A linear mixed model framework for gene‐based gene–environment interaction tests in twin studies

Interaction between genes and environments (G×E) can be well investigated in families due to the shared genes and environment among family members. However, the majority of the current tests of G×E interaction between a set of variants and an environment are only suitable for studies with unrelated...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Genetic epidemiology Ročník 42; číslo 7; s. 648 - 663
Hlavní autoři: Coombes, Brandon J., Basu, Saonli, McGue, Matt
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.10.2018
Témata:
ISSN:0741-0395, 1098-2272, 1098-2272
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Interaction between genes and environments (G×E) can be well investigated in families due to the shared genes and environment among family members. However, the majority of the current tests of G×E interaction between a set of variants and an environment are only suitable for studies with unrelated subjects. In this paper, we extend several G×E interaction tests to a linear mixed model framework to study interaction between a set of correlated environments and a candidate gene in families. The correlated environments can either be modeled separately or jointly in one model. We demonstrate theoretically that the tests developed by modeling correlated environments separately are valid and present a computationally fast alternative to detect G×E interaction in families. For either strategy, we propose treating the genetic main effects as a random effect to reduce the number of main‐effect parameters and thus improve the power to detect interactions. Additionally, we propose a generalization of a test of interaction that adaptively sums the interactions using a sequential algorithm. This generalized set of tests, referred to as the sequential algorithm for the sum of powered score (Seq‐SPU) family of tests, can be expressed as a weighted version of the SPU. We find that the adaptive version of our test, Seq‐aSPU, can outperform aSPU in cases where the interactions effects are in opposite directions. We applied these methods to the Minnesota Center for Twin and Family Research data set and found one significant gene in interaction with four psychosocial environmental factors affecting the alcohol consumption among the twins.
AbstractList Interaction between genes and environments (G×E) can be well investigated in families due to the shared genes and environment among family members. However, the majority of the current tests of G×E interaction between a set of variants and an environment are only suitable for studies with unrelated subjects. In this paper, we extend several G×E interaction tests to a linear mixed model framework to study interaction between a set of correlated environments and a candidate gene in families. The correlated environments can either be modeled separately or jointly in one model. We demonstrate theoretically that the tests developed by modeling correlated environments separately are valid and present a computationally fast alternative to detect G×E interaction in families. For either strategy, we propose treating the genetic main effects as a random effect to reduce the number of main‐effect parameters and thus improve the power to detect interactions. Additionally, we propose a generalization of a test of interaction that adaptively sums the interactions using a sequential algorithm. This generalized set of tests, referred to as the sequential algorithm for the sum of powered score (Seq‐SPU) family of tests, can be expressed as a weighted version of the SPU. We find that the adaptive version of our test, Seq‐aSPU, can outperform aSPU in cases where the interactions effects are in opposite directions. We applied these methods to the Minnesota Center for Twin and Family Research data set and found one significant gene in interaction with four psychosocial environmental factors affecting the alcohol consumption among the twins.
Interaction between genes and environments (G×E) can be well investigated in families due to the shared genes and environment among family members. However, the majority of the current tests of G×E interaction between a set of variants and an environment are only suitable for studies with unrelated subjects. In this paper, we extend several G×E interaction tests to a linear mixed model framework to study interaction between a set of correlated environments and a candidate gene in families. The correlated environments can either be modeled separately or jointly in one model. We demonstrate theoretically that the tests developed by modeling correlated environments separately are valid and present a computationally fast alternative to detect G×E interaction in families. For either strategy, we propose treating the genetic main effects as a random effect to reduce the number of main-effect parameters and thus improve the power to detect interactions. Additionally, we propose a generalization of a test of interaction that adaptively sums the interactions using a sequential algorithm. This generalized set of tests, referred to as the sequential algorithm for the sum of powered score (Seq-SPU) family of tests, can be expressed as a weighted version of the SPU. We find that the adaptive version of our test, Seq-aSPU, can outperform aSPU in cases where the interactions effects are in opposite directions. We applied these methods to the Minnesota Center for Twin and Family Research data set and found one significant gene in interaction with four psychosocial environmental factors affecting the alcohol consumption among the twins.Interaction between genes and environments (G×E) can be well investigated in families due to the shared genes and environment among family members. However, the majority of the current tests of G×E interaction between a set of variants and an environment are only suitable for studies with unrelated subjects. In this paper, we extend several G×E interaction tests to a linear mixed model framework to study interaction between a set of correlated environments and a candidate gene in families. The correlated environments can either be modeled separately or jointly in one model. We demonstrate theoretically that the tests developed by modeling correlated environments separately are valid and present a computationally fast alternative to detect G×E interaction in families. For either strategy, we propose treating the genetic main effects as a random effect to reduce the number of main-effect parameters and thus improve the power to detect interactions. Additionally, we propose a generalization of a test of interaction that adaptively sums the interactions using a sequential algorithm. This generalized set of tests, referred to as the sequential algorithm for the sum of powered score (Seq-SPU) family of tests, can be expressed as a weighted version of the SPU. We find that the adaptive version of our test, Seq-aSPU, can outperform aSPU in cases where the interactions effects are in opposite directions. We applied these methods to the Minnesota Center for Twin and Family Research data set and found one significant gene in interaction with four psychosocial environmental factors affecting the alcohol consumption among the twins.
Interaction between genes and environments (GxE) can be well investigated in families due to the shared genetic and environment among family members. However, majority of the current tests of GxE interaction between a set of variants and an environment are only suitable for studies with unrelated subjects. In this paper, we extend several GxE interaction tests to linear mixed model framework to study interaction between a set of correlated environments and a candidate gene in families. The correlated environments can either be modeled separately or jointly in one model. We demonstrate theoretically that the tests developed by modeling correlated environments separately are valid and present a computationally fast alternative to detect GxE interaction in families. For either strategy, we also propose treating the genetic main effects as a random effect to reduce the number of main-effect parameters and thus improve the power to detect interactions. Additionally, we propose a generalization of a test of interaction that adaptively sums the interactions using a sequential algorithm. This generalized set of tests, referred to as the Seq-SPU family of tests, can be expressed as a weighted version of the sum of power score tests (SPU). We find that the adaptive version of our test, Seq-aSPU, can outperform aSPU in cases where the interactions effects are in opposite directions. We applied these methods to the Minnesota Center for Twin and Family Research dataset and found one significant gene in interaction with four psychosocial environmental factors affecting the alcohol consumption among the twins.
Author Coombes, Brandon J.
Basu, Saonli
McGue, Matt
AuthorAffiliation 2 Department of Psychology, School of Public Health, University of Minnesota, USA
1 Division of Biostatistics, School of Public Health, University of Minnesota, USA
AuthorAffiliation_xml – name: 2 Department of Psychology, School of Public Health, University of Minnesota, USA
– name: 1 Division of Biostatistics, School of Public Health, University of Minnesota, USA
Author_xml – sequence: 1
  givenname: Brandon J.
  surname: Coombes
  fullname: Coombes, Brandon J.
  organization: School of Public Health, University of Minnesota
– sequence: 2
  givenname: Saonli
  orcidid: 0000-0003-1200-4546
  surname: Basu
  fullname: Basu, Saonli
  email: saonli@umn.edu
  organization: School of Public Health, University of Minnesota
– sequence: 3
  givenname: Matt
  surname: McGue
  fullname: McGue, Matt
  organization: School of Public Health, University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30203856$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFqFTEYhUOptLfVjQ8gA26KMPVPMnOT2Qil1Foo6ELXIZP5c02dSa7JTG-76yMIvqFPYq5TixZxk5DkO4fz5xyQXR88EvKcwjEFYK9XuHbHjNEadsiCQiNLxgTbJQsQFS2BN_U-OUjpCoDSqqn3yD4HBlzWywXpToreedSxGNwNdsUQOuwLG_WAmxC_FDbEYoUef9x9a3XKwHz4jv7axeAH9GPh_IhRm9EFX4yYxpRvinGTlzROncP0lDyxuk_47H4_JJ_enn08fVdevj-_OD25LE1VSSiZtVoKKyXVrZESpK5EK5g20rSmY5qJblkJy2u0IJhFJlBmXWeAVVhbyw_Jm9l3PbUDdiaHi7pX6-gGHW9V0E79_eLdZ7UK10qyRtSUZ4Oje4MYvk55FDW4ZLDvtccwJcUoME4byZcZffkIvQpT9Hm8TFHJoWJVk6kXfyZ6iPK7gAy8mgETQ0oR7QNCQW3bVdt21a92MwyPYONGvf33PI3r_y2hs2Tjerz9j7k6P_twMWt-AgdQuwE
CitedBy_id crossref_primary_10_1002_sim_8446
crossref_primary_10_1002_gepi_22339
Cites_doi 10.1002/gepi.21703
10.1038/nrg1578
10.1016/j.ajhg.2016.02.012
10.1093/biostatistics/kxt006
10.1534/genetics.112.146720
10.1016/j.ajhg.2010.11.011
10.1002/gepi.22043
10.2307/2346911
10.1016/j.biopsych.2013.08.027
10.1101/gr.169375.113
10.1017/thg.2012.62
10.1093/oxfordjournals.epirev.a017944
10.1007/s10519-013-9606-x
10.1002/gepi.20609
10.1007/s10519-010-9417-2
10.1111/j.1530-0277.2012.01843.x
10.2105/AJPH.41.3.279
10.1002/gepi.20402
10.1080/10550490802139010
10.1146/annurev.publhealth.012809.103619
10.1016/j.neuroimage.2014.07.031
10.1038/ng1847
10.1534/genetics.114.165035
10.1515/CCLM.2008.178
10.1093/oxfordjournals.aje.a008709
10.1198/106186006X96962
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/gepi.22150
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Genetics Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
EISSN 1098-2272
EndPage 663
ExternalDocumentID PMC8297513
30203856
10_1002_gepi_22150
GEPI22150
Genre article
Research Support, Non-U.S. Gov't
Twin Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Doctoral Dissertation Fellowship of the University of Minnesota Graduate School
– fundername: National Institute of General Medical Sciences
  funderid: T32GM108557
– fundername: National Institute on Drug Abuse
  funderid: R01DA033958
– fundername: NIDA NIH HHS
  grantid: R01DA033958
– fundername: NIGMS NIH HHS
  grantid: T32GM108557
– fundername: NIDA NIH HHS
  grantid: R01 DA033958
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4480-2ffa87f881abc8808a47b72ac8cbcd2a27d647f35ef072fe27e8480dc024e5ff3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447523100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0741-0395
1098-2272
IngestDate Tue Nov 04 01:59:01 EST 2025
Thu Jul 10 23:04:48 EDT 2025
Sat Nov 29 14:37:35 EST 2025
Wed Feb 19 02:36:01 EST 2025
Tue Nov 18 20:36:43 EST 2025
Sat Nov 29 06:32:59 EST 2025
Wed Jan 22 16:55:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords ridge penalty
linear mixed models
score tests
candidate genes
family studies
gene-environment interaction
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4480-2ffa87f881abc8808a47b72ac8cbcd2a27d647f35ef072fe27e8480dc024e5ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1200-4546
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8297513
PMID 30203856
PQID 2118304249
PQPubID 105460
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8297513
proquest_miscellaneous_2102319836
proquest_journals_2118304249
pubmed_primary_30203856
crossref_primary_10_1002_gepi_22150
crossref_citationtrail_10_1002_gepi_22150
wiley_primary_10_1002_gepi_22150_GEPI22150
PublicationCentury 2000
PublicationDate October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet Epidemiol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_1_10_1
e_1_2_7_1_33_1
e_1_2_7_1_11_1
e_1_2_7_1_12_1
e_1_2_7_1_34_1
Hodges J. S. (e_1_2_7_1_13_1) 2013
e_1_2_7_1_30_1
e_1_2_7_1_31_1
Samek D. R. (e_1_2_7_1_26_1) 2016
Green W. H. (e_1_2_7_1_9_1) 2002
e_1_2_7_1_5_1
e_1_2_7_1_29_1
e_1_2_7_1_6_1
e_1_2_7_1_7_1
e_1_2_7_1_25_1
e_1_2_7_1_2_1
Prescott C. A. (e_1_2_7_1_24_1) 2002; 26
e_1_2_7_1_3_1
e_1_2_7_1_27_1
e_1_2_7_1_4_1
e_1_2_7_1_28_1
e_1_2_7_1_21_1
e_1_2_7_1_22_1
e_1_2_7_1_23_1
e_1_2_7_1_20_1
Falconer D. (e_1_2_7_1_8_1) 1981
e_1_2_7_1_18_1
e_1_2_7_1_19_1
e_1_2_7_1_14_1
Wang Y. (e_1_2_7_1_32_1) 2015; 14
e_1_2_7_1_15_1
e_1_2_7_1_16_1
Lin X. (e_1_2_7_1_17_1) 2015
References_xml – ident: e_1_2_7_1_3_1
  doi: 10.1002/gepi.21703
– ident: e_1_2_7_1_14_1
  doi: 10.1038/nrg1578
– volume-title: Richly parameterized linear models: additive, time series, and spatial models using random effects
  year: 2013
  ident: e_1_2_7_1_13_1
– ident: e_1_2_7_1_4_1
  doi: 10.1016/j.ajhg.2016.02.012
– ident: e_1_2_7_1_16_1
  doi: 10.1093/biostatistics/kxt006
– start-page: 1
  year: 2016
  ident: e_1_2_7_1_26_1
  article-title: Antisocial peer affiliation and externalizing disorders: Evidence for gene x environment x development interaction
  publication-title: Development and Psychopathology, FirstView
– ident: e_1_2_7_1_27_1
  doi: 10.1534/genetics.112.146720
– ident: e_1_2_7_1_34_1
  doi: 10.1016/j.ajhg.2010.11.011
– start-page: 07458
  volume-title: Econometric analysis
  year: 2002
  ident: e_1_2_7_1_9_1
– volume: 26
  start-page: 264
  year: 2002
  ident: e_1_2_7_1_24_1
  article-title: Sex differences in the genetic risk for alcoholism
  publication-title: Alcohol Research and Health
– ident: e_1_2_7_1_5_1
  doi: 10.1002/gepi.22043
– ident: e_1_2_7_1_6_1
  doi: 10.2307/2346911
– ident: e_1_2_7_1_31_1
  doi: 10.1016/j.biopsych.2013.08.027
– ident: e_1_2_7_1_28_1
  doi: 10.1101/gr.169375.113
– ident: e_1_2_7_1_19_1
  doi: 10.1017/thg.2012.62
– ident: e_1_2_7_1_33_1
  doi: 10.1093/oxfordjournals.epirev.a017944
– start-page: 1
  year: 2015
  ident: e_1_2_7_1_17_1
  article-title: Test for rare variants by environment interactions in sequencing association studies
  publication-title: Biometrics
– ident: e_1_2_7_1_18_1
  doi: 10.1007/s10519-013-9606-x
– volume: 14
  start-page: 209
  year: 2015
  ident: e_1_2_7_1_32_1
  article-title: Powerful Tukey's one degree‐of‐freedom test for detecting gene‐gene and gene‐environment interactions
  publication-title: Cancer Informatics
– ident: e_1_2_7_1_2_1
  doi: 10.1002/gepi.20609
– volume-title: Introduction to quantitative genetics
  year: 1981
  ident: e_1_2_7_1_8_1
– ident: e_1_2_7_1_11_1
  doi: 10.1007/s10519-010-9417-2
– ident: e_1_2_7_1_20_1
  doi: 10.1111/j.1530-0277.2012.01843.x
– ident: e_1_2_7_1_7_1
  doi: 10.2105/AJPH.41.3.279
– ident: e_1_2_7_1_22_1
  doi: 10.1002/gepi.20402
– ident: e_1_2_7_1_10_1
  doi: 10.1080/10550490802139010
– ident: e_1_2_7_1_29_1
  doi: 10.1146/annurev.publhealth.012809.103619
– ident: e_1_2_7_1_15_1
  doi: 10.1016/j.neuroimage.2014.07.031
– ident: e_1_2_7_1_25_1
  doi: 10.1038/ng1847
– ident: e_1_2_7_1_21_1
  doi: 10.1534/genetics.114.165035
– ident: e_1_2_7_1_30_1
  doi: 10.1515/CCLM.2008.178
– ident: e_1_2_7_1_12_1
  doi: 10.1093/oxfordjournals.aje.a008709
– ident: e_1_2_7_1_23_1
  doi: 10.1198/106186006X96962
SSID ssj0011495
Score 2.2257636
Snippet Interaction between genes and environments (G×E) can be well investigated in families due to the shared genes and environment among family members. However,...
Interaction between genes and environments (GxE) can be well investigated in families due to the shared genetic and environment among family members. However,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 648
SubjectTerms Algorithms
candidate genes
Computer Simulation
Environmental factors
family studies
Female
Gene-Environment Interaction
Genes
Humans
linear mixed models
Linear Models
Male
Minnesota
Models, Genetic
ridge penalty
score tests
Twin studies
Twins
Twins - genetics
Title A linear mixed model framework for gene‐based gene–environment interaction tests in twin studies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.22150
https://www.ncbi.nlm.nih.gov/pubmed/30203856
https://www.proquest.com/docview/2118304249
https://www.proquest.com/docview/2102319836
https://pubmed.ncbi.nlm.nih.gov/PMC8297513
Volume 42
WOSCitedRecordID wos000447523100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2272
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011495
  issn: 0741-0395
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEB_0rFCQtlr_xFpZsS8K0WST3G6gL9J6VRCRonBvYZPM6oGNcjlt-9aPIPgN_SSd3c1FD0uh9CX_dsKG3Znsb3Z3fgPwAQNFfkep_aDsBuSgYOqniDHpcqJNxqM40pYy_0gcH8t-Pz2Zgo_jWBjHD9FOuBnLsP9rY-Aqr3cfSUPP8Xqww7l12Gc4KW7cgZnPX3tnR-0qgkH_jobTbBtKk5aelO8-vj05ID1Dmc83Sz4FsXYU6r3-v-9_A68a9Mn2nLrMwxRWCzDr8lH-XIA5N4nHXGzSWyj3mKlHDdm3wQ8smU2bw_R4PxcjwMtIAfHh150ZDcvm5v5J9BwzfBRDFz3BCNaOanrCRt_pULstjItw1ts__XTgN2kZ_IJ8ucDnWisptJShygsyf6likQuuClnkRckVF2U3FjpKUAeCa-QCJb1XFgQHMNE6WoJOdVXhCrAwDpUI8wgliWg6JVoochGpCkHAFD3YGvdNVjSc5SZ1xmXm2JZ5Zloxs63owWYre-2YOv4otTbu4qyx1jojJ1iaaZ049WCjLSY7M4snqsKrGyNjmPJSGXU9WHYa0VYTmeVcmVCJmNCVVsBweE-WVIMLy-VtI5vDyINtqyt_-fLsy_7Job1a_Rfhd_CSMJ6j8A3XoDMa3uB7eFHcjgb1cB2mRV-uN3bzGwWYHmc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hDsQkxJ-xQWAwI_aySdkSJ6mdxwlWNlGqCW3S3iI3OUMlyKa2488bHwGJb8gn4c5Os1VDk6a9NE18kdvkzv6dffc7gHWMDPkdlQ2jqhuRg4J5mCOmpMuZ5YpHaWIdZX5fDQb6-Dg_aGJzOBfG80O0C25sGW68ZgPnBentc9bQT3g62pLSeewLKelR1oGFtx97R_12G4Hhv-fh5LihPGv5SeX2-d3zM9IlmHk5WvIiinXTUO_BDf_AQ7jf4E-x4xXmEdzCegnu-IqUP5fgnl_GEz476TFUO4I7MmPxdfQDK-EK5wg7i-gSBHkFqSD-_fWb58OqOflzIX9OMCPF2OdPCAK20wldEdPv9DHxQYzLcNTbPXyzFzaFGcKSvLkolNYarazWsRmWNABok6qhkqbU5bCspJGq6qbKJhnaSEmLUqGm-6qSAAFm1iYr0KlPanwKIk5jo-JhgppELB0yqww5idSFImiKAWzMXk5RNqzlXDzjS-H5lmXBT7FwTzGA163sqefq-K_U6uwdF429TgpygzUv7KR5AK_aZrI03j4xNZ6csQxz5eU66QbwxKtE203CG7o6oxY1pyytALN4z7fUo8-OzdvlNsdJAJtOWa745cW73YN99-3ZdYTX4O7e4Yd-0d8fvH8Oi4T4PKFvvAqd6fgMX8Dt8tt0NBm_bMznH1FVIW8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hDdAkxJ_BIDDACF6YFJY4Se08TmyFiaqqEJP2FrnxGSpBVrUdf974CEh8Qz4Jd3aarRpCQrw0TXyR2-TO_p199zuAZ5gY8jusixPbS8hBwTIuEXPS5cJxxaM8c54yf6CGQ318XI7a2BzOhQn8EN2CG1uGH6_ZwHFq3e4Za-h7nE5eSOk99vW8KHtkl-v7b_tHg24bgeF_4OHkuKGy6PhJ5e7Z3asz0gWYeTFa8jyK9dNQ_8Z__oGbcL3Fn2IvKMwtuITNJlwJFSm_bcK1sIwnQnbSbbB7gjsyM_Fp8hWt8IVzhFtGdAmCvIJUEH99_8HzoW1Pfp7LnxPMSDEL-ROCgO1iTlfE4gt9zEMQ4x046h-8e_k6bgszxDV5c0ksnTNaOa1TM65pANAmV2MlTa3rcW2lkcr2cuWyAl2ipEOpUNN9tiZAgIVz2RasNScN3gOR5qlR6ThDTSKODoVThpxE6kIRNMUIni9fTlW3rOVcPONjFfiWZcVPsfJPMYKnnew0cHX8UWp7-Y6r1l7nFbnBmhd28jKCJ10zWRpvn5gGT05ZhrnySp31IrgbVKLrJuMNXV1Qi1pRlk6AWbxXW5rJB8_m7XOb0yyCHa8sf_nl1auD0aH_dv9fhB_D1dF-vxocDt88gA0CfIHPN92GtcXsFB_C5frzYjKfPWqt5zeujSDq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+linear+mixed+model+framework+for+gene%E2%80%90based+gene%E2%80%93environment+interaction+tests+in+twin+studies&rft.jtitle=Genetic+epidemiology&rft.au=Coombes%2C+Brandon+J.&rft.au=Basu%2C+Saonli&rft.au=McGue%2C+Matt&rft.date=2018-10-01&rft.issn=0741-0395&rft.eissn=1098-2272&rft.volume=42&rft.issue=7&rft.spage=648&rft.epage=663&rft_id=info:doi/10.1002%2Fgepi.22150&rft.externalDBID=10.1002%252Fgepi.22150&rft.externalDocID=GEPI22150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon