Parallel defect-correction algorithms based on finite element discretization for the Navier–Stokes equations

•Two parallel defect-correction algorithms for the Navier–Stokes equations are presented.•The algorithms are able to simulate high Reynolds numbers flows on relatively coarse grids.•The parallel algorithms are easy to implement based on an existing sequential solver.•The algorithms have low communic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & fluids Ročník 79; s. 200 - 212
Hlavný autor: Shang, Yueqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 25.06.2013
Predmet:
ISSN:0045-7930, 1879-0747
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Two parallel defect-correction algorithms for the Navier–Stokes equations are presented.•The algorithms are able to simulate high Reynolds numbers flows on relatively coarse grids.•The parallel algorithms are easy to implement based on an existing sequential solver.•The algorithms have low communication cost.•Numerical results demonstrated the efficiency of the algorithms. Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary Navier–Stokes equations with high Reynolds numbers are proposed and investigated. In these algorithms, each processor first solves an artificial viscosity stabilized Navier–Stokes equations by Newton or Picard iterative method, and then diffuses the system in the correction steps where only a linear problem needs to be solved at each step. All the computations are performed in parallel on global composite meshes that are fine around a particular subdomain and coarse elsewhere. The algorithms have low communication complexity. They can yield an approximate solution with an accuracy comparable to that of the standard finite element solution. Numerical tests demonstrated the effectiveness of the algorithms.
AbstractList Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary Navier-Stokes equations with high Reynolds numbers are proposed and investigated. In these algorithms, each processor first solves an artificial viscosity stabilized Navier-Stokes equations by Newton or Picard iterative method, and then diffuses the system in the correction steps where only a linear problem needs to be solved at each step. All the computations are performed in parallel on global composite meshes that are fine around a particular sub-domain and coarse elsewhere. The algorithms have low communication complexity. They can yield an approximate solution with an accuracy comparable to that of the standard finite element solution. Numerical tests demonstrated the effectiveness of the algorithms.
Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary Navier-Stokes equations with high Reynolds numbers are proposed and investigated. In these algorithms, each processor first solves an artificial viscosity stabilized Navier-Stokes equations by Newton or Picard iterative method, and then diffuses the system in the correction steps where only a linear problem needs to be solved at each step. All the computations are performed in parallel on global composite meshes that are fine around a particular subdomain and coarse elsewhere. The algorithms have low communication complexity. They can yield an approximate solution with an accuracy comparable to that of the standard finite element solution. Numerical tests demonstrated the effectiveness of the algorithms.
•Two parallel defect-correction algorithms for the Navier–Stokes equations are presented.•The algorithms are able to simulate high Reynolds numbers flows on relatively coarse grids.•The parallel algorithms are easy to implement based on an existing sequential solver.•The algorithms have low communication cost.•Numerical results demonstrated the efficiency of the algorithms. Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary Navier–Stokes equations with high Reynolds numbers are proposed and investigated. In these algorithms, each processor first solves an artificial viscosity stabilized Navier–Stokes equations by Newton or Picard iterative method, and then diffuses the system in the correction steps where only a linear problem needs to be solved at each step. All the computations are performed in parallel on global composite meshes that are fine around a particular subdomain and coarse elsewhere. The algorithms have low communication complexity. They can yield an approximate solution with an accuracy comparable to that of the standard finite element solution. Numerical tests demonstrated the effectiveness of the algorithms.
Author Shang, Yueqiang
Author_xml – sequence: 1
  givenname: Yueqiang
  surname: Shang
  fullname: Shang, Yueqiang
  email: yueqiangshang@gmail.com
  organization: School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, PR China
BookMark eNqNksGOFCEQholZE2dXn8E-eulZqqGb5uBhs1HXZKMm6pkwULiMdDMLzCZ68h18Q59EesZ48DImlfyBfH9VhZ9zcjbHGQl5DnQNFIbL7drEaefC3tt1R4Gtaa0OHpEVjEK2VHBxRlaU8r4VktEn5DznLa1n1vEVmT_opEPA0Fh0aEprYkpVfZwbHb7E5MvdlJuNzmibeuf87As2GHDCuTTWZ5Ow-O_64HAxNeUOm3f6wWP69ePnxxK_Ym7wfn8A8lPy2OmQ8dkfvSCfX7_6dH3T3r5_8_b66rY1nIu6xMAcDLyKcIMcOi3sqHsGYCVsaA-C0oExN0rnWO_kxkA3jpTaDbV6pFyyC_Li2HeX4v0ec1FT3RRD0DPGfVa1gxRCchhOo4OAvgcu-Wm0B8aHHkY4jXI-CqBUjBV9eURNijkndMr4cniukrQPCqhaglZb9TdotQStaK1uGSX-8e-Sn3T69h_Oq6MTaxRLYiobj7NB65c_oGz0J3v8Bl94y5A
CitedBy_id crossref_primary_10_1016_j_compfluid_2022_105733
crossref_primary_10_1007_s11075_022_01311_0
crossref_primary_10_1007_s10444_023_10101_8
crossref_primary_10_1016_j_apnum_2021_01_008
crossref_primary_10_1002_num_21923
crossref_primary_10_1007_s10092_020_00382_6
crossref_primary_10_1016_j_matcom_2020_07_010
crossref_primary_10_1016_j_cam_2020_113009
crossref_primary_10_1061__ASCE_GM_1943_5622_0001060
crossref_primary_10_1061__ASCE_GM_1943_5622_0001242
crossref_primary_10_1061__ASCE_GM_1943_5622_0001340
crossref_primary_10_1063_5_0221701
crossref_primary_10_1007_s00607_019_00729_0
crossref_primary_10_1016_j_camwa_2023_07_010
crossref_primary_10_1007_s11075_022_01403_x
Cites_doi 10.1007/s10483-010-1373-7
10.1002/fld.1650110704
10.1016/j.compfluid.2007.09.003
10.1002/cpe.569
10.1090/S0025-5718-99-01149-7
10.1016/j.apnum.2010.03.013
10.1016/j.compfluid.2010.09.009
10.1007/BF02576171
10.1016/j.parco.2008.11.003
10.1016/j.cma.2005.08.016
10.1016/j.aml.2010.10.027
10.1016/0045-7825(95)00844-9
10.1016/j.cam.2009.12.051
10.1016/S0168-9274(97)00095-0
10.1016/j.cam.2011.12.014
10.1016/j.cma.2011.11.003
10.1016/j.jcp.2010.03.028
10.1137/S0036142997318164
10.1016/j.amc.2010.04.050
10.1016/j.jcp.2007.09.026
10.1007/s11075-011-9489-y
10.1016/0045-7930(73)90027-3
10.1137/030601533
10.1016/S0096-3003(01)00026-1
10.1016/j.jcp.2012.08.024
10.1016/0021-9991(82)90058-4
10.1016/j.camwa.2004.10.016
10.1155/2011/370192
10.1007/s11425-010-4022-7
10.1016/S0045-7825(98)00079-6
10.1016/j.jcp.2009.05.006
10.1016/j.finel.2011.06.001
10.1016/S0096-3003(01)00228-4
10.1017/S0004972709000859
10.1016/j.nonrwa.2007.08.011
10.1137/050623942
10.1016/j.cma.2008.12.001
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compfluid.2013.03.021
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0747
EndPage 212
ExternalDocumentID 10_1016_j_compfluid_2013_03_021
S0045793013001199
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7UA
C1K
F1W
H96
L.G
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c447t-c63f164c637f6962a7d8a5311d91b051700633f89ff35f9bc128800db0da80493
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320147800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7930
IngestDate Thu Oct 02 11:25:08 EDT 2025
Sun Sep 28 06:54:37 EDT 2025
Tue Oct 07 09:11:23 EDT 2025
Tue Oct 07 09:11:17 EDT 2025
Sat Nov 29 03:39:13 EST 2025
Tue Nov 18 22:16:36 EST 2025
Fri Feb 23 02:29:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Navier–Stokes equations
Parallel computing
Parallel algorithm
Defect-correction method
Domain decomposition
Finite element
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-c63f164c637f6962a7d8a5311d91b051700633f89ff35f9bc128800db0da80493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1448710078
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1709779416
proquest_miscellaneous_1671551494
proquest_miscellaneous_1513465181
proquest_miscellaneous_1448710078
crossref_citationtrail_10_1016_j_compfluid_2013_03_021
crossref_primary_10_1016_j_compfluid_2013_03_021
elsevier_sciencedirect_doi_10_1016_j_compfluid_2013_03_021
PublicationCentury 2000
PublicationDate 2013-06-25
PublicationDateYYYYMMDD 2013-06-25
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-25
  day: 25
PublicationDecade 2010
PublicationTitle Computers & fluids
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shang (b0030) 2011; 24
Elman, Silvester, Wathen (b0215) 2005
Hood, Taylor (b0210) 1973; 1
Hughes (b0090) 1995; 127
Adams (b0175) 1975
Shang, He (b0040) 2012; 209–212
Si (b0130) 2012; 59
Guermond, Marra, Quartapelle (b0080) 2006; 195
Shang, He, Luo (b0035) 2011; 40
Zhang, He (b0085) 2010; 234
Feng, He (b0015) 2009; 10
Mitchell (b0160) 1998; 26
Shang, He (b0150) 2010; 60
Layton, Lee, Peterson (b0045) 2002; 129
John, Kaya (b0100) 2005; 26
Lee (b0125) 2004; 48
Temam (b0195) 1984
Zheng, Hou, Shi, Song (b0105) 2009; 228
Shang, He, Kim, Zhou (b0060) 2011; 47
Gartling (b0240) 1990; 11
Arnold, Brezzi, Fortin (b0205) 1984; 21
Si, He, Wang (b0140) 2011; 54
Si, He, Zhang (b0145) 2012; 236
Hecht F, Pironneau O, Ohtsuka K. FreeFem++, Version 3.9-2.
Ghia, Ghia, Shin (b0235) 1982; 48
He, Li (b0055) 2011; 2
Kaya, layton, Riviere (b0075) 2006; 44
He, Li (b0220) 2009; 198
Erturk (b0245) 2008; 37
Glowinski (b0185) 2003; vol. IX
Girault, Raviart (b0200) 1986
Xu, Zhou (b0165) 2000; 69
Layton (b0070) 2002; 133
Wang (b0050) 2010; 11
[article ID 370192].
Mitchell (b0155) 1997; 6
Shang, Luo (b0025) 2010; 31
Elman, Howle, Shadid (b0005) 2008; 227
Shang (b0065) 2013; 233
Liu, Hou (b0120) 2010; 81
Ciarlet (b0180) 1978
Si ZY, He YN. A defect-correction mixed finite element method for stationary conduction–convection problems. Math Prob Engine 2011;28.
Behara, Mittal (b0010) 2009; 35
Hughes, Feijoo, Mazzei, Quincy (b0095) 1998; 166
Ervin, Layton, Maubach (b0115) 2000; 37
Quarteroni, Valli (b0190) 1997
08.12.10
Bank, Jimack (b0170) 2001; 13
Rivera, Heniche, Glowinski, Tanguy (b0020) 2010; 229
Layton (b0110) 1996; 15
Shang (10.1016/j.compfluid.2013.03.021_b0030) 2011; 24
Erturk (10.1016/j.compfluid.2013.03.021_b0245) 2008; 37
Zheng (10.1016/j.compfluid.2013.03.021_b0105) 2009; 228
Mitchell (10.1016/j.compfluid.2013.03.021_b0155) 1997; 6
He (10.1016/j.compfluid.2013.03.021_b0220) 2009; 198
Layton (10.1016/j.compfluid.2013.03.021_b0045) 2002; 129
Ghia (10.1016/j.compfluid.2013.03.021_b0235) 1982; 48
Shang (10.1016/j.compfluid.2013.03.021_b0035) 2011; 40
Liu (10.1016/j.compfluid.2013.03.021_b0120) 2010; 81
Shang (10.1016/j.compfluid.2013.03.021_b0025) 2010; 31
Shang (10.1016/j.compfluid.2013.03.021_b0060) 2011; 47
Si (10.1016/j.compfluid.2013.03.021_b0130) 2012; 59
Layton (10.1016/j.compfluid.2013.03.021_b0110) 1996; 15
Ervin (10.1016/j.compfluid.2013.03.021_b0115) 2000; 37
Behara (10.1016/j.compfluid.2013.03.021_b0010) 2009; 35
Kaya (10.1016/j.compfluid.2013.03.021_b0075) 2006; 44
Wang (10.1016/j.compfluid.2013.03.021_b0050) 2010; 11
Guermond (10.1016/j.compfluid.2013.03.021_b0080) 2006; 195
Lee (10.1016/j.compfluid.2013.03.021_b0125) 2004; 48
10.1016/j.compfluid.2013.03.021_b0135
John (10.1016/j.compfluid.2013.03.021_b0100) 2005; 26
Hood (10.1016/j.compfluid.2013.03.021_b0210) 1973; 1
Gartling (10.1016/j.compfluid.2013.03.021_b0240) 1990; 11
Shang (10.1016/j.compfluid.2013.03.021_b0150) 2010; 60
Ciarlet (10.1016/j.compfluid.2013.03.021_b0180) 1978
Feng (10.1016/j.compfluid.2013.03.021_b0015) 2009; 10
Glowinski (10.1016/j.compfluid.2013.03.021_b0185) 2003; vol. IX
Hughes (10.1016/j.compfluid.2013.03.021_b0095) 1998; 166
Adams (10.1016/j.compfluid.2013.03.021_b0175) 1975
Shang (10.1016/j.compfluid.2013.03.021_b0040) 2012; 209–212
Shang (10.1016/j.compfluid.2013.03.021_b0065) 2013; 233
Mitchell (10.1016/j.compfluid.2013.03.021_b0160) 1998; 26
Quarteroni (10.1016/j.compfluid.2013.03.021_b0190) 1997
Xu (10.1016/j.compfluid.2013.03.021_b0165) 2000; 69
Rivera (10.1016/j.compfluid.2013.03.021_b0020) 2010; 229
Si (10.1016/j.compfluid.2013.03.021_b0140) 2011; 54
Girault (10.1016/j.compfluid.2013.03.021_b0200) 1986
He (10.1016/j.compfluid.2013.03.021_b0055) 2011; 2
Elman (10.1016/j.compfluid.2013.03.021_b0215) 2005
Si (10.1016/j.compfluid.2013.03.021_b0145) 2012; 236
Zhang (10.1016/j.compfluid.2013.03.021_b0085) 2010; 234
Layton (10.1016/j.compfluid.2013.03.021_b0070) 2002; 133
Hughes (10.1016/j.compfluid.2013.03.021_b0090) 1995; 127
Temam (10.1016/j.compfluid.2013.03.021_b0195) 1984
Arnold (10.1016/j.compfluid.2013.03.021_b0205) 1984; 21
10.1016/j.compfluid.2013.03.021_b0225
Elman (10.1016/j.compfluid.2013.03.021_b0005) 2008; 227
Bank (10.1016/j.compfluid.2013.03.021_b0170) 2001; 13
References_xml – volume: 198
  start-page: 1351
  year: 2009
  end-page: 1359
  ident: b0220
  article-title: Convergence of three iterative methods based on finite element discretization for the stationary Navier–Stokes equations
  publication-title: Comput Methods Appl Mech Eng
– volume: 59
  start-page: 271
  year: 2012
  end-page: 300
  ident: b0130
  article-title: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems
  publication-title: Numer Algor
– volume: 37
  start-page: 633
  year: 2008
  end-page: 655
  ident: b0245
  article-title: Numerical solution of 2D steady incompressible flow over a backward-facing step, partI: high Reynolds number solutions
  publication-title: Comput Fluids
– volume: 11
  start-page: 953
  year: 1990
  end-page: 967
  ident: b0240
  article-title: A test problem for outflow boundary conditions-flow over a backward-facing step
  publication-title: Int J Numer Methods Fluids
– volume: 166
  start-page: 3
  year: 1998
  end-page: 24
  ident: b0095
  article-title: The variational multiscale method – a paradigm for computational mechanics
  publication-title: Comput Methods Appl Mech Eng
– volume: 26
  start-page: 265
  year: 1998
  end-page: 275
  ident: b0160
  article-title: The full domain partition approach to distributing adaptive grids
  publication-title: Appl Numer Math
– volume: 195
  start-page: 5857
  year: 2006
  end-page: 5876
  ident: b0080
  article-title: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers
  publication-title: Comput Methods Appl Mech Eng
– reference: [article ID 370192].
– year: 1984
  ident: b0195
  article-title: Navier–Stokes equations: theory and numerical analysis
– volume: 13
  start-page: 327
  year: 2001
  end-page: 350
  ident: b0170
  article-title: A new parallel domain decomposition method for the adaptive finite element solution of elliptic partial differential equations
  publication-title: Concurr Computat: Pract Exp
– volume: 35
  start-page: 195
  year: 2009
  end-page: 212
  ident: b0010
  article-title: Parallel finite element computation of incompressible flows
  publication-title: Parallel Comput
– volume: 2
  start-page: 42
  year: 2011
  end-page: 56
  ident: b0055
  article-title: Two-level methods based on three correction for the 2D/3D steady Navier–Stokes equations
  publication-title: Int J Numer Anal Model Ser B
– volume: 40
  start-page: 249
  year: 2011
  end-page: 257
  ident: b0035
  article-title: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier–Stokes equations
  publication-title: Comput Fluids
– volume: 31
  start-page: 1429
  year: 2010
  end-page: 1438
  ident: b0025
  article-title: A parallel two-level finite element method for the Navier–Stokes equations
  publication-title: Appl Math Mech Engl Ed
– volume: 129
  start-page: 1
  year: 2002
  end-page: 19
  ident: b0045
  article-title: A defect-correction method for the incompressible Navier–Stokes equations
  publication-title: Appl Math Comput
– volume: 81
  start-page: 442
  year: 2010
  end-page: 454
  ident: b0120
  article-title: A two-level defect-correction method for Navier–Stokes equations
  publication-title: Bull Aust Math Soc
– volume: 127
  start-page: 387
  year: 1995
  end-page: 401
  ident: b0090
  article-title: Multiscale phenomena: Greens functions, the Dirichlet-to-Neumann formulation, subgrid-scale modelsbubbles and the origins of stabilized methods
  publication-title: Comput Methods Appl Mech Eng
– volume: 60
  start-page: 719
  year: 2010
  end-page: 737
  ident: b0150
  article-title: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations
  publication-title: Appl Numer Math
– reference: Si ZY, He YN. A defect-correction mixed finite element method for stationary conduction–convection problems. Math Prob Engine 2011;28.
– volume: 133
  start-page: 147
  year: 2002
  end-page: 157
  ident: b0070
  article-title: A connection between subgrid scale eddy viscosity and mixed methods
  publication-title: Appl Math Comput
– volume: 37
  start-page: 1165
  year: 2000
  end-page: 1185
  ident: b0115
  article-title: Adaptive defect-correction methods for viscous incompressible flow problems
  publication-title: SIAM J Numer Anal
– volume: 48
  start-page: 387
  year: 1982
  end-page: 411
  ident: b0235
  article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: J Comput Phys
– volume: 6
  start-page: 224
  year: 1997
  end-page: 233
  ident: b0155
  article-title: A parallel multigrid method using the full domain partition
  publication-title: Electron Trans Numer Anal
– year: 1975
  ident: b0175
  article-title: Sobolev spaces
– volume: 228
  start-page: 5961
  year: 2009
  end-page: 5977
  ident: b0105
  article-title: A finite element variational multiscale method for incompressible flows based on two local gauss integrations
  publication-title: J Comput Phys
– volume: 236
  start-page: 2553
  year: 2012
  end-page: 2573
  ident: b0145
  article-title: A defect-correction method for unsteady conduction convection problems II: time discretization
  publication-title: J Comput Appl Math
– year: 2005
  ident: b0215
  article-title: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics
– volume: 26
  start-page: 1485
  year: 2005
  end-page: 1503
  ident: b0100
  article-title: A finite element variational multiscale method for the Navier–Stokes equations
  publication-title: SIAM J Sci Comput
– volume: 10
  start-page: 23
  year: 2009
  end-page: 41
  ident: b0015
  article-title: The convergence of a new parallel algorithm for the Navier–Stokes equations
  publication-title: Nonlinear Anal Real World Appl
– year: 1997
  ident: b0190
  article-title: Numerical approximation of partial differential equations
– volume: 69
  start-page: 881
  year: 2000
  end-page: 909
  ident: b0165
  article-title: Local and parallel finite element algorithms based on two-grid discretizations
  publication-title: Math Comput
– year: 1978
  ident: b0180
  article-title: The finite element method for elliptic problems
– volume: 209–212
  start-page: 172
  year: 2012
  end-page: 183
  ident: b0040
  article-title: A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations
  publication-title: Comput Methods Appl Mech Eng
– volume: 11
  start-page: 3252
  year: 2010
  end-page: 3264
  ident: b0050
  article-title: A new defect correction method for the Navier–Stokes equations at high Reynolds numbers
  publication-title: Appl Math Comput
– reference: > (08.12.10)
– volume: 233
  start-page: 210
  year: 2013
  end-page: 226
  ident: b0065
  article-title: A two-level subgrid stabilized Oseen iterative method for the steady Navier–Stokes equations
  publication-title: J Comput Phys
– volume: 15
  start-page: 25
  year: 1996
  end-page: 35
  ident: b0110
  article-title: Solution algorithm for incompressible viscous flows at high Reynolds number
  publication-title: Vestnik Mosk Gos Univ Ser
– reference: Hecht F, Pironneau O, Ohtsuka K. FreeFem++, Version 3.9-2. <
– volume: 54
  start-page: 185
  year: 2011
  end-page: 204
  ident: b0140
  article-title: A defect-correction method for unsteady conduction convection problems I: spatial discretization
  publication-title: Sci China Math
– volume: 227
  start-page: 1790
  year: 2008
  end-page: 1808
  ident: b0005
  article-title: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations
  publication-title: J Comput Phys
– volume: 1
  start-page: 73
  year: 1973
  end-page: 100
  ident: b0210
  article-title: A numerical solution of the Navier–Stokes equations using the finite element technique
  publication-title: Comput Fluids
– volume: 47
  start-page: 1262
  year: 2011
  end-page: 1279
  ident: b0060
  article-title: A new parallel finite element algorithm for the stationary Navier–Stokes equations
  publication-title: Finite Elem Anal Des
– volume: 234
  start-page: 593
  year: 2010
  end-page: 604
  ident: b0085
  article-title: Assessment of subgrid-scale models for the incompressible Navier–Stokes equations
  publication-title: J Comput Appl Math
– volume: 21
  start-page: 337
  year: 1984
  end-page: 344
  ident: b0205
  article-title: A stable finite element for the Stokes equations
  publication-title: Calcolo
– volume: vol. IX
  year: 2003
  ident: b0185
  article-title: Finite element methods for the incompressible viscos flow
  publication-title: Handbook of numerical analysis
– volume: 48
  start-page: 1213
  year: 2004
  end-page: 1229
  ident: b0125
  article-title: Analysis of a defect correction method for viscoelastic fluid flow
  publication-title: Comput Math Appl
– volume: 44
  start-page: 1639
  year: 2006
  end-page: 1654
  ident: b0075
  article-title: Subgrid stabilized defect correction methods for the Navier–Stokes equations
  publication-title: SIAM Numer Anal
– year: 1986
  ident: b0200
  article-title: Finite element methods for Navier–Stokes equations: theory and algorithms
– volume: 24
  start-page: 364
  year: 2011
  end-page: 369
  ident: b0030
  article-title: A parallel two-level linearization method for incompressible flow problems
  publication-title: Appl Math Lett
– volume: 229
  start-page: 5123
  year: 2010
  end-page: 5143
  ident: b0020
  article-title: Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers
  publication-title: J Comput Phys
– volume: 31
  start-page: 1429
  issue: 11
  year: 2010
  ident: 10.1016/j.compfluid.2013.03.021_b0025
  article-title: A parallel two-level finite element method for the Navier–Stokes equations
  publication-title: Appl Math Mech Engl Ed
  doi: 10.1007/s10483-010-1373-7
– volume: 11
  start-page: 953
  year: 1990
  ident: 10.1016/j.compfluid.2013.03.021_b0240
  article-title: A test problem for outflow boundary conditions-flow over a backward-facing step
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1650110704
– volume: 37
  start-page: 633
  year: 2008
  ident: 10.1016/j.compfluid.2013.03.021_b0245
  article-title: Numerical solution of 2D steady incompressible flow over a backward-facing step, partI: high Reynolds number solutions
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2007.09.003
– volume: 15
  start-page: 25
  year: 1996
  ident: 10.1016/j.compfluid.2013.03.021_b0110
  article-title: Solution algorithm for incompressible viscous flows at high Reynolds number
  publication-title: Vestnik Mosk Gos Univ Ser
– volume: 13
  start-page: 327
  year: 2001
  ident: 10.1016/j.compfluid.2013.03.021_b0170
  article-title: A new parallel domain decomposition method for the adaptive finite element solution of elliptic partial differential equations
  publication-title: Concurr Computat: Pract Exp
  doi: 10.1002/cpe.569
– year: 1975
  ident: 10.1016/j.compfluid.2013.03.021_b0175
– volume: 69
  start-page: 881
  year: 2000
  ident: 10.1016/j.compfluid.2013.03.021_b0165
  article-title: Local and parallel finite element algorithms based on two-grid discretizations
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-99-01149-7
– volume: 60
  start-page: 719
  issue: 7
  year: 2010
  ident: 10.1016/j.compfluid.2013.03.021_b0150
  article-title: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2010.03.013
– volume: 40
  start-page: 249
  year: 2011
  ident: 10.1016/j.compfluid.2013.03.021_b0035
  article-title: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier–Stokes equations
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2010.09.009
– volume: 21
  start-page: 337
  year: 1984
  ident: 10.1016/j.compfluid.2013.03.021_b0205
  article-title: A stable finite element for the Stokes equations
  publication-title: Calcolo
  doi: 10.1007/BF02576171
– volume: 35
  start-page: 195
  year: 2009
  ident: 10.1016/j.compfluid.2013.03.021_b0010
  article-title: Parallel finite element computation of incompressible flows
  publication-title: Parallel Comput
  doi: 10.1016/j.parco.2008.11.003
– volume: 2
  start-page: 42
  issue: 1
  year: 2011
  ident: 10.1016/j.compfluid.2013.03.021_b0055
  article-title: Two-level methods based on three correction for the 2D/3D steady Navier–Stokes equations
  publication-title: Int J Numer Anal Model Ser B
– volume: 195
  start-page: 5857
  year: 2006
  ident: 10.1016/j.compfluid.2013.03.021_b0080
  article-title: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2005.08.016
– volume: 24
  start-page: 364
  year: 2011
  ident: 10.1016/j.compfluid.2013.03.021_b0030
  article-title: A parallel two-level linearization method for incompressible flow problems
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2010.10.027
– volume: 127
  start-page: 387
  year: 1995
  ident: 10.1016/j.compfluid.2013.03.021_b0090
  article-title: Multiscale phenomena: Greens functions, the Dirichlet-to-Neumann formulation, subgrid-scale modelsbubbles and the origins of stabilized methods
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(95)00844-9
– year: 2005
  ident: 10.1016/j.compfluid.2013.03.021_b0215
– volume: 234
  start-page: 593
  year: 2010
  ident: 10.1016/j.compfluid.2013.03.021_b0085
  article-title: Assessment of subgrid-scale models for the incompressible Navier–Stokes equations
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2009.12.051
– volume: 6
  start-page: 224
  year: 1997
  ident: 10.1016/j.compfluid.2013.03.021_b0155
  article-title: A parallel multigrid method using the full domain partition
  publication-title: Electron Trans Numer Anal
– volume: 26
  start-page: 265
  year: 1998
  ident: 10.1016/j.compfluid.2013.03.021_b0160
  article-title: The full domain partition approach to distributing adaptive grids
  publication-title: Appl Numer Math
  doi: 10.1016/S0168-9274(97)00095-0
– volume: 236
  start-page: 2553
  issue: 9
  year: 2012
  ident: 10.1016/j.compfluid.2013.03.021_b0145
  article-title: A defect-correction method for unsteady conduction convection problems II: time discretization
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2011.12.014
– volume: vol. IX
  year: 2003
  ident: 10.1016/j.compfluid.2013.03.021_b0185
  article-title: Finite element methods for the incompressible viscos flow
– volume: 209–212
  start-page: 172
  year: 2012
  ident: 10.1016/j.compfluid.2013.03.021_b0040
  article-title: A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2011.11.003
– volume: 229
  start-page: 5123
  year: 2010
  ident: 10.1016/j.compfluid.2013.03.021_b0020
  article-title: Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.03.028
– year: 1997
  ident: 10.1016/j.compfluid.2013.03.021_b0190
– volume: 37
  start-page: 1165
  issue: 4
  year: 2000
  ident: 10.1016/j.compfluid.2013.03.021_b0115
  article-title: Adaptive defect-correction methods for viscous incompressible flow problems
  publication-title: SIAM J Numer Anal
  doi: 10.1137/S0036142997318164
– year: 1978
  ident: 10.1016/j.compfluid.2013.03.021_b0180
– volume: 11
  start-page: 3252
  issue: 216
  year: 2010
  ident: 10.1016/j.compfluid.2013.03.021_b0050
  article-title: A new defect correction method for the Navier–Stokes equations at high Reynolds numbers
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2010.04.050
– year: 1986
  ident: 10.1016/j.compfluid.2013.03.021_b0200
– volume: 227
  start-page: 1790
  year: 2008
  ident: 10.1016/j.compfluid.2013.03.021_b0005
  article-title: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2007.09.026
– volume: 59
  start-page: 271
  year: 2012
  ident: 10.1016/j.compfluid.2013.03.021_b0130
  article-title: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems
  publication-title: Numer Algor
  doi: 10.1007/s11075-011-9489-y
– volume: 1
  start-page: 73
  year: 1973
  ident: 10.1016/j.compfluid.2013.03.021_b0210
  article-title: A numerical solution of the Navier–Stokes equations using the finite element technique
  publication-title: Comput Fluids
  doi: 10.1016/0045-7930(73)90027-3
– volume: 26
  start-page: 1485
  year: 2005
  ident: 10.1016/j.compfluid.2013.03.021_b0100
  article-title: A finite element variational multiscale method for the Navier–Stokes equations
  publication-title: SIAM J Sci Comput
  doi: 10.1137/030601533
– volume: 129
  start-page: 1
  year: 2002
  ident: 10.1016/j.compfluid.2013.03.021_b0045
  article-title: A defect-correction method for the incompressible Navier–Stokes equations
  publication-title: Appl Math Comput
  doi: 10.1016/S0096-3003(01)00026-1
– ident: 10.1016/j.compfluid.2013.03.021_b0225
– volume: 233
  start-page: 210
  year: 2013
  ident: 10.1016/j.compfluid.2013.03.021_b0065
  article-title: A two-level subgrid stabilized Oseen iterative method for the steady Navier–Stokes equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2012.08.024
– volume: 48
  start-page: 387
  year: 1982
  ident: 10.1016/j.compfluid.2013.03.021_b0235
  article-title: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(82)90058-4
– volume: 48
  start-page: 1213
  year: 2004
  ident: 10.1016/j.compfluid.2013.03.021_b0125
  article-title: Analysis of a defect correction method for viscoelastic fluid flow
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2004.10.016
– year: 1984
  ident: 10.1016/j.compfluid.2013.03.021_b0195
– ident: 10.1016/j.compfluid.2013.03.021_b0135
  doi: 10.1155/2011/370192
– volume: 54
  start-page: 185
  issue: 1
  year: 2011
  ident: 10.1016/j.compfluid.2013.03.021_b0140
  article-title: A defect-correction method for unsteady conduction convection problems I: spatial discretization
  publication-title: Sci China Math
  doi: 10.1007/s11425-010-4022-7
– volume: 166
  start-page: 3
  year: 1998
  ident: 10.1016/j.compfluid.2013.03.021_b0095
  article-title: The variational multiscale method – a paradigm for computational mechanics
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(98)00079-6
– volume: 228
  start-page: 5961
  year: 2009
  ident: 10.1016/j.compfluid.2013.03.021_b0105
  article-title: A finite element variational multiscale method for incompressible flows based on two local gauss integrations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2009.05.006
– volume: 47
  start-page: 1262
  year: 2011
  ident: 10.1016/j.compfluid.2013.03.021_b0060
  article-title: A new parallel finite element algorithm for the stationary Navier–Stokes equations
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2011.06.001
– volume: 133
  start-page: 147
  year: 2002
  ident: 10.1016/j.compfluid.2013.03.021_b0070
  article-title: A connection between subgrid scale eddy viscosity and mixed methods
  publication-title: Appl Math Comput
  doi: 10.1016/S0096-3003(01)00228-4
– volume: 81
  start-page: 442
  year: 2010
  ident: 10.1016/j.compfluid.2013.03.021_b0120
  article-title: A two-level defect-correction method for Navier–Stokes equations
  publication-title: Bull Aust Math Soc
  doi: 10.1017/S0004972709000859
– volume: 10
  start-page: 23
  issue: 1
  year: 2009
  ident: 10.1016/j.compfluid.2013.03.021_b0015
  article-title: The convergence of a new parallel algorithm for the Navier–Stokes equations
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2007.08.011
– volume: 44
  start-page: 1639
  year: 2006
  ident: 10.1016/j.compfluid.2013.03.021_b0075
  article-title: Subgrid stabilized defect correction methods for the Navier–Stokes equations
  publication-title: SIAM Numer Anal
  doi: 10.1137/050623942
– volume: 198
  start-page: 1351
  year: 2009
  ident: 10.1016/j.compfluid.2013.03.021_b0220
  article-title: Convergence of three iterative methods based on finite element discretization for the stationary Navier–Stokes equations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.12.001
SSID ssj0004324
Score 2.111252
Snippet •Two parallel defect-correction algorithms for the Navier–Stokes equations are presented.•The algorithms are able to simulate high Reynolds numbers flows on...
Based on a fully overlapping domain decomposition technique and finite element discretization, two parallel defect-correction algorithms for the stationary...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 200
SubjectTerms Algorithms
Computer simulation
Defect-correction method
Discretization
Domain decomposition
Finite element
Finite element method
Mathematical analysis
Mathematical models
Navier-Stokes equations
Parallel algorithm
Parallel computing
Title Parallel defect-correction algorithms based on finite element discretization for the Navier–Stokes equations
URI https://dx.doi.org/10.1016/j.compfluid.2013.03.021
https://www.proquest.com/docview/1448710078
https://www.proquest.com/docview/1513465181
https://www.proquest.com/docview/1671551494
https://www.proquest.com/docview/1709779416
Volume 79
WOSCitedRecordID wos000320147800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004324
  issn: 0045-7930
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeEJ9i40NGYk9VpCRO4pi3CVoBqsqkdVJ5ipLYho6Qdk07Tfz13MVO2jDoxgNSlFSW3Vj-Oef7-c53hLwJhMolj7UjudBO4GURfHOBcDSToeJomlJ1yPwRH4_j6VQc25TwVZ1OgJdlfHkpFv8VaigDsPHo7D_A3f4pFMBvAB3uADvcbwT8cbrE_ChFXyp01XByzL9hE4IXX-fL2erbj6qPq5dES4GeodbZV8aNHA02OR5s_Nl1QhynuH46J6v5d1X11fl6a6OviXNg80NU9WzSxXomW339pNmW_rK9y1BnfHDMieRGcgYY2tLaUKzkNGlgGtHnulurqG-co68IaLNXcIbju6h7gt51rI4za05Kd0Nijz8nw9PRKJkMppNDNlycO5gvDO3qh-y9we422fN5KOIe2Tv6OJh-2pyKZb6JwW173vHu--P7_6ab_LZK16rH5AG5bzkDPTJYPyS3VPmI3NuKJPmYFA3q9ArqdIM6rVGnUGZQpxZ12kWdAuoUUKcd1GmL-hNyOhxM3n1wbCINJw8CDq-MmAZaDA-uIxH5KZdxCsLXk8LLMEgbKqpMx0JrFmqR5aC0AJGQmSvTGCgke0p65bxUzwjlfp7mHDhFAMTdy0WmpAiRtnugbIE02CdRM4RJbqPMY7KTImncCc-SduwTHPvEhcv39onbNlyYQCvXN3nbYJRYfdHogQnMtusbv25QTUCiopksLdV8XQEZBhKPzkPxjjqhx4IoBPV4R52I13xEBDvqcBcImABWdHCD_jwndzff5gvSWy3X6iW5k1-sZtXylZ3_vwD2u8Dq
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+defect-correction+algorithms+based+on+finite+element+discretization+for+the+Navier-Stokes+equations&rft.jtitle=Computers+%26+fluids&rft.au=Shang%2C+Y&rft.date=2013-06-25&rft.issn=0045-7930&rft.volume=79&rft.spage=200&rft.epage=212&rft_id=info:doi/10.1016%2Fj.compfluid.2013.03.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon