– ident: e_1_2_6_4_2
  doi: 10.1016/j.jcrysgro.2006.05.075
– ident: e_1_2_6_15_2
  doi: 10.1039/b108259k
– ident: e_1_2_6_14_2
  doi: 10.1021/jp049663j
SSID ssj0009606
Score 2.311181
SecondaryResourceType review_article
Snippet The discovery of reversed crystal growth routes in zeolite analcime and zeolite A implies that crystal growth does not always follow the classic theory...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3086
SubjectTerms Crystal engineering
Crystallization - methods
Engineering - methods
Surface crystallization
Zeolites
Zeolites - chemistry
Title Reversed Crystal Growth: Implications for Crystal Engineering
URI https://api.istex.fr/ark:/67375/WNG-DPMXLVBZ-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.200904320
https://www.ncbi.nlm.nih.gov/pubmed/20408135
https://www.proquest.com/docview/734010745
Volume 22
WOSCitedRecordID wos000280891200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB609aAH34_6Yg-ip-CaNMlG8FBbq4KWIj6Kl5BNsihKlT5E_73Jbru2oAh6XDIJYSaTfLOZfAOwE1KrCEkSxExCULlMlfM5glEsCNUC2zARcVpsgjcaUaslmiOv-DN-iPyHm_eMdL_2Dq7i7v4XaagyGW-Q8KRyLmgvYrd4aQGKtav6zcUX8S5L62v6-z4kWDkaEjeGeH98hLGDqeh1_P4d6hwHsekpVJ_7__znYXaAQINKtmQWYMK2F2FmhJdwCY6urM_WsCaodj4cfHwOTl203ns4DM5HEtADh3dzgZH-y3BTP7munqFBnQWkXXAWImUFNaF1wYVmgijGFFYxFiwhNNLcv0a1miUqJERTzhnFVlFjEs40UTZmIVmBQvulbdcgMIY7ABG7sFO7wIYYIQyOKE2YFZzSWJUADZUs9YCE3NfCeJYZfTKWXi0yV0sJ9nL514x-40fJ3dRmuZjqPPmkNU7lXeNU1pqXrYvb43vZLEEwNKp0ruTvR1TbvvS7khMXbDpIRUuwmhk7Hwy7vS46IK4Fpzb9ZTKyUrus5F_rf-m0AdNZogJHmG9Codfp2y2Y0m-9x25nGyZ5K9oerPVPAi37OA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFH-a6KSNA-wLKDCWwzROFpld2zESh0IpoLVVhWCrdrEc2xEIVFApCP57npM0tNIQ0sQxim0l78N-P_v59wC-x9wbxrKMCJcx0mhwgz7HKEkV41ZRH2cqzYtNyF4vGQxUv8wmDHdhCn6IasMteEY-XwcHDxvSW0-socYVxEEqsMohaq810JbQyGut4_Zp54l5V-QFNsOBH1GikUyYG2O6NTvCzMpUC0K-_1fYORvF5stQe_EVfuADLJQxaNQsjOYjvPHDTzA_xUz4GXaOfcjX8C7aGz1gAHkZHSBeH59tR0dTKegRRrxVg6n-X-C0vX-yd0jKSgvEIjyLifGKu9gjvLBCMSOEoSalSmSMJ1aG-6jeiszEjFkupeDUG-5cJoVlxqciZkswN7wa-hWInJMYQqQIPC1CG-aUcjThPBNeSc5TUwcykbK2JQ15qIZxqQsCZaqDWHQlljpsVu2vCwKOZ1v-yJVWNTOji5C2Jrn-0zvQrX530Pm9-1f36xBNtKrRmcIJiRn6q9sbLRnCTQyqeB2WC21Xg1Gc7ZKfDN_QXKkvfIxutrrN6mn1fzp9g3eHJ92O7hz1fq3B-yJtQRIq12FuPLr1X-GtvRuf34w2SpN_BDAT_kA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hFqHxMGAM6ICRhwmerAa7tuNJeygtHRVtVVWUVXuxHP_QJqZu6tpp--9nJ2naSiCkaY9RzlZy57O_s8_fARzE1CpCnEPMOIIaDaq8zxGMUkGoFtjGTqRZsQk-GCSTiRgW2YThLkzOD1FuuAXPyObr4OD2yrj6ijVUmZw4SARWOR-1VxuhkkwFqu1RZ9xbMe-yrMBmOPBDgjWSJXNjjOubPWysTNWg5Nu_wc5NFJstQ50Xj_ADL2G7wKBRMx80r-CJne7A8zVmwtdwNLIhX8OaqDW78wDyIjr28fr87DDqrqWgRx7xlgJr7Xdh3Pn-q_UDFZUWkPbhWYyUFdTE1ocXmgmiGFNYpVgwR2iiebiPajVzKiZEU84ZxVZRYxxnmiibspi8gcr0cmrfQWQM9xAi9YGn9qENMUIYnFDqmBWc0lTVAC21LHVBQx6qYVzInEAZy6AWWaqlBl9K-aucgOOfkp8zo5ViavYnpK1xKk8Gx7I97E96v7-dymENoqVVpXemcEKipvZycS058eGmB1W0Bm9za5edYT_bJV-Jf4Mzo_7nY2Sz3W-WT3sPafQJng3bHdnrDn6-h608a4EjzD9AZT5b2I_wVN_Mz69n-8WIvwe7_f27
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversed+crystal+growth%3A+implications+for+crystal+engineering&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhou%2C+Wuzong&rft.date=2010-07-27&rft.eissn=1521-4095&rft.volume=22&rft.issue=28&rft.spage=3086&rft_id=info:doi/10.1002%2Fadma.200904320&rft_id=info%3Apmid%2F20408135&rft.externalDocID=20408135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon