Parallel defect-correction algorithms based on finite element discretization for the Navier–Stokes equations
•Two parallel defect-correction algorithms for the Navier–Stokes equations are presented.•The algorithms are able to simulate high Reynolds numbers flows on relatively coarse grids.•The parallel algorithms are easy to implement based on an existing sequential solver.•The algorithms have low communic...
Uložené v:
| Vydané v: | Computers & fluids Ročník 79; s. 200 - 212 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
25.06.2013
|
| Predmet: | |
| ISSN: | 0045-7930, 1879-0747 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Two parallel defect-correction algorithms for the Navier–Stokes equations are presented.•The algorithms are able to simulate high Reynolds numbers flows on relatively coarse grids.•The parallel algorithms are easy to implement based on an existing sequential solver.•The algorithms have low communication cost.•Numerical results demonstrated the efficiency of the algorithms.
Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary Navier–Stokes equations with high Reynolds numbers are proposed and investigated. In these algorithms, each processor first solves an artificial viscosity stabilized Navier–Stokes equations by Newton or Picard iterative method, and then diffuses the system in the correction steps where only a linear problem needs to be solved at each step. All the computations are performed in parallel on global composite meshes that are fine around a particular subdomain and coarse elsewhere. The algorithms have low communication complexity. They can yield an approximate solution with an accuracy comparable to that of the standard finite element solution. Numerical tests demonstrated the effectiveness of the algorithms. |
|---|---|
| AbstractList | Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary Navier-Stokes equations with high Reynolds numbers are proposed and investigated. In these algorithms, each processor first solves an artificial viscosity stabilized Navier-Stokes equations by Newton or Picard iterative method, and then diffuses the system in the correction steps where only a linear problem needs to be solved at each step. All the computations are performed in parallel on global composite meshes that are fine around a particular sub-domain and coarse elsewhere. The algorithms have low communication complexity. They can yield an approximate solution with an accuracy comparable to that of the standard finite element solution. Numerical tests demonstrated the effectiveness of the algorithms. Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary Navier-Stokes equations with high Reynolds numbers are proposed and investigated. In these algorithms, each processor first solves an artificial viscosity stabilized Navier-Stokes equations by Newton or Picard iterative method, and then diffuses the system in the correction steps where only a linear problem needs to be solved at each step. All the computations are performed in parallel on global composite meshes that are fine around a particular subdomain and coarse elsewhere. The algorithms have low communication complexity. They can yield an approximate solution with an accuracy comparable to that of the standard finite element solution. Numerical tests demonstrated the effectiveness of the algorithms. •Two parallel defect-correction algorithms for the Navier–Stokes equations are presented.•The algorithms are able to simulate high Reynolds numbers flows on relatively coarse grids.•The parallel algorithms are easy to implement based on an existing sequential solver.•The algorithms have low communication cost.•Numerical results demonstrated the efficiency of the algorithms. Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary Navier–Stokes equations with high Reynolds numbers are proposed and investigated. In these algorithms, each processor first solves an artificial viscosity stabilized Navier–Stokes equations by Newton or Picard iterative method, and then diffuses the system in the correction steps where only a linear problem needs to be solved at each step. All the computations are performed in parallel on global composite meshes that are fine around a particular subdomain and coarse elsewhere. The algorithms have low communication complexity. They can yield an approximate solution with an accuracy comparable to that of the standard finite element solution. Numerical tests demonstrated the effectiveness of the algorithms. |
| Author | Shang, Yueqiang |
| Author_xml | – sequence: 1 givenname: Yueqiang surname: Shang fullname: Shang, Yueqiang email: yueqiangshang@gmail.com organization: School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, PR China |
| BookMark | eNqNksGOFCEQholZE2dXn8E-eulZqqGb5uBhs1HXZKMm6pkwULiMdDMLzCZ68h18Q59EesZ48DImlfyBfH9VhZ9zcjbHGQl5DnQNFIbL7drEaefC3tt1R4Gtaa0OHpEVjEK2VHBxRlaU8r4VktEn5DznLa1n1vEVmT_opEPA0Fh0aEprYkpVfZwbHb7E5MvdlJuNzmibeuf87As2GHDCuTTWZ5Ow-O_64HAxNeUOm3f6wWP69ePnxxK_Ym7wfn8A8lPy2OmQ8dkfvSCfX7_6dH3T3r5_8_b66rY1nIu6xMAcDLyKcIMcOi3sqHsGYCVsaA-C0oExN0rnWO_kxkA3jpTaDbV6pFyyC_Li2HeX4v0ec1FT3RRD0DPGfVa1gxRCchhOo4OAvgcu-Wm0B8aHHkY4jXI-CqBUjBV9eURNijkndMr4cniukrQPCqhaglZb9TdotQStaK1uGSX-8e-Sn3T69h_Oq6MTaxRLYiobj7NB65c_oGz0J3v8Bl94y5A |
| CitedBy_id | crossref_primary_10_1016_j_compfluid_2022_105733 crossref_primary_10_1007_s11075_022_01311_0 crossref_primary_10_1007_s10444_023_10101_8 crossref_primary_10_1016_j_apnum_2021_01_008 crossref_primary_10_1002_num_21923 crossref_primary_10_1007_s10092_020_00382_6 crossref_primary_10_1016_j_matcom_2020_07_010 crossref_primary_10_1016_j_cam_2020_113009 crossref_primary_10_1061__ASCE_GM_1943_5622_0001060 crossref_primary_10_1061__ASCE_GM_1943_5622_0001242 crossref_primary_10_1061__ASCE_GM_1943_5622_0001340 crossref_primary_10_1063_5_0221701 crossref_primary_10_1007_s00607_019_00729_0 crossref_primary_10_1016_j_camwa_2023_07_010 crossref_primary_10_1007_s11075_022_01403_x |
| Cites_doi | 10.1007/s10483-010-1373-7 10.1002/fld.1650110704 10.1016/j.compfluid.2007.09.003 10.1002/cpe.569 10.1090/S0025-5718-99-01149-7 10.1016/j.apnum.2010.03.013 10.1016/j.compfluid.2010.09.009 10.1007/BF02576171 10.1016/j.parco.2008.11.003 10.1016/j.cma.2005.08.016 10.1016/j.aml.2010.10.027 10.1016/0045-7825(95)00844-9 10.1016/j.cam.2009.12.051 10.1016/S0168-9274(97)00095-0 10.1016/j.cam.2011.12.014 10.1016/j.cma.2011.11.003 10.1016/j.jcp.2010.03.028 10.1137/S0036142997318164 10.1016/j.amc.2010.04.050 10.1016/j.jcp.2007.09.026 10.1007/s11075-011-9489-y 10.1016/0045-7930(73)90027-3 10.1137/030601533 10.1016/S0096-3003(01)00026-1 10.1016/j.jcp.2012.08.024 10.1016/0021-9991(82)90058-4 10.1016/j.camwa.2004.10.016 10.1155/2011/370192 10.1007/s11425-010-4022-7 10.1016/S0045-7825(98)00079-6 10.1016/j.jcp.2009.05.006 10.1016/j.finel.2011.06.001 10.1016/S0096-3003(01)00228-4 10.1017/S0004972709000859 10.1016/j.nonrwa.2007.08.011 10.1137/050623942 10.1016/j.cma.2008.12.001 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd |
| Copyright_xml | – notice: 2013 Elsevier Ltd |
| DBID | AAYXX CITATION 7UA C1K F1W H96 L.G 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.compfluid.2013.03.021 |
| DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0747 |
| EndPage | 212 |
| ExternalDocumentID | 10_1016_j_compfluid_2013_03_021 S0045793013001199 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 7UA C1K F1W H96 L.G 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c447t-c63f164c637f6962a7d8a5311d91b051700633f89ff35f9bc128800db0da80493 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320147800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7930 |
| IngestDate | Thu Oct 02 11:25:08 EDT 2025 Sun Sep 28 06:54:37 EDT 2025 Tue Oct 07 09:11:23 EDT 2025 Tue Oct 07 09:11:17 EDT 2025 Sat Nov 29 03:39:13 EST 2025 Tue Nov 18 22:16:36 EST 2025 Fri Feb 23 02:29:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Navier–Stokes equations Parallel computing Parallel algorithm Defect-correction method Domain decomposition Finite element |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c447t-c63f164c637f6962a7d8a5311d91b051700633f89ff35f9bc128800db0da80493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1448710078 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1709779416 proquest_miscellaneous_1671551494 proquest_miscellaneous_1513465181 proquest_miscellaneous_1448710078 crossref_citationtrail_10_1016_j_compfluid_2013_03_021 crossref_primary_10_1016_j_compfluid_2013_03_021 elsevier_sciencedirect_doi_10_1016_j_compfluid_2013_03_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-25 |
| PublicationDateYYYYMMDD | 2013-06-25 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationTitle | Computers & fluids |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Shang (b0030) 2011; 24 Elman, Silvester, Wathen (b0215) 2005 Hood, Taylor (b0210) 1973; 1 Hughes (b0090) 1995; 127 Adams (b0175) 1975 Shang, He (b0040) 2012; 209–212 Si (b0130) 2012; 59 Guermond, Marra, Quartapelle (b0080) 2006; 195 Shang, He, Luo (b0035) 2011; 40 Zhang, He (b0085) 2010; 234 Feng, He (b0015) 2009; 10 Mitchell (b0160) 1998; 26 Shang, He (b0150) 2010; 60 Layton, Lee, Peterson (b0045) 2002; 129 John, Kaya (b0100) 2005; 26 Lee (b0125) 2004; 48 Temam (b0195) 1984 Zheng, Hou, Shi, Song (b0105) 2009; 228 Shang, He, Kim, Zhou (b0060) 2011; 47 Gartling (b0240) 1990; 11 Arnold, Brezzi, Fortin (b0205) 1984; 21 Si, He, Wang (b0140) 2011; 54 Si, He, Zhang (b0145) 2012; 236 Hecht F, Pironneau O, Ohtsuka K. FreeFem++, Version 3.9-2. Ghia, Ghia, Shin (b0235) 1982; 48 He, Li (b0055) 2011; 2 Kaya, layton, Riviere (b0075) 2006; 44 He, Li (b0220) 2009; 198 Erturk (b0245) 2008; 37 Glowinski (b0185) 2003; vol. IX Girault, Raviart (b0200) 1986 Xu, Zhou (b0165) 2000; 69 Layton (b0070) 2002; 133 Wang (b0050) 2010; 11 [article ID 370192]. Mitchell (b0155) 1997; 6 Shang, Luo (b0025) 2010; 31 Elman, Howle, Shadid (b0005) 2008; 227 Shang (b0065) 2013; 233 Liu, Hou (b0120) 2010; 81 Ciarlet (b0180) 1978 Si ZY, He YN. A defect-correction mixed finite element method for stationary conduction–convection problems. Math Prob Engine 2011;28. Behara, Mittal (b0010) 2009; 35 Hughes, Feijoo, Mazzei, Quincy (b0095) 1998; 166 Ervin, Layton, Maubach (b0115) 2000; 37 Quarteroni, Valli (b0190) 1997 08.12.10 Bank, Jimack (b0170) 2001; 13 Rivera, Heniche, Glowinski, Tanguy (b0020) 2010; 229 Layton (b0110) 1996; 15 Shang (10.1016/j.compfluid.2013.03.021_b0030) 2011; 24 Erturk (10.1016/j.compfluid.2013.03.021_b0245) 2008; 37 Zheng (10.1016/j.compfluid.2013.03.021_b0105) 2009; 228 Mitchell (10.1016/j.compfluid.2013.03.021_b0155) 1997; 6 He (10.1016/j.compfluid.2013.03.021_b0220) 2009; 198 Layton (10.1016/j.compfluid.2013.03.021_b0045) 2002; 129 Ghia (10.1016/j.compfluid.2013.03.021_b0235) 1982; 48 Shang (10.1016/j.compfluid.2013.03.021_b0035) 2011; 40 Liu (10.1016/j.compfluid.2013.03.021_b0120) 2010; 81 Shang (10.1016/j.compfluid.2013.03.021_b0025) 2010; 31 Shang (10.1016/j.compfluid.2013.03.021_b0060) 2011; 47 Si (10.1016/j.compfluid.2013.03.021_b0130) 2012; 59 Layton (10.1016/j.compfluid.2013.03.021_b0110) 1996; 15 Ervin (10.1016/j.compfluid.2013.03.021_b0115) 2000; 37 Behara (10.1016/j.compfluid.2013.03.021_b0010) 2009; 35 Kaya (10.1016/j.compfluid.2013.03.021_b0075) 2006; 44 Wang (10.1016/j.compfluid.2013.03.021_b0050) 2010; 11 Guermond (10.1016/j.compfluid.2013.03.021_b0080) 2006; 195 Lee (10.1016/j.compfluid.2013.03.021_b0125) 2004; 48 10.1016/j.compfluid.2013.03.021_b0135 John (10.1016/j.compfluid.2013.03.021_b0100) 2005; 26 Hood (10.1016/j.compfluid.2013.03.021_b0210) 1973; 1 Gartling (10.1016/j.compfluid.2013.03.021_b0240) 1990; 11 Shang (10.1016/j.compfluid.2013.03.021_b0150) 2010; 60 Ciarlet (10.1016/j.compfluid.2013.03.021_b0180) 1978 Feng (10.1016/j.compfluid.2013.03.021_b0015) 2009; 10 Glowinski (10.1016/j.compfluid.2013.03.021_b0185) 2003; vol. IX Hughes (10.1016/j.compfluid.2013.03.021_b0095) 1998; 166 Adams (10.1016/j.compfluid.2013.03.021_b0175) 1975 Shang (10.1016/j.compfluid.2013.03.021_b0040) 2012; 209–212 Shang (10.1016/j.compfluid.2013.03.021_b0065) 2013; 233 Mitchell (10.1016/j.compfluid.2013.03.021_b0160) 1998; 26 Quarteroni (10.1016/j.compfluid.2013.03.021_b0190) 1997 Xu (10.1016/j.compfluid.2013.03.021_b0165) 2000; 69 Rivera (10.1016/j.compfluid.2013.03.021_b0020) 2010; 229 Si (10.1016/j.compfluid.2013.03.021_b0140) 2011; 54 Girault (10.1016/j.compfluid.2013.03.021_b0200) 1986 He (10.1016/j.compfluid.2013.03.021_b0055) 2011; 2 Elman (10.1016/j.compfluid.2013.03.021_b0215) 2005 Si (10.1016/j.compfluid.2013.03.021_b0145) 2012; 236 Zhang (10.1016/j.compfluid.2013.03.021_b0085) 2010; 234 Layton (10.1016/j.compfluid.2013.03.021_b0070) 2002; 133 Hughes (10.1016/j.compfluid.2013.03.021_b0090) 1995; 127 Temam (10.1016/j.compfluid.2013.03.021_b0195) 1984 Arnold (10.1016/j.compfluid.2013.03.021_b0205) 1984; 21 10.1016/j.compfluid.2013.03.021_b0225 Elman (10.1016/j.compfluid.2013.03.021_b0005) 2008; 227 Bank (10.1016/j.compfluid.2013.03.021_b0170) 2001; 13 |
| References_xml | – volume: 198 start-page: 1351 year: 2009 end-page: 1359 ident: b0220 article-title: Convergence of three iterative methods based on finite element discretization for the stationary Navier–Stokes equations publication-title: Comput Methods Appl Mech Eng – volume: 59 start-page: 271 year: 2012 end-page: 300 ident: b0130 article-title: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems publication-title: Numer Algor – volume: 37 start-page: 633 year: 2008 end-page: 655 ident: b0245 article-title: Numerical solution of 2D steady incompressible flow over a backward-facing step, partI: high Reynolds number solutions publication-title: Comput Fluids – volume: 11 start-page: 953 year: 1990 end-page: 967 ident: b0240 article-title: A test problem for outflow boundary conditions-flow over a backward-facing step publication-title: Int J Numer Methods Fluids – volume: 166 start-page: 3 year: 1998 end-page: 24 ident: b0095 article-title: The variational multiscale method – a paradigm for computational mechanics publication-title: Comput Methods Appl Mech Eng – volume: 26 start-page: 265 year: 1998 end-page: 275 ident: b0160 article-title: The full domain partition approach to distributing adaptive grids publication-title: Appl Numer Math – volume: 195 start-page: 5857 year: 2006 end-page: 5876 ident: b0080 article-title: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers publication-title: Comput Methods Appl Mech Eng – reference: [article ID 370192]. – year: 1984 ident: b0195 article-title: Navier–Stokes equations: theory and numerical analysis – volume: 13 start-page: 327 year: 2001 end-page: 350 ident: b0170 article-title: A new parallel domain decomposition method for the adaptive finite element solution of elliptic partial differential equations publication-title: Concurr Computat: Pract Exp – volume: 35 start-page: 195 year: 2009 end-page: 212 ident: b0010 article-title: Parallel finite element computation of incompressible flows publication-title: Parallel Comput – volume: 2 start-page: 42 year: 2011 end-page: 56 ident: b0055 article-title: Two-level methods based on three correction for the 2D/3D steady Navier–Stokes equations publication-title: Int J Numer Anal Model Ser B – volume: 40 start-page: 249 year: 2011 end-page: 257 ident: b0035 article-title: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier–Stokes equations publication-title: Comput Fluids – volume: 31 start-page: 1429 year: 2010 end-page: 1438 ident: b0025 article-title: A parallel two-level finite element method for the Navier–Stokes equations publication-title: Appl Math Mech Engl Ed – volume: 129 start-page: 1 year: 2002 end-page: 19 ident: b0045 article-title: A defect-correction method for the incompressible Navier–Stokes equations publication-title: Appl Math Comput – volume: 81 start-page: 442 year: 2010 end-page: 454 ident: b0120 article-title: A two-level defect-correction method for Navier–Stokes equations publication-title: Bull Aust Math Soc – volume: 127 start-page: 387 year: 1995 end-page: 401 ident: b0090 article-title: Multiscale phenomena: Greens functions, the Dirichlet-to-Neumann formulation, subgrid-scale modelsbubbles and the origins of stabilized methods publication-title: Comput Methods Appl Mech Eng – volume: 60 start-page: 719 year: 2010 end-page: 737 ident: b0150 article-title: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations publication-title: Appl Numer Math – reference: Si ZY, He YN. A defect-correction mixed finite element method for stationary conduction–convection problems. Math Prob Engine 2011;28. – volume: 133 start-page: 147 year: 2002 end-page: 157 ident: b0070 article-title: A connection between subgrid scale eddy viscosity and mixed methods publication-title: Appl Math Comput – volume: 37 start-page: 1165 year: 2000 end-page: 1185 ident: b0115 article-title: Adaptive defect-correction methods for viscous incompressible flow problems publication-title: SIAM J Numer Anal – volume: 48 start-page: 387 year: 1982 end-page: 411 ident: b0235 article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method publication-title: J Comput Phys – volume: 6 start-page: 224 year: 1997 end-page: 233 ident: b0155 article-title: A parallel multigrid method using the full domain partition publication-title: Electron Trans Numer Anal – year: 1975 ident: b0175 article-title: Sobolev spaces – volume: 228 start-page: 5961 year: 2009 end-page: 5977 ident: b0105 article-title: A finite element variational multiscale method for incompressible flows based on two local gauss integrations publication-title: J Comput Phys – volume: 236 start-page: 2553 year: 2012 end-page: 2573 ident: b0145 article-title: A defect-correction method for unsteady conduction convection problems II: time discretization publication-title: J Comput Appl Math – year: 2005 ident: b0215 article-title: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics – volume: 26 start-page: 1485 year: 2005 end-page: 1503 ident: b0100 article-title: A finite element variational multiscale method for the Navier–Stokes equations publication-title: SIAM J Sci Comput – volume: 10 start-page: 23 year: 2009 end-page: 41 ident: b0015 article-title: The convergence of a new parallel algorithm for the Navier–Stokes equations publication-title: Nonlinear Anal Real World Appl – year: 1997 ident: b0190 article-title: Numerical approximation of partial differential equations – volume: 69 start-page: 881 year: 2000 end-page: 909 ident: b0165 article-title: Local and parallel finite element algorithms based on two-grid discretizations publication-title: Math Comput – year: 1978 ident: b0180 article-title: The finite element method for elliptic problems – volume: 209–212 start-page: 172 year: 2012 end-page: 183 ident: b0040 article-title: A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations publication-title: Comput Methods Appl Mech Eng – volume: 11 start-page: 3252 year: 2010 end-page: 3264 ident: b0050 article-title: A new defect correction method for the Navier–Stokes equations at high Reynolds numbers publication-title: Appl Math Comput – reference: > (08.12.10) – volume: 233 start-page: 210 year: 2013 end-page: 226 ident: b0065 article-title: A two-level subgrid stabilized Oseen iterative method for the steady Navier–Stokes equations publication-title: J Comput Phys – volume: 15 start-page: 25 year: 1996 end-page: 35 ident: b0110 article-title: Solution algorithm for incompressible viscous flows at high Reynolds number publication-title: Vestnik Mosk Gos Univ Ser – reference: Hecht F, Pironneau O, Ohtsuka K. FreeFem++, Version 3.9-2. < – volume: 54 start-page: 185 year: 2011 end-page: 204 ident: b0140 article-title: A defect-correction method for unsteady conduction convection problems I: spatial discretization publication-title: Sci China Math – volume: 227 start-page: 1790 year: 2008 end-page: 1808 ident: b0005 article-title: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations publication-title: J Comput Phys – volume: 1 start-page: 73 year: 1973 end-page: 100 ident: b0210 article-title: A numerical solution of the Navier–Stokes equations using the finite element technique publication-title: Comput Fluids – volume: 47 start-page: 1262 year: 2011 end-page: 1279 ident: b0060 article-title: A new parallel finite element algorithm for the stationary Navier–Stokes equations publication-title: Finite Elem Anal Des – volume: 234 start-page: 593 year: 2010 end-page: 604 ident: b0085 article-title: Assessment of subgrid-scale models for the incompressible Navier–Stokes equations publication-title: J Comput Appl Math – volume: 21 start-page: 337 year: 1984 end-page: 344 ident: b0205 article-title: A stable finite element for the Stokes equations publication-title: Calcolo – volume: vol. IX year: 2003 ident: b0185 article-title: Finite element methods for the incompressible viscos flow publication-title: Handbook of numerical analysis – volume: 48 start-page: 1213 year: 2004 end-page: 1229 ident: b0125 article-title: Analysis of a defect correction method for viscoelastic fluid flow publication-title: Comput Math Appl – volume: 44 start-page: 1639 year: 2006 end-page: 1654 ident: b0075 article-title: Subgrid stabilized defect correction methods for the Navier–Stokes equations publication-title: SIAM Numer Anal – year: 1986 ident: b0200 article-title: Finite element methods for Navier–Stokes equations: theory and algorithms – volume: 24 start-page: 364 year: 2011 end-page: 369 ident: b0030 article-title: A parallel two-level linearization method for incompressible flow problems publication-title: Appl Math Lett – volume: 229 start-page: 5123 year: 2010 end-page: 5143 ident: b0020 article-title: Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers publication-title: J Comput Phys – volume: 31 start-page: 1429 issue: 11 year: 2010 ident: 10.1016/j.compfluid.2013.03.021_b0025 article-title: A parallel two-level finite element method for the Navier–Stokes equations publication-title: Appl Math Mech Engl Ed doi: 10.1007/s10483-010-1373-7 – volume: 11 start-page: 953 year: 1990 ident: 10.1016/j.compfluid.2013.03.021_b0240 article-title: A test problem for outflow boundary conditions-flow over a backward-facing step publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1650110704 – volume: 37 start-page: 633 year: 2008 ident: 10.1016/j.compfluid.2013.03.021_b0245 article-title: Numerical solution of 2D steady incompressible flow over a backward-facing step, partI: high Reynolds number solutions publication-title: Comput Fluids doi: 10.1016/j.compfluid.2007.09.003 – volume: 15 start-page: 25 year: 1996 ident: 10.1016/j.compfluid.2013.03.021_b0110 article-title: Solution algorithm for incompressible viscous flows at high Reynolds number publication-title: Vestnik Mosk Gos Univ Ser – volume: 13 start-page: 327 year: 2001 ident: 10.1016/j.compfluid.2013.03.021_b0170 article-title: A new parallel domain decomposition method for the adaptive finite element solution of elliptic partial differential equations publication-title: Concurr Computat: Pract Exp doi: 10.1002/cpe.569 – year: 1975 ident: 10.1016/j.compfluid.2013.03.021_b0175 – volume: 69 start-page: 881 year: 2000 ident: 10.1016/j.compfluid.2013.03.021_b0165 article-title: Local and parallel finite element algorithms based on two-grid discretizations publication-title: Math Comput doi: 10.1090/S0025-5718-99-01149-7 – volume: 60 start-page: 719 issue: 7 year: 2010 ident: 10.1016/j.compfluid.2013.03.021_b0150 article-title: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations publication-title: Appl Numer Math doi: 10.1016/j.apnum.2010.03.013 – volume: 40 start-page: 249 year: 2011 ident: 10.1016/j.compfluid.2013.03.021_b0035 article-title: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier–Stokes equations publication-title: Comput Fluids doi: 10.1016/j.compfluid.2010.09.009 – volume: 21 start-page: 337 year: 1984 ident: 10.1016/j.compfluid.2013.03.021_b0205 article-title: A stable finite element for the Stokes equations publication-title: Calcolo doi: 10.1007/BF02576171 – volume: 35 start-page: 195 year: 2009 ident: 10.1016/j.compfluid.2013.03.021_b0010 article-title: Parallel finite element computation of incompressible flows publication-title: Parallel Comput doi: 10.1016/j.parco.2008.11.003 – volume: 2 start-page: 42 issue: 1 year: 2011 ident: 10.1016/j.compfluid.2013.03.021_b0055 article-title: Two-level methods based on three correction for the 2D/3D steady Navier–Stokes equations publication-title: Int J Numer Anal Model Ser B – volume: 195 start-page: 5857 year: 2006 ident: 10.1016/j.compfluid.2013.03.021_b0080 article-title: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2005.08.016 – volume: 24 start-page: 364 year: 2011 ident: 10.1016/j.compfluid.2013.03.021_b0030 article-title: A parallel two-level linearization method for incompressible flow problems publication-title: Appl Math Lett doi: 10.1016/j.aml.2010.10.027 – volume: 127 start-page: 387 year: 1995 ident: 10.1016/j.compfluid.2013.03.021_b0090 article-title: Multiscale phenomena: Greens functions, the Dirichlet-to-Neumann formulation, subgrid-scale modelsbubbles and the origins of stabilized methods publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(95)00844-9 – year: 2005 ident: 10.1016/j.compfluid.2013.03.021_b0215 – volume: 234 start-page: 593 year: 2010 ident: 10.1016/j.compfluid.2013.03.021_b0085 article-title: Assessment of subgrid-scale models for the incompressible Navier–Stokes equations publication-title: J Comput Appl Math doi: 10.1016/j.cam.2009.12.051 – volume: 6 start-page: 224 year: 1997 ident: 10.1016/j.compfluid.2013.03.021_b0155 article-title: A parallel multigrid method using the full domain partition publication-title: Electron Trans Numer Anal – volume: 26 start-page: 265 year: 1998 ident: 10.1016/j.compfluid.2013.03.021_b0160 article-title: The full domain partition approach to distributing adaptive grids publication-title: Appl Numer Math doi: 10.1016/S0168-9274(97)00095-0 – volume: 236 start-page: 2553 issue: 9 year: 2012 ident: 10.1016/j.compfluid.2013.03.021_b0145 article-title: A defect-correction method for unsteady conduction convection problems II: time discretization publication-title: J Comput Appl Math doi: 10.1016/j.cam.2011.12.014 – volume: vol. IX year: 2003 ident: 10.1016/j.compfluid.2013.03.021_b0185 article-title: Finite element methods for the incompressible viscos flow – volume: 209–212 start-page: 172 year: 2012 ident: 10.1016/j.compfluid.2013.03.021_b0040 article-title: A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2011.11.003 – volume: 229 start-page: 5123 year: 2010 ident: 10.1016/j.compfluid.2013.03.021_b0020 article-title: Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers publication-title: J Comput Phys doi: 10.1016/j.jcp.2010.03.028 – year: 1997 ident: 10.1016/j.compfluid.2013.03.021_b0190 – volume: 37 start-page: 1165 issue: 4 year: 2000 ident: 10.1016/j.compfluid.2013.03.021_b0115 article-title: Adaptive defect-correction methods for viscous incompressible flow problems publication-title: SIAM J Numer Anal doi: 10.1137/S0036142997318164 – year: 1978 ident: 10.1016/j.compfluid.2013.03.021_b0180 – volume: 11 start-page: 3252 issue: 216 year: 2010 ident: 10.1016/j.compfluid.2013.03.021_b0050 article-title: A new defect correction method for the Navier–Stokes equations at high Reynolds numbers publication-title: Appl Math Comput doi: 10.1016/j.amc.2010.04.050 – year: 1986 ident: 10.1016/j.compfluid.2013.03.021_b0200 – volume: 227 start-page: 1790 year: 2008 ident: 10.1016/j.compfluid.2013.03.021_b0005 article-title: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.09.026 – volume: 59 start-page: 271 year: 2012 ident: 10.1016/j.compfluid.2013.03.021_b0130 article-title: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems publication-title: Numer Algor doi: 10.1007/s11075-011-9489-y – volume: 1 start-page: 73 year: 1973 ident: 10.1016/j.compfluid.2013.03.021_b0210 article-title: A numerical solution of the Navier–Stokes equations using the finite element technique publication-title: Comput Fluids doi: 10.1016/0045-7930(73)90027-3 – volume: 26 start-page: 1485 year: 2005 ident: 10.1016/j.compfluid.2013.03.021_b0100 article-title: A finite element variational multiscale method for the Navier–Stokes equations publication-title: SIAM J Sci Comput doi: 10.1137/030601533 – volume: 129 start-page: 1 year: 2002 ident: 10.1016/j.compfluid.2013.03.021_b0045 article-title: A defect-correction method for the incompressible Navier–Stokes equations publication-title: Appl Math Comput doi: 10.1016/S0096-3003(01)00026-1 – ident: 10.1016/j.compfluid.2013.03.021_b0225 – volume: 233 start-page: 210 year: 2013 ident: 10.1016/j.compfluid.2013.03.021_b0065 article-title: A two-level subgrid stabilized Oseen iterative method for the steady Navier–Stokes equations publication-title: J Comput Phys doi: 10.1016/j.jcp.2012.08.024 – volume: 48 start-page: 387 year: 1982 ident: 10.1016/j.compfluid.2013.03.021_b0235 article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method publication-title: J Comput Phys doi: 10.1016/0021-9991(82)90058-4 – volume: 48 start-page: 1213 year: 2004 ident: 10.1016/j.compfluid.2013.03.021_b0125 article-title: Analysis of a defect correction method for viscoelastic fluid flow publication-title: Comput Math Appl doi: 10.1016/j.camwa.2004.10.016 – year: 1984 ident: 10.1016/j.compfluid.2013.03.021_b0195 – ident: 10.1016/j.compfluid.2013.03.021_b0135 doi: 10.1155/2011/370192 – volume: 54 start-page: 185 issue: 1 year: 2011 ident: 10.1016/j.compfluid.2013.03.021_b0140 article-title: A defect-correction method for unsteady conduction convection problems I: spatial discretization publication-title: Sci China Math doi: 10.1007/s11425-010-4022-7 – volume: 166 start-page: 3 year: 1998 ident: 10.1016/j.compfluid.2013.03.021_b0095 article-title: The variational multiscale method – a paradigm for computational mechanics publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(98)00079-6 – volume: 228 start-page: 5961 year: 2009 ident: 10.1016/j.compfluid.2013.03.021_b0105 article-title: A finite element variational multiscale method for incompressible flows based on two local gauss integrations publication-title: J Comput Phys doi: 10.1016/j.jcp.2009.05.006 – volume: 47 start-page: 1262 year: 2011 ident: 10.1016/j.compfluid.2013.03.021_b0060 article-title: A new parallel finite element algorithm for the stationary Navier–Stokes equations publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2011.06.001 – volume: 133 start-page: 147 year: 2002 ident: 10.1016/j.compfluid.2013.03.021_b0070 article-title: A connection between subgrid scale eddy viscosity and mixed methods publication-title: Appl Math Comput doi: 10.1016/S0096-3003(01)00228-4 – volume: 81 start-page: 442 year: 2010 ident: 10.1016/j.compfluid.2013.03.021_b0120 article-title: A two-level defect-correction method for Navier–Stokes equations publication-title: Bull Aust Math Soc doi: 10.1017/S0004972709000859 – volume: 10 start-page: 23 issue: 1 year: 2009 ident: 10.1016/j.compfluid.2013.03.021_b0015 article-title: The convergence of a new parallel algorithm for the Navier–Stokes equations publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2007.08.011 – volume: 44 start-page: 1639 year: 2006 ident: 10.1016/j.compfluid.2013.03.021_b0075 article-title: Subgrid stabilized defect correction methods for the Navier–Stokes equations publication-title: SIAM Numer Anal doi: 10.1137/050623942 – volume: 198 start-page: 1351 year: 2009 ident: 10.1016/j.compfluid.2013.03.021_b0220 article-title: Convergence of three iterative methods based on finite element discretization for the stationary Navier–Stokes equations publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.12.001 |
| SSID | ssj0004324 |
| Score | 2.111252 |
| Snippet | •Two parallel defect-correction algorithms for the Navier–Stokes equations are presented.•The algorithms are able to simulate high Reynolds numbers flows on... Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 200 |
| SubjectTerms | Algorithms Computer simulation Defect-correction method Discretization Domain decomposition Finite element Finite element method Mathematical analysis Mathematical models Navier-Stokes equations Parallel algorithm Parallel computing |
| Title | Parallel defect-correction algorithms based on finite element discretization for the Navier–Stokes equations |
| URI | https://dx.doi.org/10.1016/j.compfluid.2013.03.021 https://www.proquest.com/docview/1448710078 https://www.proquest.com/docview/1513465181 https://www.proquest.com/docview/1671551494 https://www.proquest.com/docview/1709779416 |
| Volume | 79 |
| WOSCitedRecordID | wos000320147800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0747 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004324 issn: 0045-7930 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeEJ9i40NGYk9VpCRO4pi3CVoBqsqkdVJ5ipLYho6Qdk07Tfz13MVO2jDoxgNSlFSW3Vj-Oef7-c53hLwJhMolj7UjudBO4GURfHOBcDSToeJomlJ1yPwRH4_j6VQc25TwVZ1OgJdlfHkpFv8VaigDsPHo7D_A3f4pFMBvAB3uADvcbwT8cbrE_ChFXyp01XByzL9hE4IXX-fL2erbj6qPq5dES4GeodbZV8aNHA02OR5s_Nl1QhynuH46J6v5d1X11fl6a6OviXNg80NU9WzSxXomW339pNmW_rK9y1BnfHDMieRGcgYY2tLaUKzkNGlgGtHnulurqG-co68IaLNXcIbju6h7gt51rI4za05Kd0Nijz8nw9PRKJkMppNDNlycO5gvDO3qh-y9we422fN5KOIe2Tv6OJh-2pyKZb6JwW173vHu--P7_6ab_LZK16rH5AG5bzkDPTJYPyS3VPmI3NuKJPmYFA3q9ArqdIM6rVGnUGZQpxZ12kWdAuoUUKcd1GmL-hNyOhxM3n1wbCINJw8CDq-MmAZaDA-uIxH5KZdxCsLXk8LLMEgbKqpMx0JrFmqR5aC0AJGQmSvTGCgke0p65bxUzwjlfp7mHDhFAMTdy0WmpAiRtnugbIE02CdRM4RJbqPMY7KTImncCc-SduwTHPvEhcv39onbNlyYQCvXN3nbYJRYfdHogQnMtusbv25QTUCiopksLdV8XQEZBhKPzkPxjjqhx4IoBPV4R52I13xEBDvqcBcImABWdHCD_jwndzff5gvSWy3X6iW5k1-sZtXylZ3_vwD2u8Dq |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+defect-correction+algorithms+based+on+finite+element+discretization+for+the+Navier-Stokes+equations&rft.jtitle=Computers+%26+fluids&rft.au=Shang%2C+Y&rft.date=2013-06-25&rft.issn=0045-7930&rft.volume=79&rft.spage=200&rft.epage=212&rft_id=info:doi/10.1016%2Fj.compfluid.2013.03.021&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |