Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography
Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolu...
Uloženo v:
| Vydáno v: | IEEE transactions on medical imaging Ročník 38; číslo 9; s. 2198 - 2210 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images. |
|---|---|
| AbstractList | Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer’s ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images. Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images.Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images. Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e. segmenting cardiac structures as well as estimating clinical indices, on a dataset especially designed to answer this objective. We therefore introduce the Cardiac Acquisitions for Multi-structure Ultrasound Segmentation (CA-MUS) dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and endsystolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images. |
| Author | Espinosa, Florian Ostvik, Andreas Berg, Erik Andreas Rye Leclerc, Sarah Lartizien, Carole Jodoin, Pierre-Marc Cervenansky, Frederic Espeland, Torvald Smistad, Erik Lovstakken, Lasse Bernard, Olivier Dhooge, Jan Pedrosa, Joao Grenier, Thomas |
| Author_xml | – sequence: 1 givenname: Sarah orcidid: 0000-0002-4271-0292 surname: Leclerc fullname: Leclerc, Sarah email: sarah.leclerc@gmx.fr organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France – sequence: 2 givenname: Erik surname: Smistad fullname: Smistad, Erik organization: Department of Circulation and Medical Imaging, Center of Innovative Ultrasound Solutions, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 3 givenname: Joao orcidid: 0000-0001-9926-0774 surname: Pedrosa fullname: Pedrosa, Joao organization: Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium – sequence: 4 givenname: Andreas orcidid: 0000-0003-3895-2683 surname: Ostvik fullname: Ostvik, Andreas organization: Department of Circulation and Medical Imaging, Center of Innovative Ultrasound Solutions, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 5 givenname: Frederic surname: Cervenansky fullname: Cervenansky, Frederic organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France – sequence: 6 givenname: Florian surname: Espinosa fullname: Espinosa, Florian organization: Cardiovascular Department, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France – sequence: 7 givenname: Torvald surname: Espeland fullname: Espeland, Torvald organization: Center of Innovative Ultrasound Solutions and the Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway – sequence: 8 givenname: Erik Andreas Rye surname: Berg fullname: Berg, Erik Andreas Rye organization: Center of Innovative Ultrasound Solutions and the Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway – sequence: 9 givenname: Pierre-Marc orcidid: 0000-0002-6038-5753 surname: Jodoin fullname: Jodoin, Pierre-Marc organization: Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada – sequence: 10 givenname: Thomas surname: Grenier fullname: Grenier, Thomas organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France – sequence: 11 givenname: Carole surname: Lartizien fullname: Lartizien, Carole organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France – sequence: 12 givenname: Jan orcidid: 0000-0002-2346-142X surname: Dhooge fullname: Dhooge, Jan organization: Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium – sequence: 13 givenname: Lasse surname: Lovstakken fullname: Lovstakken, Lasse organization: Department of Circulation and Medical Imaging, Center of Innovative Ultrasound Solutions, Norwegian University of Science and Technology, Trondheim, Norway – sequence: 14 givenname: Olivier orcidid: 0000-0003-0752-9946 surname: Bernard fullname: Bernard, Olivier email: olivier.bernard@creatis.insa-lyon.fr organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30802851$$D View this record in MEDLINE/PubMed https://hal.science/hal-02054458$$DView record in HAL |
| BookMark | eNp9kUFr3DAQRkVJaTZp74VCMfSSHrwdyZItH0M2aQIuOSShvQlZHu8qeCVX8hby76vF2z3k0JPE8D7NaN4ZOXHeISEfKSwphfrb44-7JQNaL1kNIGj5hiyoEDJngv86IQtglcwBSnZKzmJ8BqBcQP2OnBYggUlBF-TnCnHMGtTBWbfOeh-yB1xv0U16st5lT3Ff1i67H9FljQ5rzB-MHjBb6UlHnDLrMrbKrs3GGx0669dBj5uX9-Rtr4eIHw7nOXm6uX68us2b--93V5dNbjivprwGblrKoaWybPuKtchaWXVUpnvPmay07Httqoqbvu2k1rQE0YtS09p0UPDinHyd393oQY3BbnV4UV5bdXvZqH0NGAjOhfxDE3sxs2Pwv3cYJ7W10eAwaId-FxVLQ1BBgZUJ_fIKffa74NJPFGOSM5rWLRL1-UDt2i12x_7_1psAmAETfIwB-yNCQe0NqmRQ7Q2qg8EUKV9FjJ1dTEHb4X_BT3PQIuKxjyx5XRWy-AsyOqSl |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3373046 crossref_primary_10_1007_s11548_020_02141_y crossref_primary_10_1016_j_compmedimag_2024_102476 crossref_primary_10_1016_j_imed_2024_10_001 crossref_primary_10_1109_LSP_2025_3572835 crossref_primary_10_3389_frai_2024_1467218 crossref_primary_10_1002_ima_70059 crossref_primary_10_1016_j_media_2024_103183 crossref_primary_10_1016_j_compbiomed_2023_107286 crossref_primary_10_1109_ACCESS_2021_3122256 crossref_primary_10_1109_TUFFC_2024_3393026 crossref_primary_10_1016_j_bspc_2021_102807 crossref_primary_10_1088_1361_6560_acf10f crossref_primary_10_1007_s12652_021_03017_y crossref_primary_10_1016_j_media_2022_102648 crossref_primary_10_1109_TUFFC_2022_3218281 crossref_primary_10_1002_jum_16007 crossref_primary_10_1016_j_bspc_2023_105076 crossref_primary_10_1155_2022_2013558 crossref_primary_10_1161_CIRCIMAGING_120_011951 crossref_primary_10_1016_j_compbiomed_2024_108313 crossref_primary_10_1109_TMI_2024_3362964 crossref_primary_10_1016_j_compbiomed_2024_108557 crossref_primary_10_1109_TMI_2022_3229136 crossref_primary_10_3389_fphys_2024_1432987 crossref_primary_10_1007_s11517_022_02612_1 crossref_primary_10_1109_TUFFC_2023_3326377 crossref_primary_10_1109_ACCESS_2020_3000666 crossref_primary_10_1109_TUFFC_2025_3539262 crossref_primary_10_1007_s11042_023_16044_y crossref_primary_10_1016_j_cjca_2021_11_003 crossref_primary_10_1016_j_compbiomed_2023_107856 crossref_primary_10_1109_TMI_2021_3060497 crossref_primary_10_1161_STROKEAHA_120_032243 crossref_primary_10_1109_TBME_2021_3123612 crossref_primary_10_1002_jcu_70065 crossref_primary_10_1007_s11760_022_02250_y crossref_primary_10_1109_TMI_2025_3526955 crossref_primary_10_3390_jcm10071391 crossref_primary_10_1088_1742_6596_1727_1_012013 crossref_primary_10_1016_j_media_2025_103470 crossref_primary_10_3390_diagnostics14131439 crossref_primary_10_1016_j_imu_2022_101150 crossref_primary_10_1109_RBME_2020_2988295 crossref_primary_10_1016_j_cjca_2021_11_009 crossref_primary_10_3390_s23208589 crossref_primary_10_1016_j_compbiomed_2025_110322 crossref_primary_10_3390_biomedicines12102324 crossref_primary_10_1016_j_dsp_2025_105558 crossref_primary_10_1016_j_media_2023_102834 crossref_primary_10_1016_j_media_2022_102438 crossref_primary_10_1038_s41598_023_36047_x crossref_primary_10_1007_s11548_020_02223_x crossref_primary_10_1016_j_patcog_2025_111927 crossref_primary_10_1002_ima_22631 crossref_primary_10_3390_s25072043 crossref_primary_10_1007_s11517_024_03201_0 crossref_primary_10_1109_TUFFC_2020_3015081 crossref_primary_10_1161_JAHA_124_039511 crossref_primary_10_1186_s12880_024_01253_0 crossref_primary_10_1109_JBHI_2024_3426068 crossref_primary_10_1016_j_ultrasmedbio_2023_08_024 crossref_primary_10_1007_s10916_023_01911_w crossref_primary_10_1016_j_asoc_2025_112950 crossref_primary_10_1097_CRD_0000000000000691 crossref_primary_10_1161_CIRCIMAGING_123_015496 crossref_primary_10_1016_j_eswa_2025_129215 crossref_primary_10_1371_journal_pone_0293560 crossref_primary_10_1002_ecj_12281 crossref_primary_10_1007_s00500_021_06568_6 crossref_primary_10_1016_j_compmedimag_2025_102538 crossref_primary_10_3390_app13042308 crossref_primary_10_3390_diagnostics13142365 crossref_primary_10_1016_j_compmedimag_2023_102183 crossref_primary_10_1016_j_bspc_2022_104062 crossref_primary_10_1016_j_bspc_2025_108000 crossref_primary_10_1016_j_bspc_2025_108121 crossref_primary_10_1016_j_neunet_2023_12_038 crossref_primary_10_1371_journal_pone_0310107 crossref_primary_10_1038_s41569_025_01197_0 crossref_primary_10_1016_j_bspc_2022_103895 crossref_primary_10_1016_j_bspc_2025_107952 crossref_primary_10_1016_j_jacc_2020_11_030 crossref_primary_10_1016_j_ultrasmedbio_2023_12_018 crossref_primary_10_3390_app15095001 crossref_primary_10_1016_j_knosys_2024_112394 crossref_primary_10_1016_j_media_2024_103272 crossref_primary_10_1007_s42979_025_04155_2 crossref_primary_10_1016_j_asoc_2021_107386 crossref_primary_10_1016_j_jcmg_2021_04_018 crossref_primary_10_3389_fcvm_2023_1056055 crossref_primary_10_1007_s11517_025_03419_6 crossref_primary_10_1109_TUFFC_2024_3466290 crossref_primary_10_1038_s41598_024_65557_5 crossref_primary_10_1002_ima_23141 crossref_primary_10_1109_TMI_2024_3403687 crossref_primary_10_1016_j_compbiomed_2024_108100 crossref_primary_10_1109_TMI_2021_3137854 crossref_primary_10_1007_s40747_023_00968_x crossref_primary_10_1109_TCSVT_2025_3558496 crossref_primary_10_1109_ACCESS_2024_3409360 crossref_primary_10_1007_s12574_020_00496_4 crossref_primary_10_1007_s10278_024_01119_5 crossref_primary_10_1007_s10278_025_01532_4 crossref_primary_10_3389_fcvm_2023_1266260 crossref_primary_10_1016_j_gpb_2023_09_003 crossref_primary_10_5582_bst_2023_01128 crossref_primary_10_1016_j_patcog_2024_110615 crossref_primary_10_1109_JBHI_2023_3293520 crossref_primary_10_1016_j_jcmg_2019_08_025 crossref_primary_10_3389_fpubh_2022_981019 crossref_primary_10_1016_j_asoc_2024_111449 crossref_primary_10_3389_fcvm_2022_849234 crossref_primary_10_1016_j_isci_2025_112917 crossref_primary_10_1016_j_jacc_2023_09_799 crossref_primary_10_1109_TPAMI_2023_3243040 crossref_primary_10_1007_s10278_024_01047_4 crossref_primary_10_1038_s41746_025_01730_y crossref_primary_10_1007_s11548_020_02158_3 crossref_primary_10_1016_j_media_2020_101873 crossref_primary_10_1016_j_fmre_2025_01_020 crossref_primary_10_1016_j_jcmg_2025_02_011 crossref_primary_10_3390_electronics11213462 crossref_primary_10_1016_j_ejmp_2024_104505 crossref_primary_10_1002_ima_70086 crossref_primary_10_1109_TUFFC_2024_3418030 crossref_primary_10_1109_TMI_2021_3074808 crossref_primary_10_1007_s10554_024_03207_7 crossref_primary_10_1016_j_compbiomed_2021_104388 crossref_primary_10_1109_ACCESS_2025_3541173 crossref_primary_10_1007_s42452_025_07055_5 crossref_primary_10_1016_j_bspc_2025_108056 crossref_primary_10_1007_s40747_023_01119_y crossref_primary_10_1145_3615862 crossref_primary_10_1109_TMI_2022_3151606 crossref_primary_10_3390_electronics12214411 crossref_primary_10_1016_j_ultrasmedbio_2024_12_008 crossref_primary_10_3348_kjr_2019_0378 crossref_primary_10_3390_s25061909 crossref_primary_10_1016_j_cmpb_2024_108544 crossref_primary_10_1080_17434440_2020_1777855 crossref_primary_10_1016_j_cmpb_2025_108869 crossref_primary_10_3390_jimaging11050165 crossref_primary_10_3390_diagnostics14151655 crossref_primary_10_1109_TUFFC_2022_3162800 crossref_primary_10_3390_life14060761 crossref_primary_10_1007_s00530_024_01349_1 crossref_primary_10_1007_s11517_025_03330_0 crossref_primary_10_1038_s41597_025_04464_4 crossref_primary_10_1016_j_ultrasmedbio_2023_11_008 crossref_primary_10_1007_s10554_022_02554_7 crossref_primary_10_1109_TII_2023_3249904 crossref_primary_10_1016_j_bspc_2024_107211 crossref_primary_10_1109_TETCI_2024_3377676 crossref_primary_10_3390_diagnostics11071177 crossref_primary_10_1016_j_neunet_2024_107095 crossref_primary_10_1016_j_ultrasmedbio_2024_06_001 crossref_primary_10_1186_s12880_024_01470_7 crossref_primary_10_1117_1_JMI_12_2_024002 crossref_primary_10_1038_s41598_024_63538_2 crossref_primary_10_5582_bst_2023_01119 crossref_primary_10_1016_j_bspc_2024_107212 crossref_primary_10_1016_j_compbiomed_2022_105637 crossref_primary_10_1016_j_medengphy_2025_104400 crossref_primary_10_1109_ACCESS_2021_3107303 crossref_primary_10_1016_j_eswa_2025_127084 crossref_primary_10_3390_jcm11102893 crossref_primary_10_1038_s41598_024_52480_y crossref_primary_10_1109_TUFFC_2022_3169684 crossref_primary_10_1016_j_neucom_2022_03_022 crossref_primary_10_1007_s13246_024_01481_2 crossref_primary_10_3389_fphys_2025_1629121 crossref_primary_10_1038_s41598_025_08711_x crossref_primary_10_1016_j_imu_2021_100601 crossref_primary_10_1109_TUFFC_2020_3015340 crossref_primary_10_1016_j_bspc_2020_102248 crossref_primary_10_1016_j_cmpb_2022_106970 crossref_primary_10_3390_diagnostics14232766 crossref_primary_10_1109_ACCESS_2023_3284315 crossref_primary_10_1016_j_heliyon_2024_e34845 crossref_primary_10_1016_j_media_2023_103061 crossref_primary_10_1038_s41467_025_59451_5 crossref_primary_10_3389_fmed_2024_1354070 crossref_primary_10_1017_eds_2024_53 crossref_primary_10_4250_jcvi_2021_0039 crossref_primary_10_1109_TCE_2023_3337234 crossref_primary_10_1016_j_eswa_2025_128985 crossref_primary_10_1016_j_neucom_2025_130217 crossref_primary_10_1109_JBHI_2022_3171985 crossref_primary_10_1016_j_neunet_2025_107865 crossref_primary_10_1038_s41598_024_82931_5 crossref_primary_10_7717_peerj_cs_3161 crossref_primary_10_3389_fcvm_2024_1418741 crossref_primary_10_1007_s11517_025_03310_4 crossref_primary_10_3390_app13116582 crossref_primary_10_1016_j_artmed_2024_102866 crossref_primary_10_1007_s00259_019_04606_y crossref_primary_10_1109_TUFFC_2021_3136620 crossref_primary_10_1016_j_bspc_2025_108500 crossref_primary_10_1186_s12947_023_00317_5 crossref_primary_10_1016_j_bspc_2022_104557 crossref_primary_10_1016_j_rineng_2025_104143 crossref_primary_10_1109_TIM_2025_3550246 crossref_primary_10_1016_j_compbiomed_2020_104200 crossref_primary_10_1016_j_compbiomed_2021_104860 crossref_primary_10_25259_JCCC_59_2024 crossref_primary_10_1109_JBHI_2021_3091579 crossref_primary_10_1016_j_compbiomed_2024_108282 crossref_primary_10_3389_fcvm_2022_1016032 crossref_primary_10_1007_s10278_025_01682_5 crossref_primary_10_1177_01617346211068812 crossref_primary_10_1007_s10554_024_03095_x crossref_primary_10_1016_j_ultrasmedbio_2024_08_023 crossref_primary_10_1016_j_cmpb_2023_107882 crossref_primary_10_1109_TMI_2021_3054566 crossref_primary_10_1177_0161734620951216 crossref_primary_10_1109_TUFFC_2021_3137989 crossref_primary_10_1038_s41569_021_00527_2 crossref_primary_10_1097_MS9_0000000000003080 crossref_primary_10_1109_TMI_2022_3173669 crossref_primary_10_1016_j_media_2025_103602 crossref_primary_10_3390_s25082361 crossref_primary_10_3390_app12073676 crossref_primary_10_1016_j_media_2022_102397 crossref_primary_10_1016_j_bspc_2025_107671 crossref_primary_10_1016_j_compbiomed_2022_106090 crossref_primary_10_3389_fcvm_2022_1067760 crossref_primary_10_1007_s10044_025_01509_7 crossref_primary_10_1016_j_jcmg_2024_05_020 crossref_primary_10_3390_healthcare11040484 crossref_primary_10_1109_TMI_2020_3003240 crossref_primary_10_1007_s13246_022_01179_3 crossref_primary_10_1109_TPAMI_2025_3525671 crossref_primary_10_1016_j_cmpb_2024_108111 crossref_primary_10_1016_j_compbiomed_2023_106705 crossref_primary_10_1117_1_JMI_11_5_054002 crossref_primary_10_3389_fonc_2020_619274 crossref_primary_10_3389_fnins_2023_1268860 crossref_primary_10_1038_s41598_024_81523_7 crossref_primary_10_1049_ipr2_12915 crossref_primary_10_1109_ACCESS_2022_3174059 crossref_primary_10_1016_j_bspc_2023_105329 crossref_primary_10_1002_mp_14818 crossref_primary_10_1109_JBHI_2025_3565311 crossref_primary_10_1109_JBHI_2021_3131758 crossref_primary_10_3390_diagnostics13101683 crossref_primary_10_1038_s41551_025_01497_3 crossref_primary_10_1109_JBHI_2024_3390688 crossref_primary_10_1016_j_compbiomed_2020_103728 crossref_primary_10_1016_j_dsp_2025_105459 crossref_primary_10_1053_j_semnuclmed_2025_01_004 crossref_primary_10_1016_j_bspc_2023_105280 crossref_primary_10_3390_jimaging10080190 crossref_primary_10_1109_ACCESS_2024_3384383 crossref_primary_10_1109_TASE_2023_3261344 crossref_primary_10_1109_TMI_2023_3309249 crossref_primary_10_1016_j_compbiomed_2023_107129 crossref_primary_10_1016_j_compbiomed_2025_109719 crossref_primary_10_1002_widm_1574 crossref_primary_10_1109_ACCESS_2024_3447528 crossref_primary_10_1007_s00521_022_07217_1 crossref_primary_10_1016_j_compbiomed_2025_110708 crossref_primary_10_3389_fcvm_2023_1185172 crossref_primary_10_1088_1361_6560_ad548a crossref_primary_10_1007_s11263_023_01970_z crossref_primary_10_2196_59711 crossref_primary_10_3389_fcvm_2021_648877 crossref_primary_10_1016_j_media_2023_102868 crossref_primary_10_3390_app11041690 crossref_primary_10_1109_TMI_2023_3319973 crossref_primary_10_3389_fcvm_2021_735587 crossref_primary_10_1016_j_inffus_2025_103590 crossref_primary_10_1007_s12559_024_10257_5 crossref_primary_10_1016_j_jcmg_2024_04_017 crossref_primary_10_1007_s13369_025_10310_x crossref_primary_10_1016_j_ijleo_2025_172538 crossref_primary_10_1007_s11547_023_01606_9 crossref_primary_10_1016_j_ultrasmedbio_2022_09_006 crossref_primary_10_1016_j_media_2022_102686 crossref_primary_10_1016_j_bspc_2024_107164 crossref_primary_10_1016_j_compbiomed_2025_110003 crossref_primary_10_1109_TUFFC_2020_2976809 crossref_primary_10_1109_ACCESS_2021_3059595 crossref_primary_10_3390_life13010124 crossref_primary_10_1002_mp_15321 crossref_primary_10_1007_s11886_020_01348_4 crossref_primary_10_1016_j_bspc_2025_107803 crossref_primary_10_1109_TPAMI_2023_3299789 crossref_primary_10_1016_j_bspc_2024_106633 crossref_primary_10_1016_j_health_2024_100340 crossref_primary_10_1109_JBHI_2024_3413628 crossref_primary_10_1016_j_bspc_2024_107169 crossref_primary_10_1097_HJH_0000000000002813 crossref_primary_10_1007_s12170_021_00678_4 crossref_primary_10_1109_ACCESS_2020_2971383 crossref_primary_10_1007_s11042_024_18953_y crossref_primary_10_1016_j_rineng_2025_106413 crossref_primary_10_1016_j_compbiomed_2025_110807 crossref_primary_10_1007_s11042_020_09834_1 crossref_primary_10_3390_bioengineering11050447 crossref_primary_10_1016_j_artmed_2021_102165 crossref_primary_10_1109_JBHI_2025_3535579 crossref_primary_10_1038_s41598_022_13658_4 crossref_primary_10_1016_j_jcmg_2025_05_003 crossref_primary_10_1109_JBHI_2023_3236989 crossref_primary_10_1016_j_eswa_2025_128338 crossref_primary_10_1109_JBHI_2022_3221429 crossref_primary_10_3389_fcvm_2020_00025 crossref_primary_10_1109_JIOT_2020_3029957 crossref_primary_10_2478_jtim_2023_0088 crossref_primary_10_1002_mp_17733 crossref_primary_10_1109_TUFFC_2020_2981037 crossref_primary_10_1109_TUFFC_2020_3003403 crossref_primary_10_1016_j_media_2025_103536 crossref_primary_10_3390_s23031479 crossref_primary_10_1007_s11548_021_02542_7 crossref_primary_10_1016_j_media_2021_102042 crossref_primary_10_1080_21681163_2020_1835555 crossref_primary_10_1109_TUFFC_2022_3151647 crossref_primary_10_1177_20552076241260557 crossref_primary_10_1177_20552076251351201 |
| Cites_doi | 10.1007/978-3-030-00889-5_1 10.1109/TUFFC.2016.2638080 10.1016/j.media.2017.07.005 10.1109/TMI.2018.2837502 10.1109/TIP.2011.2169273 10.1093/ejechocard/jeq005 10.1109/TPAMI.2014.2377715 10.1109/TMI.2017.2743464 10.1109/TMI.2015.2503890 10.1109/TMI.2006.877092 10.1109/TIP.2011.2161484 10.1109/TMI.2017.2734959 10.1016/j.echo.2014.10.003 10.1161/01.CIR.60.4.760 10.1016/j.ultrasmedbio.2012.08.008 10.1111/echo.12832 10.1007/978-3-319-46484-8_29 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| DOI | 10.1109/TMI.2019.2900516 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing and Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 2210 |
| ExternalDocumentID | oai:HAL:hal-02054458v1 30802851 10_1109_TMI_2019_2900516 8649738 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: framework of the LABEX PRIMES (ANR-11-LABX-0063) of the Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR) – fundername: Centre for Innovative Ultrasound Solutions through the Norwegian Research Council grantid: 237887 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c447t-904cb140b186bf72be2b87d18f72f4287a8ffac774cfbd8aa1605f56a19cd0343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 490 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484290400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Tue Nov 18 06:20:57 EST 2025 Sat Sep 27 21:23:35 EDT 2025 Mon Jun 30 02:34:05 EDT 2025 Mon Jul 21 05:49:32 EDT 2025 Tue Nov 18 22:11:37 EST 2025 Sat Nov 29 05:14:06 EST 2025 Wed Aug 27 02:46:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Keywords | cardiac strain Multimodal cardiac imaging deep learning electromechanical model left ventricle synthetic sequences motion estimation myocardium Cardiac segmentation and diagnosis left atrium ultrasound numerical simulation |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-904cb140b186bf72be2b87d18f72f4287a8ffac774cfbd8aa1605f56a19cd0343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2346-142X 0000-0001-9926-0774 0000-0002-6038-5753 0000-0003-0752-9946 0000-0003-3895-2683 0000-0002-4271-0292 0000-0002-7817-1198 0000-0001-7594-4231 0000-0002-3630-5856 |
| OpenAccessLink | https://hal.science/hal-02054458 |
| PMID | 30802851 |
| PQID | 2284210055 |
| PQPubID | 85460 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2284210055 proquest_miscellaneous_2186151026 ieee_primary_8649738 pubmed_primary_30802851 hal_primary_oai_HAL_hal_02054458v1 crossref_primary_10_1109_TMI_2019_2900516 crossref_citationtrail_10_1109_TMI_2019_2900516 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | keraudren (ref15) 2014 ref30 ref2 ref1 ref19 domingos (ref16) 2014 çiçek (ref20) 2016 smistad (ref10) 2014 ref24 oktay (ref14) 2014 ref23 smistad (ref17) 2017 ref25 ref22 van stralen (ref13) 2014 ref21 ref28 ref27 ref29 wang (ref9) 2014 ref8 bernier (ref11) 2014 ref7 ronneberger (ref18) 2015 ref3 ref6 ref5 barbosa (ref4) 2014 leclerc (ref26) 2017 milletari (ref12) 2014 |
| References_xml | – start-page: 25 year: 2014 ident: ref11 article-title: Automatized evaluation of the left ventricular ejection fraction from echocardiographic images using graph cut publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – ident: ref25 doi: 10.1007/978-3-030-00889-5_1 – start-page: 234 year: 2015 ident: ref18 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc MICCAI – ident: ref29 doi: 10.1109/TUFFC.2016.2638080 – ident: ref23 doi: 10.1016/j.media.2017.07.005 – ident: ref2 doi: 10.1109/TMI.2018.2837502 – ident: ref7 doi: 10.1109/TIP.2011.2169273 – start-page: 65 year: 2014 ident: ref10 article-title: Real-time tracking of the left ventricle in 3D ultrasound using Kalman filter and mean value coordinates publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – ident: ref8 doi: 10.1093/ejechocard/jeq005 – ident: ref27 doi: 10.1109/TPAMI.2014.2377715 – ident: ref19 doi: 10.1109/TMI.2017.2743464 – ident: ref3 doi: 10.1109/TMI.2015.2503890 – ident: ref6 doi: 10.1109/TMI.2006.877092 – start-page: 41 year: 2014 ident: ref15 article-title: Endocardial 3D ultrasound segmentation using autocontext random forests publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – ident: ref28 doi: 10.1109/TIP.2011.2161484 – ident: ref5 doi: 10.1109/TMI.2017.2734959 – ident: ref22 doi: 10.1016/j.echo.2014.10.003 – ident: ref21 doi: 10.1161/01.CIR.60.4.760 – start-page: 17 year: 2014 ident: ref4 article-title: Fast tracking of the left ventricle using global anatomical affine optical flow and local recursive block matching publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – start-page: 57 year: 2014 ident: ref14 article-title: Learning shape representations for multi-atlas endocardium segmentation in 3D echo images publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – start-page: 33 year: 2014 ident: ref16 article-title: Endocardial segmentation using structured random forests in 3D echocardiography publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – start-page: 73 year: 2014 ident: ref13 article-title: Segmentation of multi-center 3d left ventricular echocardiograms by active appearance models publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – ident: ref30 doi: 10.1016/j.ultrasmedbio.2012.08.008 – start-page: 424 year: 2016 ident: ref20 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – start-page: 81 year: 2014 ident: ref9 article-title: Model-based left ventricle segmentation in 3D ultrasound using phase image publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – start-page: 49 year: 2014 ident: ref12 article-title: Left ventricle segmentation in cardiac ultrasound using Hough-forests with implicit shape and appearance priors publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS) – start-page: 1 year: 2017 ident: ref26 article-title: A fully automatic and multi-structural segmentation of the left ventricle and the myocardium on highly heterogeneous 2D echocardiographic data publication-title: Proc IEEE Int Ultrason Symp (IUS) – ident: ref1 doi: 10.1111/echo.12832 – start-page: 1 year: 2017 ident: ref17 article-title: 2D left ventricle segmentation using deep learning publication-title: Proc IEEE Int Ultrason Symp (IUS) – ident: ref24 doi: 10.1007/978-3-319-46484-8_29 |
| SSID | ssj0014509 |
| Score | 2.7140172 |
| Snippet | Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2198 |
| SubjectTerms | Algorithms Artificial neural networks Automation Cardiacsegmentation and diagnosis Coders Correlation coefficient Correlation coefficients Databases, Factual Datasets Deep Learning Echocardiography Echocardiography - methods Encoders-Decoders Engineering Sciences Heart Heart - diagnostic imaging Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation left atrium left ventricle Machine learning Medical diagnosis Medical imaging Myocardium Neural networks Signal and Image processing Three-dimensional displays Training Two dimensional analysis Two dimensional displays Ultrasonic imaging Ultrasound Ventricle |
| Title | Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography |
| URI | https://ieeexplore.ieee.org/document/8649738 https://www.ncbi.nlm.nih.gov/pubmed/30802851 https://www.proquest.com/docview/2284210055 https://www.proquest.com/docview/2186151026 https://hal.science/hal-02054458 |
| Volume | 38 |
| WOSCitedRecordID | wos000484290400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB48EWkfqtXaplXZSl8KjZffO_sonqKgImjpvYXNZmOFNiea8-_vzGYvKNRC35Zkkiw7s7vfZL6dAfhCCNbSfNahajSGtOCZEDUBOS0VaoUVZnntik3IiwucTtXlEnwbzsJYax35zO5z08Xy65mZ86-yMRaZkimOYCRl0Z_VGiIGWd7TORLOGBsVySIkGanx9fkpc7jUfqLYBrlqUcpHTDGPn-1Go5_MhXRFVl7Gm27fOV77vx6vwxuPL8VBbxBvYcm2G_D6SdbBDVg99_H0TfgxsfZO-ByrN4IArLiyN7_9eaRWOEKB0K1g3ok4Y9Z4eEVatWKiO9r_OnHbimQijmgRNY7Z2ifAfgffj4-uD09CX2ohNFkmu1BFmanI16piLKpGJpVNKpR1jNRu2KvS2DTaEFY0TVWj1jG5QU1e6FiZOkqzdAuW21lrP4DA2taEAjm8aDJFDjZWjSEv1KRSR7mOAxgvhrw0Pg85l8P4VTp_JFIl6atkfZVeXwF8HZ6463Nw_EN2j7Q4iHHy7JODs5KvETDmzEP4SF3YZFUNUl5LAWwvlF76mfxQJrR_k1sc5XkAn4fbNAc5sKJbO5uTDI0aISdyZwN43xvL8O6FpX38-zc_wSvufs9a24bl7n5ud2DFPHa3D_e7ZOhT3HWG_gc-XPQr |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xqNpyoC2vptDiVr0gETYPZ2MfURe0iN1VJbYqN8txHIoEWQRZfj8zjjdqpbYStyiZJI5nbH-T-TwD8BURrMXxrENZaRHihGdCoRHI6VwKLUUheFa6YhP5ZCIuL-X3JTjs9sJYax35zB7RoYvllzMzp19lPdHnMk_FMqxmnCdRu1urixnwrCV0JJQzNuoni6BkJHvT8RmxuORRIskKqW5RSptMRRb_sR4t_yI2pCuz8m_E6Vae0zfPa_NbWPcIkx23JvEOlmy9AWu_5R3cgJdjH1HfhJ8Da--Yz7J6xRDCsgt7det3JNXMUQqYrhkxT9iIeOPhBerVsoFucAVs2HXNkgE7wWnUOG5rmwJ7C36cnky_DUNfbCE0nOdNKCNuCvS2ilj0iypPCpsUIi9jgccV-VVaVJU2iBZNVZRC6xgdoSrr61iaMkp5ug0r9ay274GJ0paIAynAaLhEF1sUlUE_1KS5jjIdB9BbdLkyPhM5FcS4Uc4jiaRCfSnSl_L6CuCgu-OuzcLxH9kvqMVOjNJnD49His4hNKbcQ-IRm7BJquqkvJYC2FsoXfmx_KASXMHRMY6yLIDP3WUchRRa0bWdzVEGew2xEzq0Aey0xtI9e2FpH_7-zn14NZyOR2p0Njnfhdf0KS2HbQ9Wmvu5_QgvzGNz_XD_yZn7E1ep9oo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Segmentation+Using+an+Open+Large-Scale+Dataset+in+2D+Echocardiography&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Leclerc%2C+Sarah&rft.au=Smistad%2C+Erik&rft.au=Pedrosa%2C+Joao&rft.au=Ostvik%2C+Andreas&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=38&rft.issue=9&rft.spage=2198&rft.epage=2210&rft_id=info:doi/10.1109%2FTMI.2019.2900516&rft_id=info%3Apmid%2F30802851&rft.externalDocID=8649738 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |