Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography

Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging Jg. 38; H. 9; S. 2198 - 2210
Hauptverfasser: Leclerc, Sarah, Smistad, Erik, Pedrosa, Joao, Ostvik, Andreas, Cervenansky, Frederic, Espinosa, Florian, Espeland, Torvald, Berg, Erik Andreas Rye, Jodoin, Pierre-Marc, Grenier, Thomas, Lartizien, Carole, Dhooge, Jan, Lovstakken, Lasse, Bernard, Olivier
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:0278-0062, 1558-254X, 1558-254X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images.
AbstractList Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer’s ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images.
Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images.Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images.
Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e. segmenting cardiac structures as well as estimating clinical indices, on a dataset especially designed to answer this objective. We therefore introduce the Cardiac Acquisitions for Multi-structure Ultrasound Segmentation (CA-MUS) dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and endsystolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images.
Author Espinosa, Florian
Ostvik, Andreas
Berg, Erik Andreas Rye
Leclerc, Sarah
Lartizien, Carole
Jodoin, Pierre-Marc
Cervenansky, Frederic
Espeland, Torvald
Smistad, Erik
Lovstakken, Lasse
Bernard, Olivier
Dhooge, Jan
Pedrosa, Joao
Grenier, Thomas
Author_xml – sequence: 1
  givenname: Sarah
  orcidid: 0000-0002-4271-0292
  surname: Leclerc
  fullname: Leclerc, Sarah
  email: sarah.leclerc@gmx.fr
  organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France
– sequence: 2
  givenname: Erik
  surname: Smistad
  fullname: Smistad, Erik
  organization: Department of Circulation and Medical Imaging, Center of Innovative Ultrasound Solutions, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 3
  givenname: Joao
  orcidid: 0000-0001-9926-0774
  surname: Pedrosa
  fullname: Pedrosa, Joao
  organization: Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
– sequence: 4
  givenname: Andreas
  orcidid: 0000-0003-3895-2683
  surname: Ostvik
  fullname: Ostvik, Andreas
  organization: Department of Circulation and Medical Imaging, Center of Innovative Ultrasound Solutions, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 5
  givenname: Frederic
  surname: Cervenansky
  fullname: Cervenansky, Frederic
  organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France
– sequence: 6
  givenname: Florian
  surname: Espinosa
  fullname: Espinosa, Florian
  organization: Cardiovascular Department, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
– sequence: 7
  givenname: Torvald
  surname: Espeland
  fullname: Espeland, Torvald
  organization: Center of Innovative Ultrasound Solutions and the Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway
– sequence: 8
  givenname: Erik Andreas Rye
  surname: Berg
  fullname: Berg, Erik Andreas Rye
  organization: Center of Innovative Ultrasound Solutions and the Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway
– sequence: 9
  givenname: Pierre-Marc
  orcidid: 0000-0002-6038-5753
  surname: Jodoin
  fullname: Jodoin, Pierre-Marc
  organization: Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada
– sequence: 10
  givenname: Thomas
  surname: Grenier
  fullname: Grenier, Thomas
  organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France
– sequence: 11
  givenname: Carole
  surname: Lartizien
  fullname: Lartizien, Carole
  organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France
– sequence: 12
  givenname: Jan
  orcidid: 0000-0002-2346-142X
  surname: Dhooge
  fullname: Dhooge, Jan
  organization: Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
– sequence: 13
  givenname: Lasse
  surname: Lovstakken
  fullname: Lovstakken, Lasse
  organization: Department of Circulation and Medical Imaging, Center of Innovative Ultrasound Solutions, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 14
  givenname: Olivier
  orcidid: 0000-0003-0752-9946
  surname: Bernard
  fullname: Bernard, Olivier
  email: olivier.bernard@creatis.insa-lyon.fr
  organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Villeurbanne, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30802851$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02054458$$DView record in HAL
BookMark eNp9kUFr3DAQRkVJaTZp74VCMfSSHrwdyZItH0M2aQIuOSShvQlZHu8qeCVX8hby76vF2z3k0JPE8D7NaN4ZOXHeISEfKSwphfrb44-7JQNaL1kNIGj5hiyoEDJngv86IQtglcwBSnZKzmJ8BqBcQP2OnBYggUlBF-TnCnHMGtTBWbfOeh-yB1xv0U16st5lT3Ff1i67H9FljQ5rzB-MHjBb6UlHnDLrMrbKrs3GGx0669dBj5uX9-Rtr4eIHw7nOXm6uX68us2b--93V5dNbjivprwGblrKoaWybPuKtchaWXVUpnvPmay07Httqoqbvu2k1rQE0YtS09p0UPDinHyd393oQY3BbnV4UV5bdXvZqH0NGAjOhfxDE3sxs2Pwv3cYJ7W10eAwaId-FxVLQ1BBgZUJ_fIKffa74NJPFGOSM5rWLRL1-UDt2i12x_7_1psAmAETfIwB-yNCQe0NqmRQ7Q2qg8EUKV9FjJ1dTEHb4X_BT3PQIuKxjyx5XRWy-AsyOqSl
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3373046
crossref_primary_10_1007_s11548_020_02141_y
crossref_primary_10_1016_j_compmedimag_2024_102476
crossref_primary_10_1016_j_imed_2024_10_001
crossref_primary_10_1109_LSP_2025_3572835
crossref_primary_10_3389_frai_2024_1467218
crossref_primary_10_1002_ima_70059
crossref_primary_10_1016_j_media_2024_103183
crossref_primary_10_1016_j_compbiomed_2023_107286
crossref_primary_10_1109_ACCESS_2021_3122256
crossref_primary_10_1109_TUFFC_2024_3393026
crossref_primary_10_1016_j_bspc_2021_102807
crossref_primary_10_1088_1361_6560_acf10f
crossref_primary_10_1007_s12652_021_03017_y
crossref_primary_10_1016_j_media_2022_102648
crossref_primary_10_1109_TUFFC_2022_3218281
crossref_primary_10_1002_jum_16007
crossref_primary_10_1016_j_bspc_2023_105076
crossref_primary_10_1155_2022_2013558
crossref_primary_10_1161_CIRCIMAGING_120_011951
crossref_primary_10_1016_j_compbiomed_2024_108313
crossref_primary_10_1109_TMI_2024_3362964
crossref_primary_10_1016_j_compbiomed_2024_108557
crossref_primary_10_1109_TMI_2022_3229136
crossref_primary_10_3389_fphys_2024_1432987
crossref_primary_10_1007_s11517_022_02612_1
crossref_primary_10_1109_TUFFC_2023_3326377
crossref_primary_10_1109_ACCESS_2020_3000666
crossref_primary_10_1109_TUFFC_2025_3539262
crossref_primary_10_1007_s11042_023_16044_y
crossref_primary_10_1016_j_cjca_2021_11_003
crossref_primary_10_1016_j_compbiomed_2023_107856
crossref_primary_10_1109_TMI_2021_3060497
crossref_primary_10_1161_STROKEAHA_120_032243
crossref_primary_10_1109_TBME_2021_3123612
crossref_primary_10_1002_jcu_70065
crossref_primary_10_1007_s11760_022_02250_y
crossref_primary_10_1109_TMI_2025_3526955
crossref_primary_10_3390_jcm10071391
crossref_primary_10_1088_1742_6596_1727_1_012013
crossref_primary_10_1016_j_media_2025_103470
crossref_primary_10_3390_diagnostics14131439
crossref_primary_10_1016_j_imu_2022_101150
crossref_primary_10_1109_RBME_2020_2988295
crossref_primary_10_1016_j_cjca_2021_11_009
crossref_primary_10_3390_s23208589
crossref_primary_10_1016_j_compbiomed_2025_110322
crossref_primary_10_3390_biomedicines12102324
crossref_primary_10_1016_j_dsp_2025_105558
crossref_primary_10_1016_j_media_2023_102834
crossref_primary_10_1016_j_media_2022_102438
crossref_primary_10_1038_s41598_023_36047_x
crossref_primary_10_1007_s11548_020_02223_x
crossref_primary_10_1016_j_patcog_2025_111927
crossref_primary_10_1002_ima_22631
crossref_primary_10_3390_s25072043
crossref_primary_10_1007_s11517_024_03201_0
crossref_primary_10_1109_TUFFC_2020_3015081
crossref_primary_10_1161_JAHA_124_039511
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_1109_JBHI_2024_3426068
crossref_primary_10_1016_j_ultrasmedbio_2023_08_024
crossref_primary_10_1007_s10916_023_01911_w
crossref_primary_10_1016_j_asoc_2025_112950
crossref_primary_10_1097_CRD_0000000000000691
crossref_primary_10_1161_CIRCIMAGING_123_015496
crossref_primary_10_1016_j_eswa_2025_129215
crossref_primary_10_1371_journal_pone_0293560
crossref_primary_10_1002_ecj_12281
crossref_primary_10_1007_s00500_021_06568_6
crossref_primary_10_1016_j_compmedimag_2025_102538
crossref_primary_10_3390_app13042308
crossref_primary_10_3390_diagnostics13142365
crossref_primary_10_1016_j_compmedimag_2023_102183
crossref_primary_10_1016_j_bspc_2022_104062
crossref_primary_10_1016_j_bspc_2025_108000
crossref_primary_10_1016_j_bspc_2025_108121
crossref_primary_10_1016_j_neunet_2023_12_038
crossref_primary_10_1371_journal_pone_0310107
crossref_primary_10_1038_s41569_025_01197_0
crossref_primary_10_1016_j_bspc_2022_103895
crossref_primary_10_1016_j_bspc_2025_107952
crossref_primary_10_1016_j_jacc_2020_11_030
crossref_primary_10_1016_j_ultrasmedbio_2023_12_018
crossref_primary_10_3390_app15095001
crossref_primary_10_1016_j_knosys_2024_112394
crossref_primary_10_1016_j_media_2024_103272
crossref_primary_10_1007_s42979_025_04155_2
crossref_primary_10_1016_j_asoc_2021_107386
crossref_primary_10_1016_j_jcmg_2021_04_018
crossref_primary_10_3389_fcvm_2023_1056055
crossref_primary_10_1007_s11517_025_03419_6
crossref_primary_10_1109_TUFFC_2024_3466290
crossref_primary_10_1038_s41598_024_65557_5
crossref_primary_10_1002_ima_23141
crossref_primary_10_1109_TMI_2024_3403687
crossref_primary_10_1016_j_compbiomed_2024_108100
crossref_primary_10_1109_TMI_2021_3137854
crossref_primary_10_1007_s40747_023_00968_x
crossref_primary_10_1109_TCSVT_2025_3558496
crossref_primary_10_1109_ACCESS_2024_3409360
crossref_primary_10_1007_s12574_020_00496_4
crossref_primary_10_1007_s10278_024_01119_5
crossref_primary_10_1007_s10278_025_01532_4
crossref_primary_10_3389_fcvm_2023_1266260
crossref_primary_10_1016_j_gpb_2023_09_003
crossref_primary_10_5582_bst_2023_01128
crossref_primary_10_1016_j_patcog_2024_110615
crossref_primary_10_1109_JBHI_2023_3293520
crossref_primary_10_1016_j_jcmg_2019_08_025
crossref_primary_10_3389_fpubh_2022_981019
crossref_primary_10_1016_j_asoc_2024_111449
crossref_primary_10_3389_fcvm_2022_849234
crossref_primary_10_1016_j_isci_2025_112917
crossref_primary_10_1016_j_jacc_2023_09_799
crossref_primary_10_1109_TPAMI_2023_3243040
crossref_primary_10_1007_s10278_024_01047_4
crossref_primary_10_1038_s41746_025_01730_y
crossref_primary_10_1007_s11548_020_02158_3
crossref_primary_10_1016_j_media_2020_101873
crossref_primary_10_1016_j_fmre_2025_01_020
crossref_primary_10_1016_j_jcmg_2025_02_011
crossref_primary_10_3390_electronics11213462
crossref_primary_10_1016_j_ejmp_2024_104505
crossref_primary_10_1002_ima_70086
crossref_primary_10_1109_TUFFC_2024_3418030
crossref_primary_10_1109_TMI_2021_3074808
crossref_primary_10_1007_s10554_024_03207_7
crossref_primary_10_1016_j_compbiomed_2021_104388
crossref_primary_10_1109_ACCESS_2025_3541173
crossref_primary_10_1007_s42452_025_07055_5
crossref_primary_10_1016_j_bspc_2025_108056
crossref_primary_10_1007_s40747_023_01119_y
crossref_primary_10_1145_3615862
crossref_primary_10_1109_TMI_2022_3151606
crossref_primary_10_3390_electronics12214411
crossref_primary_10_1016_j_ultrasmedbio_2024_12_008
crossref_primary_10_3348_kjr_2019_0378
crossref_primary_10_3390_s25061909
crossref_primary_10_1016_j_cmpb_2024_108544
crossref_primary_10_1080_17434440_2020_1777855
crossref_primary_10_1016_j_cmpb_2025_108869
crossref_primary_10_3390_jimaging11050165
crossref_primary_10_3390_diagnostics14151655
crossref_primary_10_1109_TUFFC_2022_3162800
crossref_primary_10_3390_life14060761
crossref_primary_10_1007_s00530_024_01349_1
crossref_primary_10_1007_s11517_025_03330_0
crossref_primary_10_1038_s41597_025_04464_4
crossref_primary_10_1016_j_ultrasmedbio_2023_11_008
crossref_primary_10_1007_s10554_022_02554_7
crossref_primary_10_1109_TII_2023_3249904
crossref_primary_10_1016_j_bspc_2024_107211
crossref_primary_10_1109_TETCI_2024_3377676
crossref_primary_10_3390_diagnostics11071177
crossref_primary_10_1016_j_neunet_2024_107095
crossref_primary_10_1016_j_ultrasmedbio_2024_06_001
crossref_primary_10_1186_s12880_024_01470_7
crossref_primary_10_1117_1_JMI_12_2_024002
crossref_primary_10_1038_s41598_024_63538_2
crossref_primary_10_5582_bst_2023_01119
crossref_primary_10_1016_j_bspc_2024_107212
crossref_primary_10_1016_j_compbiomed_2022_105637
crossref_primary_10_1016_j_medengphy_2025_104400
crossref_primary_10_1109_ACCESS_2021_3107303
crossref_primary_10_1016_j_eswa_2025_127084
crossref_primary_10_3390_jcm11102893
crossref_primary_10_1038_s41598_024_52480_y
crossref_primary_10_1109_TUFFC_2022_3169684
crossref_primary_10_1016_j_neucom_2022_03_022
crossref_primary_10_1007_s13246_024_01481_2
crossref_primary_10_3389_fphys_2025_1629121
crossref_primary_10_1038_s41598_025_08711_x
crossref_primary_10_1016_j_imu_2021_100601
crossref_primary_10_1109_TUFFC_2020_3015340
crossref_primary_10_1016_j_bspc_2020_102248
crossref_primary_10_1016_j_cmpb_2022_106970
crossref_primary_10_3390_diagnostics14232766
crossref_primary_10_1109_ACCESS_2023_3284315
crossref_primary_10_1016_j_heliyon_2024_e34845
crossref_primary_10_1016_j_media_2023_103061
crossref_primary_10_1038_s41467_025_59451_5
crossref_primary_10_3389_fmed_2024_1354070
crossref_primary_10_1017_eds_2024_53
crossref_primary_10_4250_jcvi_2021_0039
crossref_primary_10_1109_TCE_2023_3337234
crossref_primary_10_1016_j_eswa_2025_128985
crossref_primary_10_1016_j_neucom_2025_130217
crossref_primary_10_1109_JBHI_2022_3171985
crossref_primary_10_1016_j_neunet_2025_107865
crossref_primary_10_1038_s41598_024_82931_5
crossref_primary_10_7717_peerj_cs_3161
crossref_primary_10_3389_fcvm_2024_1418741
crossref_primary_10_1007_s11517_025_03310_4
crossref_primary_10_3390_app13116582
crossref_primary_10_1016_j_artmed_2024_102866
crossref_primary_10_1007_s00259_019_04606_y
crossref_primary_10_1109_TUFFC_2021_3136620
crossref_primary_10_1016_j_bspc_2025_108500
crossref_primary_10_1186_s12947_023_00317_5
crossref_primary_10_1016_j_bspc_2022_104557
crossref_primary_10_1016_j_rineng_2025_104143
crossref_primary_10_1109_TIM_2025_3550246
crossref_primary_10_1016_j_compbiomed_2020_104200
crossref_primary_10_1016_j_compbiomed_2021_104860
crossref_primary_10_25259_JCCC_59_2024
crossref_primary_10_1109_JBHI_2021_3091579
crossref_primary_10_1016_j_compbiomed_2024_108282
crossref_primary_10_3389_fcvm_2022_1016032
crossref_primary_10_1007_s10278_025_01682_5
crossref_primary_10_1177_01617346211068812
crossref_primary_10_1007_s10554_024_03095_x
crossref_primary_10_1016_j_ultrasmedbio_2024_08_023
crossref_primary_10_1016_j_cmpb_2023_107882
crossref_primary_10_1109_TMI_2021_3054566
crossref_primary_10_1177_0161734620951216
crossref_primary_10_1109_TUFFC_2021_3137989
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_1097_MS9_0000000000003080
crossref_primary_10_1109_TMI_2022_3173669
crossref_primary_10_1016_j_media_2025_103602
crossref_primary_10_3390_s25082361
crossref_primary_10_3390_app12073676
crossref_primary_10_1016_j_media_2022_102397
crossref_primary_10_1016_j_bspc_2025_107671
crossref_primary_10_1016_j_compbiomed_2022_106090
crossref_primary_10_3389_fcvm_2022_1067760
crossref_primary_10_1007_s10044_025_01509_7
crossref_primary_10_1016_j_jcmg_2024_05_020
crossref_primary_10_3390_healthcare11040484
crossref_primary_10_1109_TMI_2020_3003240
crossref_primary_10_1007_s13246_022_01179_3
crossref_primary_10_1109_TPAMI_2025_3525671
crossref_primary_10_1016_j_cmpb_2024_108111
crossref_primary_10_1016_j_compbiomed_2023_106705
crossref_primary_10_1117_1_JMI_11_5_054002
crossref_primary_10_3389_fonc_2020_619274
crossref_primary_10_3389_fnins_2023_1268860
crossref_primary_10_1038_s41598_024_81523_7
crossref_primary_10_1049_ipr2_12915
crossref_primary_10_1109_ACCESS_2022_3174059
crossref_primary_10_1016_j_bspc_2023_105329
crossref_primary_10_1002_mp_14818
crossref_primary_10_1109_JBHI_2025_3565311
crossref_primary_10_1109_JBHI_2021_3131758
crossref_primary_10_3390_diagnostics13101683
crossref_primary_10_1038_s41551_025_01497_3
crossref_primary_10_1109_JBHI_2024_3390688
crossref_primary_10_1016_j_compbiomed_2020_103728
crossref_primary_10_1016_j_dsp_2025_105459
crossref_primary_10_1053_j_semnuclmed_2025_01_004
crossref_primary_10_1016_j_bspc_2023_105280
crossref_primary_10_3390_jimaging10080190
crossref_primary_10_1109_ACCESS_2024_3384383
crossref_primary_10_1109_TASE_2023_3261344
crossref_primary_10_1109_TMI_2023_3309249
crossref_primary_10_1016_j_compbiomed_2023_107129
crossref_primary_10_1016_j_compbiomed_2025_109719
crossref_primary_10_1002_widm_1574
crossref_primary_10_1109_ACCESS_2024_3447528
crossref_primary_10_1007_s00521_022_07217_1
crossref_primary_10_1016_j_compbiomed_2025_110708
crossref_primary_10_3389_fcvm_2023_1185172
crossref_primary_10_1088_1361_6560_ad548a
crossref_primary_10_1007_s11263_023_01970_z
crossref_primary_10_2196_59711
crossref_primary_10_3389_fcvm_2021_648877
crossref_primary_10_1016_j_media_2023_102868
crossref_primary_10_3390_app11041690
crossref_primary_10_1109_TMI_2023_3319973
crossref_primary_10_3389_fcvm_2021_735587
crossref_primary_10_1016_j_inffus_2025_103590
crossref_primary_10_1007_s12559_024_10257_5
crossref_primary_10_1016_j_jcmg_2024_04_017
crossref_primary_10_1007_s13369_025_10310_x
crossref_primary_10_1016_j_ijleo_2025_172538
crossref_primary_10_1007_s11547_023_01606_9
crossref_primary_10_1016_j_ultrasmedbio_2022_09_006
crossref_primary_10_1016_j_media_2022_102686
crossref_primary_10_1016_j_bspc_2024_107164
crossref_primary_10_1016_j_compbiomed_2025_110003
crossref_primary_10_1109_TUFFC_2020_2976809
crossref_primary_10_1109_ACCESS_2021_3059595
crossref_primary_10_3390_life13010124
crossref_primary_10_1002_mp_15321
crossref_primary_10_1007_s11886_020_01348_4
crossref_primary_10_1016_j_bspc_2025_107803
crossref_primary_10_1109_TPAMI_2023_3299789
crossref_primary_10_1016_j_bspc_2024_106633
crossref_primary_10_1016_j_health_2024_100340
crossref_primary_10_1109_JBHI_2024_3413628
crossref_primary_10_1016_j_bspc_2024_107169
crossref_primary_10_1097_HJH_0000000000002813
crossref_primary_10_1007_s12170_021_00678_4
crossref_primary_10_1109_ACCESS_2020_2971383
crossref_primary_10_1007_s11042_024_18953_y
crossref_primary_10_1016_j_rineng_2025_106413
crossref_primary_10_1016_j_compbiomed_2025_110807
crossref_primary_10_1007_s11042_020_09834_1
crossref_primary_10_3390_bioengineering11050447
crossref_primary_10_1016_j_artmed_2021_102165
crossref_primary_10_1109_JBHI_2025_3535579
crossref_primary_10_1038_s41598_022_13658_4
crossref_primary_10_1016_j_jcmg_2025_05_003
crossref_primary_10_1109_JBHI_2023_3236989
crossref_primary_10_1016_j_eswa_2025_128338
crossref_primary_10_1109_JBHI_2022_3221429
crossref_primary_10_3389_fcvm_2020_00025
crossref_primary_10_1109_JIOT_2020_3029957
crossref_primary_10_2478_jtim_2023_0088
crossref_primary_10_1002_mp_17733
crossref_primary_10_1109_TUFFC_2020_2981037
crossref_primary_10_1109_TUFFC_2020_3003403
crossref_primary_10_1016_j_media_2025_103536
crossref_primary_10_3390_s23031479
crossref_primary_10_1007_s11548_021_02542_7
crossref_primary_10_1016_j_media_2021_102042
crossref_primary_10_1080_21681163_2020_1835555
crossref_primary_10_1109_TUFFC_2022_3151647
crossref_primary_10_1177_20552076241260557
crossref_primary_10_1177_20552076251351201
Cites_doi 10.1007/978-3-030-00889-5_1
10.1109/TUFFC.2016.2638080
10.1016/j.media.2017.07.005
10.1109/TMI.2018.2837502
10.1109/TIP.2011.2169273
10.1093/ejechocard/jeq005
10.1109/TPAMI.2014.2377715
10.1109/TMI.2017.2743464
10.1109/TMI.2015.2503890
10.1109/TMI.2006.877092
10.1109/TIP.2011.2161484
10.1109/TMI.2017.2734959
10.1016/j.echo.2014.10.003
10.1161/01.CIR.60.4.760
10.1016/j.ultrasmedbio.2012.08.008
10.1111/echo.12832
10.1007/978-3-319-46484-8_29
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1109/TMI.2019.2900516
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2210
ExternalDocumentID oai:HAL:hal-02054458v1
30802851
10_1109_TMI_2019_2900516
8649738
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: framework of the LABEX PRIMES (ANR-11-LABX-0063) of the Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR)
– fundername: Centre for Innovative Ultrasound Solutions through the Norwegian Research Council
  grantid: 237887
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c447t-904cb140b186bf72be2b87d18f72f4287a8ffac774cfbd8aa1605f56a19cd0343
IEDL.DBID RIE
ISICitedReferencesCount 490
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484290400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Nov 18 06:20:57 EST 2025
Sat Sep 27 21:23:35 EDT 2025
Mon Jun 30 02:34:05 EDT 2025
Mon Jul 21 05:49:32 EDT 2025
Tue Nov 18 22:11:37 EST 2025
Sat Nov 29 05:14:06 EST 2025
Wed Aug 27 02:46:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords cardiac strain
Multimodal cardiac imaging
deep learning
electromechanical model
left ventricle
synthetic sequences
motion estimation
myocardium
Cardiac segmentation and diagnosis
left atrium
ultrasound
numerical simulation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-904cb140b186bf72be2b87d18f72f4287a8ffac774cfbd8aa1605f56a19cd0343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2346-142X
0000-0001-9926-0774
0000-0002-6038-5753
0000-0003-0752-9946
0000-0003-3895-2683
0000-0002-4271-0292
0000-0002-7817-1198
0000-0001-7594-4231
0000-0002-3630-5856
OpenAccessLink https://hal.science/hal-02054458
PMID 30802851
PQID 2284210055
PQPubID 85460
PageCount 13
ParticipantIDs proquest_journals_2284210055
proquest_miscellaneous_2186151026
ieee_primary_8649738
pubmed_primary_30802851
hal_primary_oai_HAL_hal_02054458v1
crossref_primary_10_1109_TMI_2019_2900516
crossref_citationtrail_10_1109_TMI_2019_2900516
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References keraudren (ref15) 2014
ref30
ref2
ref1
ref19
domingos (ref16) 2014
çiçek (ref20) 2016
smistad (ref10) 2014
ref24
oktay (ref14) 2014
ref23
smistad (ref17) 2017
ref25
ref22
van stralen (ref13) 2014
ref21
ref28
ref27
ref29
wang (ref9) 2014
ref8
bernier (ref11) 2014
ref7
ronneberger (ref18) 2015
ref3
ref6
ref5
barbosa (ref4) 2014
leclerc (ref26) 2017
milletari (ref12) 2014
References_xml – start-page: 25
  year: 2014
  ident: ref11
  article-title: Automatized evaluation of the left ventricular ejection fraction from echocardiographic images using graph cut
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– ident: ref25
  doi: 10.1007/978-3-030-00889-5_1
– start-page: 234
  year: 2015
  ident: ref18
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc MICCAI
– ident: ref29
  doi: 10.1109/TUFFC.2016.2638080
– ident: ref23
  doi: 10.1016/j.media.2017.07.005
– ident: ref2
  doi: 10.1109/TMI.2018.2837502
– ident: ref7
  doi: 10.1109/TIP.2011.2169273
– start-page: 65
  year: 2014
  ident: ref10
  article-title: Real-time tracking of the left ventricle in 3D ultrasound using Kalman filter and mean value coordinates
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– ident: ref8
  doi: 10.1093/ejechocard/jeq005
– ident: ref27
  doi: 10.1109/TPAMI.2014.2377715
– ident: ref19
  doi: 10.1109/TMI.2017.2743464
– ident: ref3
  doi: 10.1109/TMI.2015.2503890
– ident: ref6
  doi: 10.1109/TMI.2006.877092
– start-page: 41
  year: 2014
  ident: ref15
  article-title: Endocardial 3D ultrasound segmentation using autocontext random forests
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– ident: ref28
  doi: 10.1109/TIP.2011.2161484
– ident: ref5
  doi: 10.1109/TMI.2017.2734959
– ident: ref22
  doi: 10.1016/j.echo.2014.10.003
– ident: ref21
  doi: 10.1161/01.CIR.60.4.760
– start-page: 17
  year: 2014
  ident: ref4
  article-title: Fast tracking of the left ventricle using global anatomical affine optical flow and local recursive block matching
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– start-page: 57
  year: 2014
  ident: ref14
  article-title: Learning shape representations for multi-atlas endocardium segmentation in 3D echo images
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– start-page: 33
  year: 2014
  ident: ref16
  article-title: Endocardial segmentation using structured random forests in 3D echocardiography
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– start-page: 73
  year: 2014
  ident: ref13
  article-title: Segmentation of multi-center 3d left ventricular echocardiograms by active appearance models
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– ident: ref30
  doi: 10.1016/j.ultrasmedbio.2012.08.008
– start-page: 424
  year: 2016
  ident: ref20
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– start-page: 81
  year: 2014
  ident: ref9
  article-title: Model-based left ventricle segmentation in 3D ultrasound using phase image
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– start-page: 49
  year: 2014
  ident: ref12
  article-title: Left ventricle segmentation in cardiac ultrasound using Hough-forests with implicit shape and appearance priors
  publication-title: Proc MICCAI Challenge on Echocardiographic Three-Dimensional Ultrasound Segmentation (CETUS)
– start-page: 1
  year: 2017
  ident: ref26
  article-title: A fully automatic and multi-structural segmentation of the left ventricle and the myocardium on highly heterogeneous 2D echocardiographic data
  publication-title: Proc IEEE Int Ultrason Symp (IUS)
– ident: ref1
  doi: 10.1111/echo.12832
– start-page: 1
  year: 2017
  ident: ref17
  article-title: 2D left ventricle segmentation using deep learning
  publication-title: Proc IEEE Int Ultrason Symp (IUS)
– ident: ref24
  doi: 10.1007/978-3-319-46484-8_29
SSID ssj0014509
Score 2.7140172
Snippet Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2198
SubjectTerms Algorithms
Artificial neural networks
Automation
Cardiacsegmentation and diagnosis
Coders
Correlation coefficient
Correlation coefficients
Databases, Factual
Datasets
Deep Learning
Echocardiography
Echocardiography - methods
Encoders-Decoders
Engineering Sciences
Heart
Heart - diagnostic imaging
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
left atrium
left ventricle
Machine learning
Medical diagnosis
Medical imaging
Myocardium
Neural networks
Signal and Image processing
Three-dimensional displays
Training
Two dimensional analysis
Two dimensional displays
Ultrasonic imaging
Ultrasound
Ventricle
Title Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography
URI https://ieeexplore.ieee.org/document/8649738
https://www.ncbi.nlm.nih.gov/pubmed/30802851
https://www.proquest.com/docview/2284210055
https://www.proquest.com/docview/2186151026
https://hal.science/hal-02054458
Volume 38
WOSCitedRecordID wos000484290400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51K4TogUfLI1Aqg7ggkW7sOLF9rNhWRdpWSC2wt8h2nFKJZqs229_PTOKNQAIkblbiJJZnnJnxfP4G4J0sg6ylEymxUxGpdpbajIeUu1Cgf14b3W8NfJ2r01O9WJjPG_BhPAsTQujBZ2Gfmn0uv176FW2VTXUpjcr1BCZKqeGs1pgxkMUA5xDEGJuVYp2SzMz0_OQTYbjMvjCkg1S1KKcjprrgv1mjyXfCQvZFVv7ub_Z25-jR_434MTyM_iU7GBTiCWyEdhu2fmEd3Ib7JzGfvgPfZiFcs8ixesHQgWVn4eIqnkdqWQ8oYLZlhDthc0KNp2co1cBmtkP717HLlokZO8SfqO-RrQMB9lP4cnR4_vE4jaUWUi-l6lKTSe8w1nJcl65RwgXhtKq5xnZDUZXVTWM9-oq-cbW2lmMY1BSl5cbXWS7zZ7DZLtvwAhgFYUK4sm4yLwPXhhvXOMWtzXkZcpvAdD3llY885FQO40fVxyOZqVBeFcmrivJK4P34xPXAwfGPvm9RimM3Is8-PphXdA0dY2Ie0nc8gR0S1dgrSimB3bXQq7iSbyuB9hvD4qwoEngz3sY1SIkV24blCvvgrKHnhOFsAs8HZRnfvda0l3_-5it4QMMfUGu7sNndrMJruOfvusvbmz1U9IXe6xX9J9_b81A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BRU48Gh5BAoY1AsS6caOk9jHim21FdkVUhfaW2Q7TlupZKs229_PTJKNQIJK3KzEeXnGmRnP528AdmXqZSmtCImdiki1o9BE3Ifc-gT981KrdmngR57NZur0VH9bg8_DXhjvfQs-83vUbHP55cItaalspFKps1itw71ESsG73VpDzkAmHaBDEGdslIpVUjLSo_n0iFBcek9o0kKqWxTTJlOV8D_s0fo5oSHbMiv_9jhby3P45P_e-Sk87j1Mtt-pxDNY8_UWPPqNd3ALNqd9Rn0bTsbeX7GeZfWMoQvLjv3Zz35HUs1aSAEzNSPkCcsJNx4eo1w9G5sGLWDDLmomxuwAf6OuxbZ2FNjP4fvhwfzLJOyLLYROyqwJdSSdxWjLcpXaKhPWC6uykitsVxRXGVVVxqG36CpbKmM4BkJVkhquXRnFMn4BG_Wi9q-AURgmhE3LKnLSc6W5tpXNuDExT31sAhithrxwPRM5FcS4LNqIJNIFyqsgeRW9vAL4NFxx1bFw3NH3I0px6Eb02ZP9vKBj6BoT95C65QFsk6iGXr2UAthZCb3o5_JNIdCCY2AcJUkAH4bTOAsptWJqv1hiHxw19J0woA3gZacsw71Xmvb67898Dw8m82le5Eezr2_gIX1Kh2HbgY3meunfwn1321zcXL9r1f0X8cT1rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Segmentation+Using+an+Open+Large-Scale+Dataset+in+2D+Echocardiography&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Leclerc%2C+Sarah&rft.au=Smistad%2C+Erik&rft.au=Pedrosa%2C+Joao&rft.au=Ostvik%2C+Andreas&rft.date=2019-09-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=38&rft.issue=9&rft.spage=2198&rft_id=info:doi/10.1109%2FTMI.2019.2900516&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon