Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence

Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Artificial life Ročník 24; číslo 1; s. 56
Hlavní autoři: Hernández-Orozco, Santiago, Hernández-Quiroz, Francisco, Zenil, Hector
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 2018
Témata:
ISSN:1064-5462
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.
AbstractList Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.
Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.
Author Hernández-Quiroz, Francisco
Hernández-Orozco, Santiago
Zenil, Hector
Author_xml – sequence: 1
  givenname: Santiago
  surname: Hernández-Orozco
  fullname: Hernández-Orozco, Santiago
  email: hosant@ciencias.unam.mx
  organization: Department of Mathematics, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México 04510. Posgrado en Ciencias e Ingeniería de la Computación, Universidad Nacional Autónoma de México. E-mail: hosant@ciencias.unam.mx
– sequence: 2
  givenname: Francisco
  surname: Hernández-Quiroz
  fullname: Hernández-Quiroz, Francisco
  email: fhq@ciencias.unam.mx
  organization: Department of Mathematics, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México 04510. Posgrado en Ciencias e Ingeniería de la Computación, Universidad Nacional Autónoma de México. E-mail: fhq@ciencias.unam.mx
– sequence: 3
  givenname: Hector
  surname: Zenil
  fullname: Zenil, Hector
  email: hector.zenil@algorithmicnaturelab.org
  organization: Algorithmic Dynamics Lab, Unit of Computational Medicine, SciLifeLab, Karolinska Institute, Karolinska Hospital L8:05, SE-171 76, Stockholm, Sweden. E-mail: hector.zenil@algorithmicnaturelab.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29369710$$D View this record in MEDLINE/PubMed
BookMark eNo1UElLAzEYzaFiF715ljl6Gf2SydIcSxkXKBS0PQ9p8kUiM0mdRei_d9R6evA2Hm9OJjFFJOSGwj2lkj2sXnebylQATPAJmVGQPBdcsimZd90HAC2gUJdkynQhtaIwI2_76NAGZw6hDv0pM9FlL22LbrDhTK1TdKEPKXaZT222PWLMyzHlsvIr1cOP8hsrG2zfMVq8Ihfe1B1en3FB9o_lbv2cb7ZPL-vVJrecqz73xlELnEoujffjZGuVRqaoOVgOGpwCXHq11IUTyATVoJgUXnAcVaUNW5C7v95jmz4H7PqqCZ3FujYR09BVVGsGIIqlHq23Z-twaNBVxzY0pj1V_0ewb-HkXzI
CitedBy_id crossref_primary_10_1016_j_csbr_2025_100040
crossref_primary_10_1088_2632_072X_ad9cdc
crossref_primary_10_1098_rsos_180399
crossref_primary_10_1162_artl_a_00397
crossref_primary_10_1162_ARTL_e_00256
crossref_primary_10_1162_artl_a_00462
crossref_primary_10_1093_nar_gkz750
crossref_primary_10_1098_rsta_2020_0429
crossref_primary_10_1016_j_tcs_2019_03_008
crossref_primary_10_1073_pnas_2310223120
crossref_primary_10_1016_j_physa_2018_09_133
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/ARTL_a_00254
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
Computer Science
ExternalDocumentID 29369710
Genre Journal Article
GroupedDBID ---
-~X
.4S
.DC
0R~
23N
36B
4.4
53G
5GY
6IK
6J9
AAJGR
ABAZT
ABDBF
ABDNZ
ABJNI
ACGFO
ACUHS
ACYGS
ADMLS
AEGXH
AEILP
AENEX
AI.
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CGR
COF
CS3
CUY
CVF
EAP
EAS
EBC
EBD
EBS
EBX
ECM
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FNEHJ
HZ~
IPLJI
JAVBF
MCG
MINIK
MK~
NPM
O9-
OCL
P2P
PK0
RMI
SV3
TUS
VH1
ZWS
7X8
ABVLG
ID FETCH-LOGICAL-c447t-fad1c041646aff025cc79e271abc4090d70e8f7893d5e251907265f54e40979a2
IEDL.DBID 7X8
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424877500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1064-5462
IngestDate Thu Sep 04 16:05:35 EDT 2025
Wed Feb 19 02:35:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Open-ended evolution
complexity
dynamical systems
adaptation
emergence
undecidability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-fad1c041646aff025cc79e271abc4090d70e8f7893d5e251907265f54e40979a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29369710
PQID 1992005389
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1992005389
pubmed_primary_29369710
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Artificial life
PublicationTitleAlternate Artif Life
PublicationYear 2018
SSID ssj0013037
Score 2.2779887
Snippet Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 56
SubjectTerms Biological Evolution
Models, Biological
Synthetic Biology
Title Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence
URI https://www.ncbi.nlm.nih.gov/pubmed/29369710
https://www.proquest.com/docview/1992005389
Volume 24
WOSCitedRecordID wos000424877500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-oU_DidH7NLyJ4DeuypGlPItKhMMdAhd1KmiawSzu3Odh_b16bohdB8NJDIVBe30t-eR-_H8CdydyhaAWjuQ4t5WrQp4oj6SePmRRxZoSteGZHcjyOptN44hNuS99W2eyJ1Uadlxpz5D1sk0SPieL7-QdF1SisrnoJjW1oDRyUwcCU0x9VhKDizHS3Hk4FD1nT-B6ynkOLo1Sl1TD47-CyOmSG7f9-3iEceHhJHmp_OIItU3Rgrxac3HSg3Yg4EB_Tx_CKykd6ltd83Ruiipw8LxbI6Drzrx5LrGujfxIHcQn2oNAEM-ckWXvPrZYlfpTTnMD7MHl7fKJeaYFqzuWKWpX3dcCRa0xZ62yitYwNk32VaXcBDHIZmMhKh21yYXDWNZAsFFZwg3RZsWKnsFOUhTkHYgZGhWGgeKYcGFRGDUIrVIbIkofciC7cNgZMnSdjeUIVpvxcpt8m7MJZ_RfSeU25kTLUHXRg6OIPqy9h36GaqM6TXEHLujg217Cr16vZcnFTuYh7jicvXy5Txh4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Undecidability+and+Irreducibility+Conditions+for+Open-Ended+Evolution+and+Emergence&rft.jtitle=Artificial+life&rft.au=Hern%C3%A1ndez-Orozco%2C+Santiago&rft.au=Hern%C3%A1ndez-Quiroz%2C+Francisco&rft.au=Zenil%2C+Hector&rft.date=2018-01-01&rft.issn=1064-5462&rft.volume=24&rft.issue=1&rft.spage=56&rft_id=info:doi/10.1162%2FARTL_a_00254&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-5462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-5462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-5462&client=summon