Endothelial response to glucose: dysfunction, metabolism, and transport

The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to resu...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical Society transactions Vol. 49; no. 1; p. 313
Main Author: Clyne, Alisa Morss
Format: Journal Article
Language:English
Published: England 26.02.2021
Subjects:
ISSN:1470-8752, 1470-8752
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
AbstractList The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
Author Clyne, Alisa Morss
Author_xml – sequence: 1
  givenname: Alisa Morss
  surname: Clyne
  fullname: Clyne, Alisa Morss
  organization: Fischell Department of Bioengineering, University of Maryland, College Park, MD, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33522573$$D View this record in MEDLINE/PubMed
BookMark eNpNjz1PwzAURS1URD9gYkcZGRp4fnYSl41WpSBVYqDMkWO_QFBil9gZ-u-pRJGY7h3OudKdspHzjhi75nDHQeL98m2HgAA552dswmUBqSoyHP3rYzYN4QuASy7zCzYWIkPMCjFhm7WzPn5S2-g26SnsvQuURJ98tIPxgR4Sewj14ExsvJsnHUVd-bYJ3TzRziax1-7o9PGSnde6DXR1yhl7f1rvVs_p9nXzsnrcpkbKIqY2R7EA5CKXhTS1QDQIeWZBQV0Jm1eSk60xl8qYQtWSFGWalAXiCwFK44zd_u7ue_89UIhl1wRDbasd-SGUKJXkmRCQHdGbEzpUHdly3zed7g_l33n8AVdRXDQ
CitedBy_id crossref_primary_10_3390_genes14061259
crossref_primary_10_1007_s12013_024_01361_2
crossref_primary_10_1016_j_mbm_2025_100145
crossref_primary_10_3390_nu13113972
crossref_primary_10_1002_jat_4885
crossref_primary_10_1007_s10565_025_10005_x
crossref_primary_10_1007_s10735_025_10542_z
crossref_primary_10_1177_09760016251317265
crossref_primary_10_1016_j_diabres_2025_112367
crossref_primary_10_1007_s40200_022_01088_y
crossref_primary_10_3389_fcvm_2025_1560022
crossref_primary_10_1371_journal_pone_0294909
crossref_primary_10_3390_ijms23126704
crossref_primary_10_1016_j_diabres_2025_112095
crossref_primary_10_1007_s12265_023_10470_x
crossref_primary_10_3390_ijms22158087
crossref_primary_10_26693_jmbs07_06_109
crossref_primary_10_1111_micc_70023
crossref_primary_10_1016_j_biopha_2025_118210
crossref_primary_10_1038_s41582_024_00991_7
crossref_primary_10_3390_ijms252413402
crossref_primary_10_1161_ATVBAHA_124_322001
crossref_primary_10_1016_j_microc_2025_114415
crossref_primary_10_3390_cells13100789
crossref_primary_10_3390_ph17040464
crossref_primary_10_4103_1673_5374_385864
crossref_primary_10_3389_fimmu_2025_1585139
crossref_primary_10_1038_s41598_025_12564_9
crossref_primary_10_1038_s41388_024_03228_5
crossref_primary_10_1016_j_bios_2025_117472
crossref_primary_10_1088_1758_5090_ad88a7
crossref_primary_10_1016_j_biopha_2025_118445
crossref_primary_10_3390_antiox13010085
crossref_primary_10_3390_biomedicines9121874
crossref_primary_10_4239_wjd_v15_i6_1299
crossref_primary_10_1159_000530160
crossref_primary_10_1002_ptr_70019
crossref_primary_10_1002_smll_202407802
crossref_primary_10_3389_fcvm_2024_1478743
crossref_primary_10_1007_s12192_023_01384_3
crossref_primary_10_1038_s41598_023_42333_5
crossref_primary_10_3390_biom14030329
crossref_primary_10_1038_s41597_023_02512_5
crossref_primary_10_3389_fnmol_2025_1623321
crossref_primary_10_1016_j_ejphar_2024_176381
crossref_primary_10_14336_AD_2025_0289
crossref_primary_10_29254_2077_4214_2023_1_168_301_308
crossref_primary_10_1016_j_bbe_2021_04_010
crossref_primary_10_1016_j_intimp_2024_113146
crossref_primary_10_3390_ijms25053048
crossref_primary_10_1182_blood_2024027636
crossref_primary_10_3389_fendo_2023_1191426
crossref_primary_10_1007_s11538_025_01424_2
crossref_primary_10_1007_s12013_025_01735_0
crossref_primary_10_1097_MD_0000000000037937
crossref_primary_10_1186_s13098_024_01528_0
crossref_primary_10_1038_s41598_024_69862_x
crossref_primary_10_3390_antiox12122132
crossref_primary_10_3390_cells13242055
crossref_primary_10_2147_CIA_S482060
crossref_primary_10_3390_nu16111641
crossref_primary_10_1186_s12933_025_02655_2
crossref_primary_10_3390_ijtm4010007
crossref_primary_10_1016_j_brainres_2023_148611
crossref_primary_10_3390_ijms25052485
crossref_primary_10_1007_s11033_024_09750_9
crossref_primary_10_1016_j_isci_2024_110909
crossref_primary_10_1186_s12964_022_01016_w
crossref_primary_10_1016_j_bios_2025_117133
crossref_primary_10_1111_febs_17198
crossref_primary_10_4239_wjd_v16_i7_107673
crossref_primary_10_1007_s10557_023_07477_6
crossref_primary_10_1096_fj_202300478RR
crossref_primary_10_2478_rjim_2025_0009
crossref_primary_10_1080_15569527_2024_2422914
crossref_primary_10_3390_metabo15060411
crossref_primary_10_3390_ijms24054394
ContentType Journal Article
Copyright 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Copyright_xml – notice: 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/BST20200611
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1470-8752
ExternalDocumentID 33522573
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL140239
GroupedDBID ---
-DZ
-~X
0R~
23N
2WC
4.4
5GY
5RE
6J9
A8Z
AABGO
AAHRG
AAKDD
ABJNI
ACGFO
ACGFS
ACNCT
AEGXH
AENEX
AFFNX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
DU5
E3Z
EBD
EBS
ECM
EIF
EMOBN
F5P
H13
HZ~
IH2
ML-
MV1
NPM
NTEUP
O9-
P2P
RHI
RNS
RPO
SV3
TWZ
UBE
~02
7X8
ESTFP
ID FETCH-LOGICAL-c447t-d623902136474cf322c2065d080fb3d6b41edf2648cc78f4e8e5ae8d0e19308a2
IEDL.DBID 7X8
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624985100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-8752
IngestDate Fri Sep 05 14:47:59 EDT 2025
Thu Apr 03 07:03:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords blood brain barrier
glucose transport
extracellular vesicles
SGLT2
diabetes
glycolysis
Language English
License 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-d623902136474cf322c2065d080fb3d6b41edf2648cc78f4e8e5ae8d0e19308a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7920920
PMID 33522573
PQID 2484153305
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2484153305
pubmed_primary_33522573
PublicationCentury 2000
PublicationDate 20210226
PublicationDateYYYYMMDD 2021-02-26
PublicationDate_xml – month: 2
  year: 2021
  text: 20210226
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical Society transactions
PublicationTitleAlternate Biochem Soc Trans
PublicationYear 2021
SSID ssj0014146
Score 2.602516
SecondaryResourceType review_article
Snippet The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 313
SubjectTerms Animals
Biological Transport - drug effects
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - pathology
Diabetes Mellitus, Type 2 - physiopathology
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Endothelial Cells - physiology
Endothelium, Vascular - drug effects
Endothelium, Vascular - metabolism
Endothelium, Vascular - pathology
Endothelium, Vascular - physiopathology
Glucose - pharmacology
Glycolysis - drug effects
Humans
Hyperglycemia - metabolism
Hyperglycemia - pathology
Hyperglycemia - physiopathology
Neovascularization, Physiologic - drug effects
Neovascularization, Physiologic - physiology
Title Endothelial response to glucose: dysfunction, metabolism, and transport
URI https://www.ncbi.nlm.nih.gov/pubmed/33522573
https://www.proquest.com/docview/2484153305
Volume 49
WOSCitedRecordID wos000624985100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnrxUV_1xQriqaFpss2mXqQtrV4sBSv0FjY7Gyi0SW2i0H_vTJrQkyB4CbksJLvz-Gb2mxnGHhSEtvaNsQx4ggIUx1KeKzHmiZpaujL0PZUPm5DDoT-ZtEdFwi0taJWlTcwNNSSacuQNR_iCsIndel58WjQ1im5XixEa26ziIpQhqZaTzS2CKKuLpI1a33KK-jyU00b3fYxhPznw5u_YMvcxg6P_ft0xOyzQJe-sxeGEbZm4yk47MUbW8xV_5DnfM0-kV9let3zb75VT307ZSz8GKsqaoVzy5ZpAa3iW8ILb_sRhlZIzpAOt87nJUIpm03Re5yoGnpW90s_Yx6A_7r1axbAFSwshMwsQB7XR4VM_eaEj1HPtIDwBRJRR6IIXiqaBiPhwWks_EsY3LWV8sA1CQNtXzjnbiZPYXDIeyQjaCheakPqFIagDG9pahVqAAYAauy83McC_oxsKFZvkKw0221hjF-uTCBbrrhsBFYehfXGv_rD6mh04xD2h0nPvhlUiVGVzy3b1dzZNl3e5lOBzOHr7AT9Jx34
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endothelial+response+to+glucose%3A+dysfunction%2C+metabolism%2C+and+transport&rft.jtitle=Biochemical+Society+transactions&rft.au=Clyne%2C+Alisa+Morss&rft.date=2021-02-26&rft.issn=1470-8752&rft.eissn=1470-8752&rft.volume=49&rft.issue=1&rft.spage=313&rft_id=info:doi/10.1042%2FBST20200611&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8752&client=summon